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A MEAN VALUE THEOREM FOR INTERNAL
FUNCTIONS AND AN ESTIMATION FOR THE

DIFFERENTIAL MEAN POINT

Ricardo Almeida1

Abstract. We present several results about the mean value theorem
(MVT) with nonstandard analysis techniques. Using only the intermedi-
ate value theorem, we present a nonstandard proof of the MVT. In the
next section we extend the MVT for internal SU-differentiable functions.
In the end we discuss the location of the differential mean point c in the
segment [x, y], as y → x.

AMS Mathematics Subject Classification (2000): 26E35, 26B05, 46T20.

Key words and phrases: Nonstandard analysis, Mean value theorem, Es-
timation for the differential mean point

1. Introduction

In this section we present some necessary terminology and some important
facts needed for the present work. For further details, see [5], [7] or [8].

Let E and F be two standard normed spaces, ∗E and ∗F their nonstandard
extensions and U an open subset of E.

Definition 1. Given x and y two vectors of ∗E, we say that

1. x is infinitesimal (x ≈ 0) if for all positive real numbers r, |x| < r;

2. x is finite (x ∈ fin(∗E)) if, for some positive real number r, |x| < r;

3. x is infinite (x ≈ ∞) if it is not finite;

4. x and y are infinitely close (x ≈ y) if x− y ≈ 0;

5. x is nearstandard (x ∈ ns(∗E)) if there exists a standard z ∈ E with
x ≈ z, and we write z = st(x);

6. The monad of x is the set µ(x) := {z ∈ ∗E| z ≈ x}.

If x − y is not infinitesimal, we write x 6≈ y. The set of the positive hyper-
integers will be denoted by ∗N∞.
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Definition 2. Let f : ∗U → ∗F be an internal function. We say that f is
S-continuous at a ∈ ∗U if

x ≈ a ⇒ f(x) ≈ f(a).

If this is true for all a ∈ U , f is called S-continuous. We say that f is SU-
continuous if it still holds for all a ∈ ∗U .

Theorem 1. A function f : U → F is continuous (resp. uniformly continu-
ous) if and only if it is S-continuous (resp. SU-continuous).

Given an internal linear operator L ∈ ∗L(E,F ), we say that L is finite if
L(fin(∗E)) ⊆ fin(∗F )

Definition 3. Let f : ∗U → ∗F be an internal function. Given a ∈ U , we say
that f is S-differentiable at a if

1. f(ns(∗U)) ⊆ ns(∗F ).

2. there exists a finite linear operator Dfa ∈ ∗L(E, F ) such that, for each
x ≈ a there exists some η ≈ 0 satisfying

f(x)− f(a) = Dfa(x− a) + |x− a|η

If it is S-differentiable at all a ∈ U , f is called S-differentiable. Further-
more, if the previous condition holds for all a ∈ ns(∗U), we say that f is
SU-differentiable.

Theorem 2. A function f : U → F is differentiable (resp. of class C1) if and
only if it is S-differentiable (resp. SU-differentiable).

In opposite to standard functions, the derivative map for internal functions
is not unique. In fact, let ε be a positive infinitesimal and let f(x) = ε, x ∈ ∗R.
Then f is SU-differentiable and f ′(x) = δ, where δ is any infinitesimal number.
In fact, given x ≈ a ∈ ns(∗R), we have

f(x)− f(a)
x− a

= 0 ≈ f ′(a).

Finally we present a nonstandard version of Taylor’s theorem. We will denote
by SLh(E, F ) the symmetric h-linear operators from E × . . .×E = Eh into F .

Theorem 3. Let f : U → F be a function. Then f is of class Ck if and only
if there exist unique maps Dhf(.) : U → SLh(E, F ), h ∈ {1, . . . , k} such that,
given any a ∈ ns(∗U) and x ≈ a, there is an infinitesimal η ∈ ∗F satisfying

f(x) =
k∑

h=0

1
h!

Dhfa(x− a)(h) + |x− a|kη.
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2. A Nonstandard Proof of the Mean Value Theorem

As usual, we use the symbol [x, y], where x and y are two vectors in E, to
denote the elements of the closed line segment joining x with y. First we prove a
nonstandard analogous of the intermediate value theorem for internal functions.

Theorem 4. Intermediate Value Theorem Let a, b ∈ ∗R and let f : [a, b] →
∗R be an internal SU-continuous function such that f(a) < f(b). Then, for all
K ∈ ∗R with f(a) < K < f(b), there exists c ∈ [a, b] with f(c) ≈ K.

Proof. Fix N ∈ ∗N∞ with (b− a)/N ≈ 0 and define

A :=
{

j ∈ {0, 1, . . . , N} | f
(

a + j
b− a

N

)
< K

}
.

The set A is nonempty since 0 ∈ A. Let l be the maximum of A. Then l 6= N
and therefore we have

K ≤ f

(
a + (l + 1)

b− a

N

)
≈ f

(
a + l

b− a

N

)
< K

then

f

(
a + l

b− a

N

)
≈ K.

2

Theorem 5. Let U be an open convex subset of E and f : U → R a C1

function. Then, for all x, y ∈ U , there exists c ∈ [x, y] with

f(x)− f(y) = Dfc(x− y).

Proof. Fix an infinite N ∈ ∗N∞ and define δ := (y − x)/N ≈ 0. Then, for
some infinitesimal numbers η1, . . . , ηN , the following holds:

f(x)− f(y) =
N∑

n=1

[f(x + (n− 1)δ)− f(x + nδ)]

=
∑N

n=1 Dfx+(n−1)δ(x− y)
N

+
∑N

n=1 ηn

N
|x− y|.

Once ∣∣∣∣∣
∑N

n=1 ηn

N

∣∣∣∣∣ ≤ max{|η1|, ..., |ηN |} ≈ 0,

we obtain

(2.1) f(x)− f(y) = st

(∑N
n=1 Dfx+(n−1)δ(x− y)

N

)
.
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Let tm, tM ∈ {0, ..., N − 1} be the hyper-integers satisfying

Dfx+tmδ(x− y) = min
t∈{0,...,N−1}

Dfx+tδ(x− y)

and
Dfx+tM δ(x− y) = max

t∈{0,...,N−1}
Dfx+tδ(x− y).

Then the following is verified:

Dfx+tmδ(x− y) ≤
∑N

n=1 Dfx+(n−1)δ(x− y)
N

≤ Dfx+tM δ(x− y).

As Df(·)(x− y) is a S-continuous function, the map

t 7→ Dfx+tδ(x− y), t ∈ [0, N − 1]

is an internal SU-continuous function and so, by the Intermediate Value Theo-
rem, there exists k ∈ [x + tmδ, x + tMδ] ⊆ ∗[x, y] with

Dfk(x− y) ≈
∑N

n=1 Dfx+(n−1)δ(x− y)
N

.

Therefore, taking standard parts on the last equation and by (2.1), we obtain

f(x)− f(y) = Dfc(x− y)

where c = st(k). 2

In the last theorem we proved that, for N ≈ ∞ and δ = (y − x)/N ,

f(x)− f(y) = st

(∑N
n=1 Dfx+(n−1)δ(x− y)

N

)
.

So, if c ∈ [x, y] satisfies the condition

f(x)− f(y) = Dfc(x− y),

then

Dfc(x− y) = st

(∑N
n=1 Dfx+(n−1)δ(x− y)

N

)
.

In particular, if f : I ⊆ R→ R is a C1 function, we get

f ′(c)(x− y) = st

(∑N
n=1 f ′(x + (n− 1)δ)(x− y)

N

)

hence

f ′(c) = st

(
f ′(x) + f ′(x + δ) + f ′(x + 2δ) + . . . + f ′(x + (N − 1)δ)

N

)
,

i.e., c is the point in [x, y] for which the derivative of f at c is the limit of the
arithmetic mean of the derivatives of f at x+(n−1)δ, n = 1, . . . , N , as N →∞.

Analogously, we have
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Theorem 6. Let U be an open convex subset of E and f : U → F a C1

function. Then, for all x, y ∈ U , there exists c ∈ [x, y] with

|f(x)− f(y)| ≤ |Dfc(x− y)|.
Proof. Since

|f(x)− f(y)| ≤ st

(∑N
n=1 |Dfx+(n−1)δ(x− y)|

N

)

and taking tm, tM with

|Dfx+tmδ(x− y)| = min
t∈{0,...,N−1}

|Dfx+tδ(x− y)|

and
|Dfx+tM δ(x− y)| = max

t∈{0,...,N−1}
|Dfx+tδ(x− y)|,

we obtain the desired result. 2

3. A Mean Value Theorem for Internal Functions

We now present the mean value theorem for internal functions. Since the
derivative function of an internal function is not unique, in the formula we must
add an error. The proof will be omitted for it is similar to the proof of the same
theorem for standard functions.

Theorem 7. Let U be an open convex subset of E. If f : ∗U → ∗R is an
internal SU-differentiable function then

∀x, y ∈ ns(∗U) ∃c ∈ [x, y] f(x)− f(y) = Dfc(x− y) + |x− y|η,

for some η ≈ 0.
More generally, if f : ∗U → ∗F is an internal SU-differentiable function,

then

∀x, y ∈ ns(∗U)∃c ∈ [x, y] |f(x)− f(y)| ≤ |Dfc(x− y)|+ |x− y|η,

with η ≈ 0.

4. An Estimation for the Differential Mean Point

Fix x ∈ U and assume that y ∈ ∗E is infinitely close to x. Where in the
interval [x, y] might c be located? We will begin by proving that, under some
conditions, c approaches the midpoint of the segment [x, y].

Let f : U ⊆ E → R be a C2 function, where U is an open convex set, and
fix x ∈ U . Then, for all y ∈ U , by the mean value theorem, we can ensure the
existence of c ∈ [x, y] with f(x)− f(y) = Dfc(x− y). Therefore, if y ∈ ∗U with
y ≈ x, there still exists such c ∈ [x, y]. We give a generalization of a result due
to Jacobson, presented in [6]:
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Theorem 8. Under the previous assumptions and, if

D2fx

(
x− y

|x− y|
)(2)

6≈ 0,

then
|x− c|
|x− y| ≈

1
2
.

Proof. Since f is twice continuously differentiable, we have:

• f(x)− f(y) = Dfx(x− y)+1/2D2fx(x− y)(2) + |x− y|2η, for some η ≈ 0;

• Dfc(x− y) = Dfx(x− y) + D2fx(x− y, c− x) + |x− c| · θ(x− y), where
θ ∈ Lin(∗E, ∗R) is an operator such that θ(fin(∗E)) ⊆ inf(∗R) (see ([8]);

and also the equality

• f(x)− f(y) = Dfc(x− y).

Therefore

D2fx(x− y, c− x) + |x− c| · θ(x− y) =
1
2
D2fx(x− y)(2) + |x− y|2η ⇔

|x− y| · |x− c|
[
D2fx

(
x− y

|x− y| ,
c− x

|x− c|
)

+ θ

(
x− y

|x− y|
)]

= |x− y|2
[

1
2
D2fx

(
x− y

|x− y|
)(2)

+ η

]

which implies

|x− c|
|x− y| =

1
2

∣∣∣∣D2fx

(
x−y
|x−y|

)(2)

+ 2η

∣∣∣∣
∣∣∣∣−D2fx

(
x−y
|x−y|

)(2)

+ θ
(

x−y
|x−y|

)∣∣∣∣
≈ 1

2
.

2

In A Note on the Mean Value Theorem for Integrals, Zhang Bao-Lin extends
the result of Jacobson (see [4]). Next we generalize his work for arbitrary normed
spaces.

Theorem 9. Let f : U ⊆ E → R be a C3 function, where U is an open convex
set. If

1. x ∈ U , y ∈ ∗U with y ≈ x;

2. c ∈ [x, y] with f(x)− f(y) = Dfc(x− y);
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3. D2fx

(
x−y
|x−y|

)(2)

= 0 and D3fx

(
x−y
|x−y|

)(3)

6≈ 0,

then |x− c|
|x− y| ≈

1√
3
.

Proof. Taking the Taylor’s expansions:

• f(x)−f(y) = Dfx(x−y)+1/2D2fx(x−y)(2)+1/6D3fx(x−y)(3)+|x−y|3η;

• Dfc(x− y) = Dfx(x− y) + D2fx(x− y, c− x) + 1/2D3fx(x− y, c− x, c−
x) + |x− c|2 · θ(x− y);

roughly as before

( |x− c|
|x− y|

)2

=

∣∣∣∣ 1
2|x−y|D

2fx

(
x−y
|x−y|

)(2)

+ 1
6D3fx

(
x−y
|x−y|

)(3)

+ η

∣∣∣∣
∣∣∣∣− 1

|x−c|D
2fx

(
x−y
|x−y|

)(2)

+ 1
2D3fx

(
x−y
|x−y|

)(3)

+ θ
(

x−y
|x−y|

)∣∣∣∣
≈ 1

3
.

2

Iterating this procedure we obtain the following result:

Theorem 10. Let f : U ⊆ E → R be a Ck+1 function, where U is an open
convex set. If

1. x ∈ U , y ∈ ∗U with y ≈ x;

2. c ∈ [x, y] with f(x)− f(y) = Dfc(x− y);

3. Djfx

(
x−y
|x−y|

)(j)

= 0, for j = 2, . . . , k and Dk+1fx

(
x−y
|x−y|

)(k+1)

6≈ 0,

then
|x− c|
|x− y| ≈

1
k
√

k + 1
.

Proof. Just observe that the Taylor’s expansions are now

f(x)− f(y) = Dfx(x− y) + 1/2D2fx(x− y)(2) + 1/3!D3fx(x− y)(3)+

. . . + 1/(k + 1)!Dk+1fx(x− y)(k+1) + |x− y|k+1η;

and

Dfc(x− y) = Dfx(x− y) + D2fx(x− y, c− x) + 1/2D3fx(x− y, c− x, c− x)

+ . . . + 1/k!Dk+1fx(x− y, c− x, c− x, . . . , c− x) + |x− c|k · θ(x− y).

2
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