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On Isometry Links between 4-Vectors of Velocity

Emilija G. Celakoska1

Abstract. We give an overview on the problem of finding isometry as
Lorentz transformation between given vectors of 4-velocity and its solu-
tions. These Lorentz transformations are usually referenced as Lorentz
links. We show that the links by boost, obtained independently by dif-
ferent authors in different forms, are identical. Finally, we discuss briefly
some implications of the non-uniqueness of boost linking given pair of 4-
velocities.
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1. Introduction

In Special Relativity (SR) each object, vector or tensor, is strongly related to
a reference frame. A link (morphism) among such objects is an orthogonal inho-
mogeneous Lorentz coordinate transformation. A relative velocity between two
objects is an essential concept in attempt to provide an observer independent
relation between them. This relation is standardly represented by a symmetric
matrix (boost) usually parameterized by a vector of velocity representing rela-
tive velocity between given objects. Unfortunately, as it was recently shown [7],
the boost linking two given 4-vectors of velocity is not unique (it depends on an
observer).

The problem of determining the Lorentz transformations that link two given
4-velocities, or more generally, 4-vectors with an equal norm, has been addressed
by several authors using different approaches. The well-known solution based
on boosts has been proposed in [2], and rewritten in [4, 5]. This isometry
link, provided by straightforward calculations, is an algebraically simple solution
presented as a tensor of rank 2. However, the question about the uniqueness
of this solution has not been clarified. The difficulties appearing in attempts
to determine most general transformation link, i.e. all boosts linking given
4-vectors, are evident from van Wyk attempts [13, 14].

In [10], the problem of finding isometry links between given 4-vectors is
solved by gyrogroup formalism. However, the conclusion in [10] that the pro-
posed boost is unique is incorrect as was pointed out in [7], where more general
solution is obtained using standard covariant formalism.

An interesting approach was undertaken in [11], where the problem is solved
by representing boost via two reflections. However, as we shall prove, this
solution is the same with the known one proposed in [2].

1Department of Mathematics and Informatics, Faculty of Mechanical Engineering, Sts.
Cyril and Methodius University Skopje, Macedonia e-mail: cemil@mf.edu.mk



166 E. G. Celakoska

The most extensive analysis and discussion as well as the most general so-
lution (under some conditions) to the problem of determining isometry links
between given 4-vectors are given in [7]. The proposed solution is parameter-
ized by an arbitrary 4-vector (this solution is given by the formula (4)). This
solution shows that the link by boost is not unique, i.e. it depends on an addi-
tional 4-vector that could be considered as a 4-velocity of an observer.

Our aim is to show equivalence between some different link solutions pro-
posed in the literature. We shall briefly discuss the most important properties
of this solution.

2. Isometry Links Between Given 4-Velocities

Let us consider the 4-velocities in the Minkowski space with the metric η =
diag(−1,−1,−1, 1). Relativistic 4-velocity V is defined as the rate of change
of the event coordinates q = (x, y, z, ct) with respect to proper time τ . Since
dt
dτ = 1√
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, the 4-velocity V is
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where vx, vy and vz are the components of the corresponding 3-velocity vector
~v and c is the speed of light. The magnitude of 4-velocity V is c, V V =
ηabV

aV b = c2, so it is independent of the magnitude of the 3-velocity ~v. The
space of relativistic 3-velocities is Λ3 = {~v ∈ R3 | ‖~v‖ < c} and the space of
4-velocities is Λ4 = {V ∈ R4 | ηijV

iV j = c2, ‖~v‖ < c}, where ‖ · ‖ is the usual
Euclidean norm. The map between the open 3-ball in (R3, ‖ · ‖) of 3-velocities
and the 3-dimensional hyperbola in (R4, η) of 4-velocities f : Λ3 → Λ4 defined
by f(~v) = V is obviously, bijective.

The Lorentz group together with translations (Poincare group) is the group
of symmetries of the metric tensor of the empty space-time, no matter.

Definition 2.1. The Lorentz group is the linear group (subgroup of GL(4,R))
of orthogonal transformations of Minkowski space, also called O(3, 1) which pre-
serves distances. So, L ∈ O(3, 1) iff η(L(x), L(y)) = η(x, y) ( ηijL

i
αLj

β = ηαβ).

We shall denote scalar product briefly by x · y ≡ η(x, y) ≡ ηijx
iyj .

As a topological space, O(3, 1) decomposes into the disjoint union of four
connected components O(3, 1) = O(3, 1)↑+ ∪ O(3, 1)↓+ ∪ O(3, 1)↑− ∪ O(3, 1)↓−
where +/− stands for positive/negative determinant, i.e. proper/improper and
↑ / ↓ for time orientation preserving/reversing, i.e. orthochronous/antichronous
transformations respectively. Of these four components only O(3, 1)↑+, the com-
ponent containing the group identity is a subgroup called the group of proper
orthochronous Lorentz transformations.

From geometrical point of view, Lorentz transformations are classified as:
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– Rotation, that is proper, orthochronous transformation (belongs to O(3, 1)↑+)
that represents Euclidean rotation around spatial axes. Represented in matrix
form, the rotation R is given by

[
R3

~0T

~0 1

]
, R3 ∈ SO(3).

– Boost, that is also proper, orthochronous transformation (Boosts ∈ O(3, 1)↑+,
actually Boosts ∪Rotations generates O(3, 1)↑+), representing hyperbolic rota-
tion in a plane that includes a timelike direction. Boosts are sometimes called
pure Lorentz transformations, because do not include spatial rotations. Param-
eterized by 3-velocity ~v the boost B is represented by the following symmetric
4× 4 matrix

(1)




1− γ2
v

1 + γv
~v~vT γv~v

T

γv~v γv,




where indeed ‖~v‖ < c and γv =
1√

1− v2

c2

. While the combination of rotations

is always a rotation, the combination of boosts in general case is not a boost.
– Reflection, that is improper or/and antichronous transformation S, char-

acterized by S2 = δ. The space or/and time reflections are elements of the other
3 connected components O(3, 1)↓+, O(3, 1)↑− and O(3, 1)↓−.

As the 4-velocities form a set of 4-vectors with constant magnitude, there
exists an isometry link that transforms one 4-velocity into another.

Let U = (U1, U2, U3, U4) and V = (V1, V2, V3, V4) be vectors of 4-velocity
with Minkowski magnitude U2 = V 2 = c2. Each link L(U, V ) between 4-
velocities U and V defines a set of Lorentz transformations parameterized by the
6 independent components given by the elements of ~u and ~v. It is not difficult
to see that if L transforms U into V , LU = V , then it is possible to obtain
additional links by (IdV ◦L◦IdU )U = V for any two orthogonal transformations
IdU and IdV such that IdUU = U and IdV V = V . For example, simplest

transformations of that kind are IdU =
U ⊗ ηU

U2
, IdV =

V ⊗ ηV

V 2
.

Definition 2.2. All elements of the Lorentz group L that fix the 4-vector V ,
form a subgroup IdV of L, called the little Lorentz group at V [12].

It has been shown that every little Lorentz group IdV is isomorphic to the
proper rotation group SO(3). This isomorphism, which is not easily seen by tra-
ditional methods [3], emerges naturally in the gyrogroup formalism [10]. Now
if we put an additional requirement on L in the form L(U,U) = δ, we en-
sure that L ∈ O(3, 1)↑+ (the connected component with δ) and we eliminate
the rotations from L providing L to be a pure Lorentz transformation, i.e. a
boost. Conversely, let L(U, V ) be a boost which links two 4-velocities U and V ,
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L(U, V )U = V . Replacing V by U we obtain L(U,U)U = U , where L(U,U) is
a boost implying that it must be L(U,U) = δ.

So, we proved the following proposition.

Proposition 2.1. Let L(U, V ) be a Lorentz transformation which links two
4-velocities U and V . Then, L(U, V ) is a boost iff L(U,U) = δ.

This proposition enables an easy check whether a given link is boost.
Reflections S are involutory Lorentz transformations, that is S2 = δ. Pa-

rameterized by 4-velocity U , a reflection is given by the following tensor

S(U) = δ − 2
U ⊗ ηU

U2
.

Let us note that S(U) is improper, det(S(U)) = 1.
Link by reflection between given 4-velocities U and V has a simple solution

up to non-zero scalar µ 6= 0. The solution (see e.g. [7]) is obtained by µ(UV ) as
an argument in S, where U − V is the standard subtraction.

Proposition 2.2. Let U and V be vectors of 4-velocity. The link by reflection
parameterized only by the initial 4-velocity U and the resulting 4-velocity V is
given by

S(U, V ) = S(µ(U − V )) = δ − (U − V )⊗ η(U − V )
c2 − U · V , (U − V )2 6= 0.

Note that a link by reflection does not satisfy S(U,U) = δ, i.e. it is not a
boost. The proof that this transformation is orthogonal and that S(U, V )U = V
is straightforward.

The reflections are the only links that posses a desired property of symmetry,
i.e. S(U, V )U = V and S(U, V )V = U that is a direct consequence of S2 = δ.

The links by rotations are not so interesting because they are reduced to
Euclidean 3-dimensional transformations. Lorentz transformation is possible
only if U4 = V4, i.e. ‖~u‖ = ‖~v‖.

3. Boost Links

Transformation link between 4-velocities by boost is the most important link
because it determines relative velocity between two moving objects.

Proposition 3.1. Let U and V be vectors of 4-velocity. The boost link param-
eterized only by the initial 4-velocity U and the resulting 4-velocity V is given
by [2, 4]

(2) B(U, V ) = δ − (U + V )⊗ η(U + V )
c2 + U · V + 2

V ⊗ ηU

c2
, (U + V )2 6= 0.

It is easy to see that B(U, V )−1 = ηB(U, V )T η = B(V, U). The proof that
the tensor B(U, V ) is an orthogonal transformation, i.e. that B(U, V )B(V,U) =
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δ and that B(U, V )U = V are straightforward. It is obvious that B(U,U) = δ,
and that implies that Lorentz transformation given by (2) is pure, i.e. a boost.

By simple calculation one can obtain that B(U, V )V = 2
V ⊗ ηV

c2
U − U . If

U = (0, 0, 0, c), then B(U, V ) is a boost which corresponds to a motion with
3-velocity −~v. In this special case, the tensor B becomes

B(0, V ) =




1 + 1
ζ V 2

1
1
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1
ζ V1V3

1
cV1

1
ζ V2V1 1 + 1

ζ V 2
2

1
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1
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1
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1
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1
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1
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1
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, ζ = c2(1 + γv).

The statement that the link given by (2) is a boost deserves separate con-
siderations. Namely, considering the fact that the 3 × 3 submatrix B(U, V )ij

for i, j ∈ {1, 2, 3} is not a symmetric matrix one could incorrectly conclude that
the B(U, V ) is not a boost. Even more, one could try to calculate exactly the
”involved space rotation” via the following 3-vector:

1
2
(B32−B23, B13−B31, B21−B12) = (U2V3−U3V2, U3V1−U1V3, U1V2−U2V1) =

=
γuγv

c2
(vyuz − vzuy, vzux − vxuz, vxuy − vyux) = γuγv

~v × ~u

c2

as it was made in [1]. However, it is obvious that B(U,U) = δ , and that implies
that Lorentz transformation given by (2) is pure, i.e. a boost.

Different authors arrived at the same conclusion using different reasoning.
Thus, Urbantke [11], who, as we shall show, achieved the boost (2) by two
reflections, concluded that the transformation is a boost using geometrical ob-
servations. We shall give analogous prove that (2) is a boost. Namely, if W is a
4-velocity in the timelike 2-plane spanned by U and V , then B(U, V )W is also in
the same plane as follows from B(U, V )U = V and B(U, V )V = κV − U (κ =
2UV/c2) and so, B(U, V )W is also a linear combination of U and V . If W
is orthogonal to the same 2-plane, it follows straightforwardly from (2) that
B(U, V )W = W . Thus, W is left fixed by B and hence B is a boost.

Matolcsi [5] has arrived at the same conclusion by explicitly proposing single
relative velocity ~v from which this boost is parameterized. The formula (2) is
the usual boost although it depends on two velocities. The explicit matrix form
of a textbook boost (1) depends on a single relative velocity but, in fact, it also
refers to two inertial observers (one of which is the ”rest frame”, not appearing
explicitly in the formulae).

Ungar [10] has proposed a unique solution for boost link between given 4-
velocities using gyro formalism. His solution is not given in a tensorial form and
so, it is difficult to be directly compared with (2). However, since his boost B
refers to a relative velocity which is spanned by the velocities ~u and ~v, it belongs
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to the group of ”planar” solutions (we explain them later) which are identical
to (2).

The boost link between given 4-velocities based on two consecutive reflec-
tions is given in [11] in the form B(U, V ) = S(U + V )S(U). We shall straight-
forwardly prove that Urbantke’s solution is the same with (2). Namely,

S(U + V )S(U) = (δ − (U + V )⊗ η(U + V )
c2 + U · V )(δ − 2

U ⊗ ηU

c2
) =

= δ − 2
U ⊗ ηU

c2
− (U + V )⊗ η(U + V )

c2 + U · V + 2
((U + V )⊗ η(U + V ))(U ⊗ ηU)

c2(c2 + U · V )
=

= δ − 2
U ⊗ ηU

c2
− (U + V )⊗ η(U + V )

c2 + U · V + 2
(U + V )⊗ ηU

c2
=

= δ − (U + V )⊗ η(U + V )
c2 + U · V + 2

V ⊗ ηU

c2
.

Generally, boosts refer to two observers given by two 4-velocities rather
than to a single velocity as in the usual boost representation in matrix form (1).
Thus, it is more suitable to consider the usual boost matrix referring to relative
velocity of two observers. One observer is hidden in the coordinate axes and the
velocity in the boost matrix is the relative velocity of another observer taken
with respect to the hidden observer.

The solution (2) is not a unique solution for boost link parameterized by 4-
velocities alone. However, its importance is in the fact that it has been achieved
by different researchers using different approaches. A simple way to obtain this
solution is by straightforward parametrization of the required transformation
by U and V in the form

L = δ − (aU ⊗ ηU + bU ⊗ ηV + cV ⊗ ηU + dV ⊗ ηV )

and solving the necessary equations

(3) ηLU · LV = U · V, L−1ηL = η

by a, b, c, d. Other solutions could be obtained by parametrization of the Lorentz
transformation using: single vector, pair of the vectors, triple of the vectors,
etc. Parametrization by a single vector X takes the form L = δ −X ⊗ α for an
unknown covector α. Inserting this into (3), one can obtain the unique solution

for the covector α, given by L = δ−2
X ⊗ ηX

X2
, with the property L−1 = L that

gives link by reflection for X = µ(U − V ) and µ is an arbitrary scalar.
Parameterizing by pair of vectors, the Lorentz transformation takes the form

L = δ−X⊗α−Y ⊗β, where α = aηX+bηY, β = cηX+dηY for unknown scalars
a, b, c, d, as it was considered in [13]. Using this parametrization for Y = U −V ,
Oziewicz [7] has given general solution for boost link of two 4-vectors with equal
norms, parameterized additionally by an arbitrary 4-vector X. Slightly adapted
to the 4-velocities U and V (U2 = V 2 = c2) his formula is given in the following
proposition.
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Proposition 3.2. Let U and V be vectors of 4-velocity and X an arbitrary
4-vector. The boost links parameterized by the initial 4-velocity U , the resulting
4-velocity V and the 4-vector X are given by

(4) B(U, V ) = δ − 2X ⊗ [(c2 − U · V )ηX − (X · U)µ(U − V )]
X2(c2 − U · V ) + 2(X · U)(X · V )

−

− (U − V )⊗ [X2η(U − V ) + 2(X · V )ηX]
X2(c2 − U · V ) + 2(X · U)(X · V )

,

X(U + V ) 6= 0, X ∧ (U − V ) 6= 0, X2(c2 − U · V ) + 2(X · U)(X · V ) 6= 0

The proof that the tensor B(U, V ) is an orthogonal transformation and that
B(U, V )U = V is straightforward.

The solution (2) is obtained from (4) when the 4-vectors U , V and X are
coplanar. The set of solutions given by (4) shows that the boost link between
given 4-velocities is not unique. When the parametrization is made only by
linear combination of the initial and the final velocity, i.e if we replace the
vector X by a linear combination of U and V , we obtain 3 coplanar vectors and
then, the link becomes unique, given by (2). However, by choosing a preferred 4-
vector X to be non-coplanar with U ∧V , one can obtain arbitrary many boosts.
In 2 dimensions (with pseudometric diag(−1, 1)) all vectors are coplanar and
uniqueness of the solution in case of the corresponding 2-velocities is provided.
In ≥ 3 dimensions, it is always possible to choose a vector X not in U ∧ V
providing arbitrary many solutions. The 4-velocity X could be considered as a
4-velocity of an independent observer.

The non-uniqueness of the Lorentz transformation linking given 4-velocities
could have a significant influence on the theory of relativity as was pointed
out in [7]. Intuitively, this non-uniqueness is equivalent to the group embed-
ding O(3) → O(3, 1). This situation can be considered as a source of non-
commutativity and non-associativity of relativistic velocity addition, i.e. a pri-
mary source of the Thomas precession [9] and a source of various SR paradoxes
e.g. [6, 8].
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