
Novi Sad J. Math.
Vol. 38, No. 3, 2008, 113-119

OSCILLATION PROPERTIES OF A CLASS OF
SECOND ORDER EQUATIONS WITH VARIABLE

COEFFICIENTS1

Zornitza Petrova2

Abstract. We establish sufficient conditions for oscillation of the fol-
lowing equations:

z′′(t)+

n∑
i=0

θi(t)z
′(t−τi)+

ñ∑

k=0

βk(t)z(t−σk)+G(z′′(t), z′(t), z(t)) = F (t).

We suppose that n, ñ ∈ N, τi ≥ 0, ∀ i = 0, n and σk ≥ 0, ∀ k = 0, ñ are
given constants as well as T ≥ 0 is a large enough constant such that all the
functions {θi(t)}n

i=0, {βk(t)}ñ
k=0 and F (t) are of the class C([T,∞);R).

Also, G(z′′(t), z′(t), z(t)) ∈ C([T,∞)3;R). We obtain two types of results:
the first is concerned with the monotonicity of the solutions, and the
second one is a sufficient condition for the distributions of their zeros.
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1. Introduction

In general, differential equations appear from the proper mathematical mod-
els and the most popular of them come from physics. Both ordinary and partial
differential equations of second order attract the attention of many specialists
of different areas.

The present paper treats the oscillation behavior of the equation:

z′′(t) +
n∑

i=0

θi(t)z′(t− τi)(1)

+
ñ∑

k=0

βk(t)z(t− σk) + G(z′′(t), z′(t), z(t)) = F (t),

which is a natural generalization of the following one:

Az′′(t) +
n∑

i=1

θiz
′(t− τi) +

ñ∑

k=1

βkz(t− σk) + Bz(t) = F (t)(2)

since all the coefficients in (2) are given constants. Also, the delays are non-
negaive constants both in (1) and (2).
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2. Preliminary result

Recently, Petrova [4] established two types of oscillational results for (2). The
first one is about the absence of both eventually positive and monotonically non-
decreasing solutions of (2) as well as of eventually negative and monotonically
non-increasing solutions of (2). There we stated the following assumptions:

A > 0 and B > 0;(3)
θi ≥ 0, τi ≥ 0, ∀ i = 1, n, n ∈ N, τ = max

1≤i≤n
τi(4)

and βk ≥ 0, σk ≥ 0, ∀ k = 1, ñ, ñ ∈ N, σ = max
1≤k≤ñ

σk(5)

for the first type of sufficient conditions for oscillation, which are concerned with
the monotonicity of the solutions.

The second type of oscillational results in [4] are sufficient conditions for the
distributions of the zeros of the following particular case of (2):

Az′′(t) + θz′(t) +
ñ∑

k=1

βkz(t− σk) + Bz(t) = F (t).(6)

More exactly, we found a sequence of semiopen intervals, which consist of at
least one zero of every solution of (6), where the assumptions (3) and (5) hold
again, but (4) is replaced with a new one:

θ ∈ R and 4AB > θ2.(7)

Moreover, in the paper [4] we explained that the roles of the delays {τi}n
i=1

and {σk}ñ
k=1 are different from oscillational point of view.

Let us begin with two definitions before explaining briefly the situation. In
the sequel we suppose that c ∈ R is a constant.

Definition 2.1. We say that the function ϕ(t) ∈ C([c,∞);R), ϕ(t) 6= 0, is
oscillating when t →∞, if there exists a sequence {tm}∞m=1 such that

lim
m→∞

tm = ∞ and ϕ(tm) = 0.

Definition 2.2. We say that the function ϕ(t) ∈ C([c,∞);R) is eventually
positive (respectively eventually negative), if there exists a constant c̃ ≥ c
such that

ϕ(t) > 0 (respectively ϕ(t) < 0), ∀ t ∈ [c̃,∞).

Approximately twenty years ago Yoshida [6] obtained sufficient conditions
for oscillation of an initial characteristic value problem and the next lemma was
the main tool there.
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Lemma 2.1. ([6]) If there is a number s ≥ ρ such that
∫ s+π/L

s

F (t) sin L(t− s)dt ≤ 0,(8)

then the ordinary differential inequality

z′′(t) + L2z(t) ≤ F (t)(9)

has no positive solution in (s, s + π/L].

Later Yoshida [7] dealt with another problem. There he just mentioned that
he applies Lemma 2.1 immediately to the inequality

z′′(t) + L2z(t) + β1z(t− σ) + β2z(t− τ) ≤ F (t),(10)

where β1 ≥ 0 and β2 ≥ 0 are proper constants. He did not write anything for
the distribution of the zeros of both equations

z′′(t) + L2z(t) = F (t) and
z′′(t) + L2z(t) + β1z(t− σ) + β2z(t− τ) = F (t)

although he could do it in [6] and [7] respectively.
The excellent publications of Yoshida are devoted absolutely to concrete par-

tial differential equations and the application of ordinary differential inequalities
to them is not connected with the exact formulation of the conclusions for the
respective ordinary differential equations.

We point out that it is very difficult to find a proper generalization of Lemma
2.1.

Vel’misov, Gârnefska and Milusheva [5] considered an equation of a pipeline
under four boundary conditions and the application of Galerkin’s method to
these boundary problems led to the equation

Akz′′(t) + Bkz(t) + Ekz′(t− τ1) + Fkz′(t− τ2) + Gkz(t− τ3) = 0, where(11)
Ak > 0, Bk ∈ R, Ek ≥ 0, Fk ≥ 0, Gk ≥ 0, ∀ k ∈ N.(12)

In [1] we realized for the first time a combination between Galerkin’s method and
oscillation theory. There we considered the equation (11) under the particular
case of (12), where the assumption Bk ∈ R was replaced by Bk > 0, ∀ k ∈
N. In this way, we succeeded to find sufficient conditions for the absence of
both eventually positive and monotonically non-decreasing solutions of (11) and
eventually negative and monotonically non-increasing solutions of (11).

Further, we formulated the following generalization of Lemma 2.1, which
allows us to have a first derivative of the unknown function, as well as to omit
the property monotonicity of the solution. There ρ ≥ 0 is a constant.

Theorem 2.1. ([3]) Let p∗ and q∗ be constants such that

p∗, q∗ ∈ R, 4q∗ > p2
∗ and let L∗ =

√
4q∗ − p2∗

2
.(13)



116 Z. Petrova

If there is a number s ≥ ρ such that
∫ s+π/L∗

s

F (t)e
p∗
2 t sin L∗(t− s)dt ≤ 0,(14)

then the inequality

z′′(t) + p∗z′(t) + q∗z(t) ≤ F (t)(15)

has no positive solution in (s, s + π/L∗].

Remark 2.1. The proof of Theorem 2.1 is based on Lemma 2.1 since the
function z1(t) is a solution of (14) if and only if the function z2(t) = z1(t)e−

p∗
2 t

is a solution of

z′′(t) + L2
∗z(t) ≤ F (t)e

p∗
2 t,

which is a particular case of (9).

We mention that in [2] we investigated a non-homogeneous generalization of
the equation of a pipiline and there we applied the inequality

Az′′(t) + Bz(t) + kz′(t− τ1) + gz′(t− τ2) + βz(t− τ3) ≤ F (t),
where A > 0, B > 0, k ≥ 0, g ≥ 0 and β > 0

are concrete constants in [2].
Now we are ready to come back to the present equation (1) with variable

coefficients. As it will become clear bellow, all the conclusions for (1) are based
on this one for the respective inequality:

z′′(t) +
n∑

i=0

θi(t)z′(t− τi)

+
ñ∑

k=0

βk(t)z(t− σk) + G(z′′(t), z′(t), z(t)) ≤ F (t).(16)

Let us write the simultaneous assumptions for (1) and (16). We repeat that
τi ≥ 0, ∀ i = 0, n and σk ≥ 0, ∀ k = 0, ñ are constants again, but here we
need the following new non-negative constants T , T1, T2 and T̃ , which are large
enough. More exactly, we suppose that {θi(t)n

i=0}, {βk(t)ñ
k=0} and F (t) are of

class C([T,∞);R) as well as that G(z′′(t), z′(t), z(t)) ∈ C([T,∞)3;R). Further,
taking into account (3), (4) and (5), this time we assume that

θi(t) ≥ 0, ∀ t ≥ T1 ≥ T ≥ 0, ∀ i = 0, n,(17)

βk(t) ≥ 0, ∀ t ≥ T2 ≥ T ≥ 0, ∀ k = 0, ñ,(18)
τ = max

0≤i≤n
τi, σ = max

0≤k≤ñ
σk and τ̃ = max{τ, σ}.(19)

Further, let T̃ = max{T, T1, T2}
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and let g > 0 be a positive constant such that

G(x, y, z) ≥ g2z, (x, y, z) ∈ R×R× [0,∞),
G(x, y, z) ≤ g2z, (x, y, z) ∈ R×R× (−∞, 0].(20)

In fact, the notations (17) — (20) are concerned with the present continua-
tion of the first type of oscillation results of [4]. The following lemma plays an
essential role in this direction.

Lemma 2.2. Let the assupmtions (17) — (20) be fulfilled. If there is a number
s ≥ T̃ such that

∫ s+π/g

s

F (t) sin g(t− s)dt ≤ 0,(21)

then the inequality (16) has no positive and monotonically non-decreasing solu-
tion in (s− τ̃ , s + π/g].

Theorem 2.2. Let (17) — (20) be fulfilled and let the function

Φg(s) =
∫ s+π/g

s

F (t) sin g(t− s)dt(22)

be oscillating. Then the equation (1) has neither eventually positive and mono-
tonically non-decreasing solution nor eventually negative and monotonically non-
increasing solution.

Proof. Since Φg(s) is oscillating, then

∃ {sm}∞m=1 : lim
m→∞

sm = ∞ and Φg(sm) = 0,

which guarantees that

Φg(sm) ≤ 0 and Φg(sm) ≥ 0.

Hence, we apply Lemma 2.2 to establish that the equation (1) has no eventually
positive and monotonically non-decreasing solution. Similarly, we could obtain
that the equation has no eventually negative and monotonically non-increasing
solution.

Finally, we concentrate our attention on the equation:

z′′(t) + θz′(t) +
ñ∑

k=0

βk(t)z(t− σk) + G(z′′(t), z′(t), z(t)) = F (t),(23)

which is the particular case of (1), where the constant θ ∈ R is such that (13)
is satisfied in the situation:

p∗ = θ and q∗ = g2.(24)
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In other words, we suppose that

4g2 > θ2 and then L∗ = L̃∗ =

√
4g2 − θ2

2
.(25)

Now we replace the pair of assumptions (19) and (20) with the following
one:

(26) σ = max
0≤k≤ñ

σk and T̃ = T2.

Theorem 2.3. Let (5), (24), (25) and (26) be satisfied and let the function

Φ̃∗(s) =
∫ s+π/L̃∗

s

F (t)e
θt
2 sin L̃∗(t− s)dt

be oscillating. Then every solution of the equation (23) oscillates.

Proof. This time we have that

∃ {s̃m}∞m=1 : lim
m→∞

s̃m = ∞ and Φ̃∗(s̃m) = 0.

So that, here we apply a particular case of Theorem 2.1. More exactly, here we
obtain that the equation (23) has at least one zero in (s̃m − σ, s̃m + π/L̃∗] for
all m ∈ N.

We mention that it is essential that θ ∈ R is a constant in (23). In fact,
if θ = θ(t) in (23), then the respective distributions of zeros is still an open
problem. The arguments are similar to the ones in Remark 2.1.
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