NOVI SAD J. MATH. Vol. 38, No. 2, 2008, 65-70

CONNECTEDNESS IN IDEAL TOPOLOGICAL SPACES

Erdal Ekici¹, Takashi Noiri²

Abstract. In this paper we study the notion of connectedness in ideal topological spaces.

AMS Mathematics Subject Classification (2000): 54A10, 54A05, 54A20 Key words and phrases: \star -connected ideal topological spaces, \star -separated sets, \star -connected sets, ideal topological spaces

1. Introduction

The notion of ideal topological spaces was studied by Kuratowski [7] and Vaidyanathaswamy [12]. Applications to various fields were further investigated by Janković and Hamlett [5]; Dontchev et al. [2]; Mukherjee et al. [8]; Arenas et al. [1]; Navaneethakrishnan et al. [10]; Nasef and Mahmoud [9], etc. The purpose of this paper is to introduce and study the notion of connectedness in ideal topological spaces. We study the notions of \star -connected ideal topological spaces, \star -separated sets, \star_s -connected sets and \star -connected sets in ideal topological spaces.

2. Preliminaries

Throughout the present paper, (X, τ) or (Y, σ) will denote a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) will denote the closure and interior of A in (X, τ) , respectively. A topological space X is said to be hyperconnected [11] if every pair of nonempty open sets of X has nonempty intersection.

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

(1) $A \in I$ and $B \subset A$ implies $B \in I$,

(2) $A \in I$ and $B \in I$ implies $A \cup B \in I$.

Given a topological space (X, τ) with an ideal I on X and if P(X) is the set of all subsets of X, a set operator $(.)^* : P(X) \to P(X)$, called a local function [7] of A with respect to τ and I, is defined as follows: for $A \subset X$, $A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau :$

 $^{^1 \}rm Department$ of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale/TURKEY, e-mail: eekici@comu.edu.tr

 $^{^2 2949\}text{-}1$ Shiokita-cho, Hinagu, Yatsushiro-shi, Kumomoto-ken, 869-5142 JAPAN, e-mail: t.noiri@nifty.com

 $x \in U$ }. A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(I,\tau)$, called the \star -topology, finer than τ , is defined by $Cl^*(A) = A \cup A^*(I,\tau)$ [5]. When there is no chance for confusion, we will simply write A^* for $A^*(I,\tau)$ and τ^* or $\tau^*(I)$ for $\tau^*(I,\tau)$. If I is an ideal on X, then (X,τ,I) is called an ideal topological space or simply an ideal space. For any ideal space (X,τ,I) , the collection $\{V \setminus J : V \in \tau \text{ and } J \in I\}$ is a basis for τ^* . A subset A of an ideal space (X,τ,I) is said to be \star -dense [2] if $Cl^*(A) = X$. An ideal space (X,τ,I) is said to be [3] \star -hyperconnected if A is \star -dense for every open subset $A \neq \emptyset$ of X.

Recall that if (X, τ, I) is an ideal topological space and A is a subset of X, then (A, τ_A, I_A) , where τ_A is the relative topology on A and $I_A = \{A \cap J : J \in I\}$ is an ideal topological space.

Lemma 1. ([6]) Let (X, τ, I) be an ideal topological space and $B \subset A \subset X$. Then $B^*(\tau_A, I_A) = B^*(\tau, I) \cap A$.

Lemma 2. ([4]) Let (X, τ, I) be an ideal topological space and $B \subset A \subset X$. Then $Cl^*_A(B) = Cl^*(B) \cap A$.

3. Connectedness in ideal spaces

Definition 3. An ideal space (X, τ, I) is called \star -connected [3] if X cannot be written as the disjoint union of a nonempty open set and a nonempty \star -open set.

Definition 4. A subset A of an ideal space (X, τ, I) is called \star -connected if (A, τ_A, I_A) is \star -connected.

Remark 5. ([3]) The following implications hold for an ideal space (X, τ, I) . These implications are not reversible.

 $\begin{array}{cccc} (X,\tau,I) \ is \ \star \ \text{-hyperconnected} & \Rightarrow & (X,\tau) \ is \ \text{hyperconnected} \\ & & & \downarrow \\ (X,\tau,I) \ is \ \star \ \text{-connected} & \Rightarrow & (X,\tau) \ is \ \text{connected} \end{array}$

Lemma 6. ([2]) Let (X, τ, I) be an ideal space. For each $U \in \tau^*$, $\tau_U^* = (\tau_U)^*$.

Lemma 7. Let (X, τ, I) be a topological space, $A \subset Y \subset X$ and $Y \in \tau$. The following are equivalent:

(1) A is \star -open in Y,

(2) A is \star -open in X.

Proof. (1) \Rightarrow (2) : Let A be *-open in Y. Since $Y \in \tau \subset \tau^*$, by Lemma 6, A is *-open in X.

(2) \Rightarrow (1) : Let A be *-open in X. By Lemma 6, $A = A \cap Y$ is *-open in Y.

Definition 8. Nonempty subsets A, B of an ideal space (X, τ, I) are called \star -separated if $Cl^*(A) \cap B = A \cap Cl(B) = \emptyset$.

Theorem 9. Let (X, τ, I) be an ideal space. If A and B are \star -separated sets of X and $A \cup B \in \tau$, then A and B are open and \star -open, respectively.

Proof. Since A and B are *-separated in X, then $B = (A \cup B) \cap (X \setminus Cl^*(A))$. Since $A \cup B \in \tau$ and $Cl^*(A)$ is *-closed in X, then B is *-open. By similar way, we obtain that A is open. \Box

Theorem 10. Let (X, τ, I) be an ideal space and $A, B \subset Y \subset X$. The following are equivalent:

(1) A, B are \star -separated in Y,

(2) A, B are \star -separated in X.

Proof. It follows from Lemma 2 that $Cl_Y^*(A) \cap B = \emptyset = A \cap Cl_Y(B)$ if and only if $Cl^*(A) \cap B = \emptyset = A \cap Cl(B)$.

Theorem 11. Every continuous image of a \star -connected ideal space is connected.

Proof. It is know that connectedness is preserved by continuous surjections. Since every \star -connected space is connected, the proof is obvious.

Definition 12. A subset A of an ideal space (X, τ, I) is called \star_s -connected if A is not the union of two \star -separated sets in (X, τ, I) .

Theorem 13. Let Y be an open subset of an ideal space (X, τ, I) . The following are equivalent:

(1) Y is \star_s -connected in (X, τ, I) ,

(2) Y is \star -connected in (X, τ, I) .

Proof. (1) \Rightarrow (2) : Suppose that Y is not *-connected. There exist nonempty disjoint open and *-open sets A, B in Y such that $Y = A \cup B$. Since Y is open in X, by Lemma 7, A and B are open and *-open in X, respectively. Since A and B are disjoint, then $Cl^*(A) \cap B = \emptyset = A \cap Cl(B)$. This implies that

A, B are \star -separated sets in X. Thus, Y is not \star_s -connected in X. This is a contradiction.

 $(2) \Rightarrow (1)$: Suppose that Y is not \star_s -connected in X. There exist \star -separated sets A, B such that $Y = A \cup B$. By Theorem 9, A and B are open and \star -open in X, respectively. By Lemma 7, A and B are open and \star -open in Y, respectively. Since A and B are \star -separated in X, then A and B are nonempty disjoint. Thus, Y is not \star -connected. This is a contradiction.

Theorem 14. Let (X, τ, I) be an ideal space. If A is a \star_s -connected set of X and H, G are \star -separated sets of X with $A \subset H \cup G$, then either $A \subset H$ or $A \subset G$.

Proof. Let $A \subset H \cup G$. Since $A = (A \cap H) \cup (A \cap G)$, then $(A \cap G) \cap Cl^*(A \cap H) \subset G \cap Cl^*(H) = \emptyset$. By similar way, we have $(A \cap H) \cap Cl(A \cap G) = \emptyset$.

Suppose that $A \cap H$ and $A \cap G$ are nonempty. Then A is not \star_s -connected. This is a contradiction.

Thus, either $A \cap H = \emptyset$ or $A \cap G = \emptyset$. This implies that $A \subset H$ or $A \subset G.\square$

Theorem 15. If A is a \star_s -connected set of an ideal space (X, τ, I) and $A \subset B \subset Cl^*(A)$, then B is \star_s -connected.

Proof. Suppose that B is not \star_s -connected. There exist \star -separated sets H and G such that $B = H \cup G$. This implies that H and G are nonempty and $G \cap Cl^*(H) = \emptyset = H \cap Cl(G)$. By Theorem 15, we have either $A \subset H$ or $A \subset G$. Suppose that $A \subset H$. Then $Cl^*(A) \subset Cl^*(H)$ and $G \cap Cl^*(A) = \emptyset$. This implies that $G \subset B \subset Cl^*(A)$ and $G = Cl^*(A) \cap G = \emptyset$. Thus, G is an empty set. Since G is nonempty, this is a contradiction. Suppose that $A \subset G$. By similar way, it follows that H is empty. This is a contradiction. Hence, B is \star_s -connected.

Corollary 16. If A is a \star_s -connected set in an ideal space (X, τ, I) , then $Cl^*(A)$ is \star_s -connected.

Theorem 17. If $\{M_i : i \in I\}$ is a nonempty family of \star_s -connected sets of an ideal space (X, τ, I) with $\bigcap_{i \in I} M_i \neq \emptyset$, then $\bigcup_{i \in I} M_i$ is \star_s -connected.

Proof. Suppose that $\bigcup_{i \in I} M_i$ is not \star_s -connected. Then we have $\bigcup_{i \in I} M_i = H \cup G$, where H and G are \star -separated sets in X. Since $\bigcap_{i \in I} M_i \neq \emptyset$, we have a point x in $\bigcap_{i \in I} M_i$. Since $x \in \bigcup_{i \in I} M_i$, either $x \in H$ or $x \in G$. Suppose that $x \in H$. Since $x \in M_i$ for each $i \in I$, then M_i and H intersect for each $i \in I$. By Theorem 14, $M_i \subset H$ or $M_i \subset G$. Since H and G are disjoint, $M_i \subset H$ for all $i \in I$ and hence

 $\bigcup_{i \in I} M_i \subset H$. This implies that G is empty. This is a contradiction. Suppose that $x \in G$. By similar way, we have that H is empty. This is a contradiction. Thus, $\bigcup_{i \in I} M_i$ is \star_s -connected.

Theorem 18. Suppose that $\{M_n : n \in N\}$ is an infinite sequence of \star connected open sets of an ideal space (X, τ, I) and $M_n \cap M_{n+1} \neq \emptyset$ for each $n \in N$. Then $\bigcup_{n \in N} M_n$ is \star -connected.

Proof. By induction and Theorems 13 and 17, the set $N_n = \bigcup_{k \le n} M_k$ is a \star connected open set for each $n \in N$. Also, N_n have a nonempty intersection.
Thus, by Theorems 13 and 17, $\bigcup_{n \in N} M_n$ is \star -connected.

Definition 19. Let X be an ideal space and $x \in X$. The union of all \star_s connected subsets of X containing x is called the \star -component of X containing x.

Theorem 20. Each \star -component of an ideal space (X, τ, I) is a maximal \star_s connected set of X.

Theorem 21. The set of all distinct \star -components of an ideal space (X, τ, I) forms a partition of X.

Proof. Let A and B be two distinct \star -components of X. Suppose that A and B intersect. Then, by Theorem 17, $A \cup B$ is \star_s -connected in X. Since $A \subset A \cup B$, then A is not maximal. Thus, A and B are disjoint.

Theorem 22. Each \star -component of an ideal space (X, τ, I) is \star -closed in X.

Proof. Let A be a *-component of X. By Corollary 16, $Cl^*(A)$ is \star_s -connected and $A = Cl^*(A)$. Thus, A is *-closed in X.

References

- Arenas, F. G., Dontchev, J., Puertas, M. L., Idealization of some weak separation axioms. Acta Math. Hungar. 89 (1-2) (2000), 47-53.
- [2] Dontchev, J., Ganster, M., Rose, D., Ideal resolvability. Topology and its Appl. 93 (1999), 1-16.
- [3] Ekici, E., Noiri, T., *-hyperconnected ideal topological spaces. (submitted)

- [4] Hatir, E., Keskin, A., Noiri, T., A note on strong β-I-sets and strongly β-Icontinuous functions. Acta Math. Hungar. 108 (1-2) (2005), 87-94.
- [5] Janković, D., Hamlett, T. R., New topologies from old via ideals. Amer. Math. Monthly 97 (1990), 295-310.
- [6] Janković, D., Hamlett, T. R., Compatible extensions of ideals. Boll. Un. Mat. Ital. (7) 6-B (1992), 453-465.
- [7] Kuratowski, K. Topology, Vol. I. NewYork: Academic Press, 1966.
- [8] Mukherjee, M. N., Bishwambhar, R., Sen, R., On extension of topological spaces in terms of ideals. Topology and its Appl. 154 (2007), 3167-3172.
- [9] Nasef, A. A., Mahmoud, R. A., Some applications via fuzzy ideals. Chaos, Solitons and Fractals 13 (2002), 825-831.
- [10] Navaneethakrishnan, M., Paulraj Joseph, J., g-closed sets in ideal topological spaces. Acta Math. Hungar. DOI: 10.107/s10474-007-7050-1
- [11] Steen, L. A., Seebach, J. A., Jr., Counterexamples in Topology. Holt, Rinehart and Winster (New York, 1970).
- [12] Vaidyanathaswamy, R., The localisation theory in set topology. Proc. Indian Acad. Sci. 20 (1945), 51-61.

Received by the editors March 14, 2008