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APPLICATION OF THE NEKHOROSHEV THEOREM
TO THE REAL DYNAMICAL SYSTEM

Zoran Knežević1, Rade Pavlović2

Abstract. The Nekhoroshev theorem describes the exponential stability
of motion in perturbed Hamiltonian systems. Its spectral formulation is
used to assess the stability of motion in dynamically diverse regions of
the asteroid Main Belt. The obtained spectra exhibit a clear distinction
between line, continuous and irregular structure, thus indicating regular
vs. chaotic motion. We briefly describe the theorem and its spectral
formulation, and show different dynamics revealed. The procedure of
checking the fulfillment of conditions of convexity, quasi-convexity or 3-
jet non-degeneracy for application of the theorem is also described, as well
as an example of its use in combination with the spectral formulation of
the theorem given.

1. Introduction

The issue of the stability of motion of asteroids over the solar system’s life-
time is very important in terms of the study of their origin and dynamical
evolution, it is crucial for the calibration of collisional models and for the as-
sessment of the rate of depletion of the asteroid belt, it provides an insight
into the structure of the phase space in the belt, gives clues to establish the
comparative importance of the mechanisms shaping it, etc. The problem has
been studied in many ways, both analytically and numerically (see e.g. [2], and
the references therein), but with a limited success. The long-term perturbation
theories encounter difficulties because of the degeneracy of the problem and of
the inefficiency of analytical tools in estimation whether the perturbing param-
eters, like masses of the perturbing planets and their orbital eccentricities and
inclinations, are small enough to allow the application of the stability result. As
for the numerical studies, the detection of the structure of the resonances and
the study of the stability requires the integrations of the orbits over the long
time spans and the computation of some kind of the indicator of dynamics on
a grid of many initial conditions, which is a CPU time consuming process, thus
necessarily limited in terms of the accuracy and the reliability of the results.

The first successful attempt to employ another approach, that of using the
Nekhoroshev theorem [8], to study the stability of motion of real asteroids over
the exponentially long times, is due to Guzzo et al. [2], who applied for this
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purpose the spectral formulation of the theorem. Their method is based on
the theoretical result [1] that the Fourier spectra of the orbits in Nekhoroshev
dynamical regime have a particular band structure which can be detected in
the output of the comparatively short numerical integrations of the orbits. The
presence in the spectrum of the so-called secondary peak structure, that is, of
peaks separated in frequency by an amount of the order of the small parameter
ε, is shown to be a signature of the Nekhoroshev stability regime for degenerate
systems. The continuous spectrum and the lack of the regularity and of the
peak structure indicates the non-Nekhoroshev regime. This enabled Guzzo et
al. [2] to propose the classification of asteroids into the four dynamically dis-
tinct categories: (i) ostensibly stable; (ii) chaotic, but exponentially stable; (iii)
moderately-to-strongly chaotic diffusive objects; and (iv) escapers.

It is well known, however, that the Nekhoroshev theorem provides an expo-
nential estimate of the stability time for quasi-integrable non-degenerate Hamil-
tonian systems. Nekhoroshev himself [8] proved this stability result for the
Hamiltonian functions that are analytic perturbations of steep functions. It is
thus necessary, in terms of the practical application of the theorem, to verify
that this is indeed so in the regions of the phase space of interest (in this case,
in the main asteroid belt). This has been recently done by Pavlović and Guzzo
[9] who used a simple integrable approximation of the asteroid Hamiltonian,
the so-called Kozai’s Hamiltonian, to show that it is indeed steep and that the
conditions for the application of Nekhoroshev theorem are in this case fulfilled
for most of the selected asteroids in the regions of the asteroid families Koronis
and Veritas. The application of the theorem to the real asteroids, such as that
by Guzzo et al. [2], has thus been justified.

2. Nekhoroshev theorem and its spectral formulation

The Nekhoroshev theorem [8] can be introduced as follows. Given the Hamil-
tonian:

H(I, φ) = h(I) + εf(I, φ)

where I ∈ Rn and φ ∈ Tn, h is quasi–convex (more generally steepness is
sufficient) and f is analytic, there exist positive constants a, b, ε0, I0, t0 such
that if ε < ε0 then for any motion I(t), φ(t) it is:

|I(t)− I(0)| ≤ I0ε
a

for any time t satisfying:

|t| ≤ t0 exp
(ε0

ε

)b

.

The theorem in this form cannot be directly applied to the real dynamical
systems. Therefore, a spectral formulation has been developed in [1], to be later
extended to degenerate systems in [3].

The basis of the method using the spectral formulation is the Fourier anal-
ysis of a test function G of the equinoctial elements defined on a numerically
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Figure 1: Fourier spectrum for asteroid 1223 Neckar of the Koronis family. The
spectrum consists of many lines: the dynamics are quasi-periodic.

computed solution:

a, `, h = e cos $, k = e sin $,

p = tan (i/2) cos Ω, q = tan (i/2) sin Ω

where a, e, i, ω̃,Ω, ` are the usual Keplerian orbital elements. The role of the test
function G is to mix in a convenient way the degrees of freedom of the problem.
We choose the function:

G =
(
[cos(h) + sin(h) + cos(k) + sin(k) + cos(q)

+ sin(q) + cos(p) + sin(p) + cos(a) + sin(a)]14 + 1
)−1

.

Then, we compute the Fast Fourier Transform of

g(t) = Φ(t)G(a(t), h(t), k(t), p(t), q(t)),

where Φ(t) is a suitable analytic window function described in [3].
On the basis of the shape of the spectrum of function g(t), we can judge

whether the object is in the Nekhoroshev regime or not. We can distinguish dif-
ferent cases, such as a line spectrum indicating regular, quasi-periodic motion
(Figure 1), a continuous spectrum with peak structure typical of the Nekhoro-
shev (Figure 2), or perhaps a continuous irregular spectrum revealing the non-
Nekhoroshev dynamical regime (Figure 3).
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Figure 2: Fourier spectrum for asteroid 305 Gordonia. The spectrum is contin-
uous and has a peak structure. The object is in Nekhoroshev regime.

3. Fulfillment of the conditions for application of Nekhoro-
shev theorem

It is well known that the condition of steepness involved with the proof of
the Nekhoroshev theorem is originally written in an implicit form difficult to use
in practical applications. Instead, however, one can use some stronger sufficient
conditions, which can be explicitly written in terms of the derivatives of the
Hamiltonian of the problem. These conditions are convexity, quasi-convexity
and 3-jet non-degeneracy [8], which were used, for example, by Benettin et al.
[1] to study the long-term stability of the Lagrangian points.

Let us also recall the definitions of convexity, quasi-convexity and 3-jet non-
degeneracy. A function is:

• convex in ξ0 ∈ Rn if its Hessian is positive (or negative) definite:


u ∈ Rn,

∑

i,j

∂2h

∂ξi∂ξj
(ξ0)uiuj = 0


 ⇒ u = 0

• quasi-convex in ξ0 ∈ Rn if the restriction of its Hessian to the plane
orthogonal to the frequency vector ω = ∇h(ξ0) is either positive or negative
definite:
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Figure 3: Fourier spectrum for asteroid 3542 Tanjiazhen. The spectrum is
continuous and has no peak structure. The object is not in the Nekhoroshev
regime.


u ∈ Rn, ω · u = 0,

∑

i,j

∂2h

∂ξi∂ξj
(ξ0)uiuj = 0


 ⇒ u = 0

• 3-jet non degenerate in ξ0 ∈ Rn if


u ∈ Rn, ω · u = 0,

∑

i,j

∂2h

∂ξi∂ξj
(ξ0)uiuj = 0,

∑

i,j,k

∂3h

∂ξi∂ξj∂ξk
(ξ0)uiujuk = 0


 ⇒ u = 0.

The flow chart of an algorithm to check these conditions is given in Figure 4.
Once the integrable Hamiltonian is known and the corresponding Hessian de-
rived, one proceeds with the check of the signs of its eigen values. If all the three
signs are the same (more precisely, if the Hessian is either positive or negative
definite), the Hamiltonian is convex. If one of the signs differ, the restriction of
the Hessian to the plane orthogonal to the frequency vector ω is considered; if it
is either positive or negative definite, that is, if the signs of its two eigen values
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Eigen values of Hessian: λ1,λ2,λ3

The signs of λ1,λ2,λ3 are the same? Convex

Eigen values of the restriction of Hessian: β1,β2

The signs of β1,β2 are the same? Quasi-convex

Compute u±: ω · u± = 0,
∑

i,j

∂2h
∂ξi∂ξj

(ξ0)u
±

i u±j = 0

∑

i,j,k

∂3h
∂ξi∂ξj∂ξk

(ξ0)u
±

i u±j u±k 6= 0? 3-jet

None

Return

Yes

No

Yes

No

Yes

No

Figure 4: Algorithm to check the fulfillment of conditions for the application of
Nekhoroshev theorem.

are the same, the Hamiltonian is quasi-convex. If the signs differ one must first
compute vectors u± in the plane orthogonal to the frequency vector ω defined
by an additional condition, and then check the fulfillment of the 3-jet condition
itself. This involves computation of the third derivatives of the Hamiltonian,
which in the case of an asteroid Hamiltonian must be done by means of the
semi-numerical techniques, extending the techniques introduced by Henrard [4],
Henrard and Lemaitre [5] and Lemaitre and Morbidelli [6]. If none of the above
conditions are fulfilled, we conclude that the Nekhoroshev theorem cannot be
applied for a given asteroid.

4. Application to asteroids

As an example of the check of fulfillment of the conditions for application of
the Nekhoroshev theorem we have considered a simplified asteroid Hamiltonian,
consisting of the Keplerian h0 and Kozai’s K0 parts [9], extended by the terms
K1 linear in eccentricities e′ and inclinations i′ of perturbing planets [7, 10].

This extended Hamiltonian is thus given by:

(1) h = h0 + εK0 + εK1.

Hamiltonian (1) depends on angles which must be removed by means of a suit-
able canonical transformation. This can be achieved in two steps: i) by using
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Henrard’s seminumerical method [4] we remove angles from K0 and get new vari-
ables (actions Λ, J, Z, and angles λ, ψ, z) introduced in K1; ii) we look for the
generating function W1 such that {W1,K0}+K1 = 0, where {., .} denotes Pois-
son bracket. Function W1 generates another canonical transformation resulting
in new variables (Λ, J, Z, λ, ψ, z). This transformation is implicitly defined by

Λ = Λ,

J = J +
∂W1

∂ψ̃
(Λ, J, Z, ψ, z),

Z = Z +
∂W1

∂z̃
(Λ, J, Z, ψ, z),

λ = λ− ∂W1

∂Λ
(Λ, J, Z, ψ, z),

ψ = ψ − ∂W1

∂J̃
(Λ, J, Z, ψ, z),

z = z − ∂W1

∂Z̃
(Λ, J, Z, ψ, z),

which can be iteratively solved [6].
The resulting Hamiltonian does not depend on angles and can be used for

computation of derivatives over the actions (Λ, J, Z). Making use of the al-
gorithm of Figure 4 we can now straightforwardly check the fulfillment of the
convexity, quasi-convexity or 3-jet conditions.
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Figure 5: Fourier spectrum for asteroid 582 Olympia, computed from the output
of the 100 Myr numerical integration.

As an example we show the results for asteroid 582 Olympia, located very
close to the strong ν5 secular resonance [7]. By applying the algorithm described
in Section 3 we found that the condition of convexity is fulfilled for this asteroid
and that we can apply the Nekhoroshev theorem to assess the character of its
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motion. Figure 5 shows the spectrum of this asteroid as determined from the nu-
merical integration covering 100 Myr. Since the secondary peak structure does
not show up in the plot we conclude that this asteroid is not in the Nekhoro-
shev regime. Analyzing in addition the time variations of the orbital elements
we conclude that this object most probably can be classified in the category of
”moderately-to-strongly chaotic diffusive objects” proposed by Guzzo et al. [2].

We conclude that the procedure of checking the conditions for the applica-
tion of Nekhoroshev theorem in combination with spectral formulation of the
theorem represents an efficient and powerful tool to establish the character of
asteroid motion and classify asteroids into different dynamical categories.
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