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ANTILINEAR HILBERT-SCHMIDT OPERATORS
THAT MAP ONE HILBERT SPACE INTO ANOTHER

ISOMORPHIC TO TWO-PARTICLE VECTORS

Fedor Herbut1

Abstract. In this article the antilinear-operator representation of two-
particle state vectors (wave functions) in quantum mechanics and its ap-
plication in distant correlations is reviewed. All proofs are omitted. They
are contained in the references.
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tional analytical methods; 03.65Fd (Algebraic methods):
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1. Introduction

Two detailed articles [2] and [3] on the topic from the title are shortly re-
viewed.

2. The isomorphism

Theorem 2.1. The partial scalar product

∀φ1 :
(
Ôaφ1

)
2
≡

(
φ1, Ψ12

)
1

(1)

associates with each vector Ψ12 from the tensor product
(
H1 ⊗H2

)
an antilin-

ear Hilbert-Schmidt operator (AHSO) Ôa that maps H1 into H2, and the map
Ψ12 → Ôa is an isomorphism of the state space (the Hilbert space) of the
two-particle system

(
H1 ⊗ H2

)
onto the Hilbert space of all AHSO’s Ôa that

map H1 into H2.

To understand the theorem, one should note the following remarks. By(
. . . , . . .

)
is meant the scalar product;

(
. . . , . . .

)
1

denotes the partial scalar

product, and
(

. . .
)

i
, i = 1, 2, 12 stands for a vector in the space Hi, i =

1, 2, 12. The index shows in which space the entity is (except in case of the partial
scalar product). Finally, the operators are denoted by a hat to distinguish them
from the vectors, etc.
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Each AHSO Ôa determines its adjoint AHSO Ô†
a by the scalar products in

the two spaces:

∀ψ1, φ2 :
(
Ôaψ1, φ2

)
2

=
(
ψ1, Ô

†
aφ2

)∗
1
,

where the asterisk denotes complex conjugation. One should note that Ô†a maps
H2 into H1.

An antilinear operator Ôa is said to be a Hilbert-Schmidt one if tr(Ô†
aÔa) <

∞. The scalar product in the Hilbert space of all AHSO’s Ôa is defined by
(
Ôa, Ô′a

)
≡ tr[(Ô′

a)†Ôa)].

In the rest of this review we confine ourselves to infinite-dimensional Hilbert
spaces because they are the mathematically interesting case.

3. Role of AHSO’s in quantum-mechanical distant corre-
lations

Let {φp
1 : p = 1, 2, . . . ,∞} be an arbitrary complete orthonormal basis in

H1. One can expand an arbitrary two-particle state vector Ψ12 ∈ H1 ⊗ H2 in
it, and the (generalized) expansion coefficients, which are vectors in H2, turn
out to be the Ôa images of the corresponding basis vectors. Naturally, Ôa is
the AHSO representative of Ψ12. One has

Ψ12 =
∑

p

φp
1 ⊗

(
Ôaφp

1

)
2
.(2)

Distant correlations are concerned with the second particle. Its quantum-
mechanical state (reduced density operator) is ρ̂2 ≡ tr1P̂Ψ12 , where ”tr1” de-
notes the partial trace over H1, and ”P̂...” stands for the projector onto the
(one-dimensional) space spanned by the vector in the index.

One obtains
ρ̂2 =

∑
p

∣∣∣
∣∣∣Ôaφp

1

∣∣∣
∣∣∣
2

P̂(Ôaφp
1)2

.(3)

If Ψ12 is taken to describe an ensemble of two-particle systems (it describes
also the individual ones), then ρ̂12 describes the, so-called improper, ensemble

of second particles. Relation (3) is an ensemble decomposition with
∣∣∣
∣∣∣Ôaφp

1

∣∣∣
∣∣∣
2

as
the statistical weights. (They are also the probabilities that in a measurement
of the above first-particle basis vectors one obtains φp

1.)
If one has in mind the individual two-particle systems, then one is dealing

with the terms in decomposition (3), i. e., one has the change of single-particle
states

ρ̂1 → φp
1, ρ̂2 → P̂(Ôaφp

1)2
.(4)

Since the mentioned measurement affects dynamically only the first particles,
the change in state of the second particle is due exclusively to the quantum
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correlations in Ψ12 called entanglement. There are many physical examples in
which the changed state P̂(Ôaφp

1) is very surprising. Einstein called this ”spooky
distant action” in 1935. But all interesting cases have been experimentally
confirmed.

4. Polar factorization of the AHSO

Herbut and Vujčić have shown [2] that polar factorization of the AHSO
representatives of two-particle state vectors is relevant in quantum mechanics,
particularly in distant correlations. The polar factorizations of a given AHSO
read:

Ôa = ρ̂
1/2
2 ◦ Ûa ◦ Q̂1 = Ûa ◦ ρ̂

1/2
1 .(5)

Here ” ◦ ” denotes the application ”after” (reading from right to left), ρ̂i ≡
trj

(
| Ψ 〉12〈Ψ |12

)
, i, j = 1, 2, i 6= j are the respective states (reduced

density operators) of the single particles, and the trace with an index denotes the
corresponding partial trace. Q̂1 is the projector onto the range of ρ1, and, finally,
the antiunitary correlation operator Ûa, which is, as seen, uniquely implied by
the bipartite state vector, maps the (topologically) closed range R̄(ρ1) of ρ1

onto that of ρ2.
The action of the correlation operator is presented on the following diagram.

H1 :

↓ Ûa

H2 :
The lines are meant to represent the orthogonal decompositions

Hi = R̄(ρi) ⊕ N (ρi), i = 1, 2,

where N (ρi) stands for the null space of ρi.
One should note that the ranges are always equally dimensional (this is

represented by the equal length of the lines), but the null spaces need not be.
The correlation operator is the carrier of the correlations in the composite-

system state. As far as we know, this is the only case when one can find an
entity that is responsible for the correlations.

Let {φk
1 : ∀k} be a complete orthonormal eigen-basis of ρ1. in H1. (In quan-

tum mechanics every basis corresponds to a complete first-particle observable.)
This means the following in the formalism:

∀k : ρ1φ
k
1 = rkφk

1 .(6)

If one takes the general expansion (2) and one substitutes in it the first-
particle basis with the eigen-basis (6) and the AHSO representative with its
second polar form (5), one obtains:

Ψ12 =
∑

k

r
1/2
k φk

1 ⊗
(
Ûaφk

1

)
2
.(7)
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Decomposition (7) is the so-called canonical Schmidt decomposition. It is
bi-orthonormal (disregarding the r

1/2
k coefficients). Hence, if one measures on

the first particle an observable (Hermitian operator) whose eigen-basis is (6),
then ipso facto, due to the entanglement in Ψ12, one measures also on particle
2 the observable whose eigen-basis {

(
Ûaφk

1

)
2

: ∀k} is. This is called distant
measurement. It plays an important role in distant correlations.

The present author et al. presented the results reviewed so far at the Inter-
national Mathematical Congress in Helsinki in 1978.

5. Linearly independent density operator decomposition
in mathematics

Cassinelli, De Vito, and Levrero published an article in 1997 [1] in which
they gave a complete solution of the problem in the title of the section. We
outline it.

Now we are in one countably-infinite dimensional Hilbert space, and we are
interested in density operators with an infinite-dimensional range, particularly
of their decomposition into linearly independent ray projectors. We assume that
such a density operator ρ̂ is given.

An infinite sequence of vectors {ψp : p = 1, 2, . . . ,∞} is linearly independent
if ∀p : ψp /∈ span{ψp′ : p′ 6= p}.

Let {ep : p = 1, 2, . . . ,∞} be a complete orthonormal basis in R̄(ρ̂) but such
that ∀p : ep ∈ R(ρ̂1/2). One should keep in mind that

R(ρ̂) ⊂ R(ρ̂1/2) ⊂ R̄(ρ̂).(8)

If one defines

∀p : ψp ≡ ρ̂1/2ep
/
||ρ̂1/2ep||, wp ≡ ||ρ̂1/2ep||2,(9)

then the infinite sequence {ψp : p = 1, 2, . . . ,∞} is linearly independent, one
has

ρ̂ =
∞∑

p=1

wpP̂ψp ,(10)

a decomposition of the density operator into linearly independent ray projectors
with the statistical weights wp, and, finally, every decomposition into linearly
independent ray projectors can be obtained via (9) from an orthonormal basis
{ep : p = 1, 2, . . . ,∞}. Besides, for each ψp that appears in a term of decompo-
sition (10), one has ψp ∈ R(ρ̂).

6. Back to distant correlations

Let it now be divulged that the correlation operator Ûa introduced in the
polar factorizations (5) of the AHSO representative Ôa of a given two-particle
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state vector Ψ12, takes, by similarity transformation, the first-particle reduced
density operator of Ψ12 into that of the second particle:

ρ̂2 = Ûa ◦ ρ̂1 ◦ Û−1
a ◦ Q̂2,(11)

where Q̂2 is the range projector of ρ̂2.
This has the consequence that

R(ρ̂1/2
2 ) = ÛaR(ρ̂1/2

1 ).(12)

The result of the three mathematicians from the preceding section can now
be used in distant-correlations theory after modifying it as follows.

We take a complete orthonormal basis {ep
1 : p = 1, 2, . . . ,∞} in R̄(ρ̂1) such

that ∀p : ep
1 ∈ R(ρ1/2

1 ). Then we generate ∀p : ψp
2 ≡ Ôaep

1

/
||Ôaep

1||.
Utilizing the first polar factorization in (5), we have actually ∀p : ψp

2 =
ρ̂
1/2
2 ◦ Ûaep

1

/
||Ôaep

1||, and, according to [2], we have a decomposition of of ρ̂2

into linearly independent states:

ρ̂2 =
∑

p

||Ôaep
1||2P̂(Ôaep

1).(13)

Thus, performing a direct measurement on the first particle that ascertains
in which of the states {ep

1 : p = 1, 2, . . . ,∞} the particle is, though neither the
measuring apparatus nor the first particle interact with the second particle, it
is decomposed according to (13).

In the selective-measurement version, if in the described measurement the
first particle is found in the state ep

1, then the second particle is ipso facto
in the state P̂(Ôaep

1) as follows from the general expansion (2), which is now

Ψ12 =
∑

p ep
1 ⊗

(
Ôaep

1

)
2
.

It can also be shown that if one want to steer the second particle into the
state P̂(Ôaep

1), though this can be done in different ways, one has the largest
probability of success if one does it in the described way that leads, in the non-
selective version, to the decomposition (13) into linearly independent states.
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[2] Herbut F., Vujičić M., Distant measurement. Ann. Phys. (N. Y.) 96 (1976), 382-
405.



6 F. Herbut

[3] Herbut F., On bipartite pure-state entanglement structure in terms of disentangle-
ment. J. Math. Phys. 47 (2006) 122103-1-19. Reprinted in Virtual J. Quant. Inf.,
Dec. issue (2006); also available as arXiv: quant-ph/0609073.

Received by the editors October 1, 2008


	Introduction
	The isomorphism
	Role of AHSO's in quantum-mechanical distant correlations
	Polar factorization of the AHSO
	Linearly independent density operator decomposition in mathematics
	Back to distant correlations

