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Abstract. In this paper we present (i) the reverse triangle inequality,
(ii) the reverse Möbius triangle inequality, and (iii) the hyperbolic Carnot
theorem in the Poincaré disc model of hyperbolic geometry.
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1. Introduction

Hyperbolic geometry was created in the first half of the nineteenth century
in the midst of attempts to understand Euclid’s axiomatic basis for geometry.
Hyperbolic geometry is also known as a type of non-Euclidean geometry, and it
is similar to Euclidean geometry in many respects. It has concepts of distance
and angle, and there are many theorems common to both.

There are many principal hyperbolic geometry models, for instance Poincaré
disc model, Einstein relativistic velocity model, Weierstrass model, etc. In this
paper we choose the Poincaré disc model of hyperbolic geometry for our study
of the hyperbolic Carnot theorem.

Let D denote the complex open unit disc in the complex z-plane, i.e.

D = {z ∈ C : |z| < 1} .

The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ (z0 ⊕ z) ,

which defines the Möbiüs addition ⊕ in D, allowing the Möbius transformation
of the disc to be viewed as a Möbius left gyrotranslation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ is a real number, z0 ∈ D, and z0 is the complex
conjugate of z0. Möbius addition ⊕ is analogous to the common vector addition
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+ in Euclidean plane geometry, but Möbius addition ⊕ is neither commutative
nor associative.

Let Aut(D,⊕) be the automorphism group of the grupoid (D,⊕). If we
define

gyr : D× D→ Aut(D,⊕)

by the equation

gyr [a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
,

then the following group-like properties of ⊕ can be verified by straightforward
algebraic calculations:

a⊕ b = gyr [a, b] (b⊕ a), gyrocommutative law
a⊕ (b⊕ c) = (a⊕ b)⊕ gyr [a, b] c, left gyroassociative law
(a⊕ b)⊕ c = a⊕ (b⊕ gyr [b, a] c), right gyroassociative law
gyr [a, b] = gyr [a⊕ b, b], left loop property
gyr [a, b] = gyr [a, b⊕ a], right loop property

Thus, the breakdown of commutativity and associativity in Möbius addition
is repaired. Clearly, with these properties, (D,⊕) is a gyrogroup. We refer
readers to [2] for the definition of gyrogroups.

Define the secondary binary operation ¢ in D by

a ¢ b = a⊕ gyr [a,Äb] b.

The primary and secondary operations of D are collectively called the dual
operations of the gyrogroups.

Let a, b be the elements of a gyrogroup G. Then the unique solution of the
equation

a⊕ x = b

for the unknown x is
x = Äa⊕ b

and the unique solution of the equation

x⊕ a = b

for the unknown x is

(1) x = b ¯ a.

For further details, see [2, 4].

1.1. Reverse Möbius Triangle Inequality

Definition 1. The hyperbolic distance function in D is defined by the equation

d(a, b) = |a Ä b| =
∣∣∣∣

a− b

1− ab

∣∣∣∣ .

Here, a Ä b = a⊕ (−b) for a, b ∈ D.
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In [3], Ungar has proved the beautiful inequality (Möbius Triangle Inequal-
ity), i.e

d(a, c) ≤ d(a, b)⊕ d(b, c)

for all a, b, c ∈ D.
Naturally, one may wonder whether the reverses of the triangle inequality

and the Möbius triangle inequality exist? Now we give the affirmative answers
as follows:

Theorem 2. (Reverse Triangle Inequality) For all a, b ∈ D we have

||a|Ä |b|| ≤ |a Ä b| .

Proof. Similar to Ungar’s proof (see [3, pp. 762]), we start the proof by defining

a function. fa =
(
1− ∣∣a2

∣∣)− 1
2 is a monotically increasing function of |a|. It is

easy to see that f|a| = fa and the identity

faÄb = fafb |1− ab|

holds. Thus, we obtain

f||a|Ä|b|| = f|a|Ä|b| = f|a|f|b| |1− |ab|| .

Using the elementary inequality in the complex plane

||z1| − |z2|| ≤ |z1 − z2| for all z1, z2 ∈ C,

we have

f|aÄb| = faÄb = f|a|f|b| |1− ab| ≥ f|a|f|b| |1− |ab|| = f|a|Ä|b| = f||a|Ä|b||

and therefore we obtain |a Ä b| ≥ ||a|Ä |b|| for all a, b ∈ D. 2

Theorem 3. (Reverse Möbius Triangle Inequality) For all x, y, z ∈ D
we have

|Äd(x, y)⊕ d(x, z)| ≤ d(y, z).

Proof. In [3, pp. 762], Ungar proved the Möbius triangle inequality, i.e.,

d(x, y) ≤ d(x, z)⊕ d(y, z) for all x, y, z ∈ D.

From (1), we have
d(x, y) ¯ d(y, z) ≤ d(x, z),

i.e.
d(x, y) Ä d(y, z) ≤ d(x, z)

and this implies
Äd(y, z) ≤ Äd(x, y)⊕ d(x, z).
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Moreover, Möbius triangle inequality d(x, z) ≤ d(x, y)⊕ d(y, z) implies that

Äd(x, y)⊕ d(x, z) ≤ d(y, z)

holds and we obtain

Äd(y, z) ≤ Äd(x, y)⊕ d(x, z) ≤ d(y, z),

i.e.,
|Äd(x, y)⊕ d(x, z)| ≤ d(y, z).

Therefore, the reverse Möbius triangle inequality holds. 2

2. The hyperbolic Carnot theorem in the Poincaré disc
model of hyperbolic geometry

In Euclidean Geometry, Carnot’s theorem is a direct application of the the-
orem of Pythagoras and the theorem states that for a triangle ∆ABC and the
points Ap, Bp, C p, where be located on the sides BC, AC and AB respectively,
then the perpendiculars to the sides of the triangle at the points Ap, Bp and C p

are concurrent if and only, if

AC p2 −BC p2 + BAp2 − CAp2 + CBp2 −ABp2 = 0.

For the proof of the theorem see [1].
In this section, we prove Carnot’s theorem in the Poincaré disc model of

hyperbolic geometry.

Theorem 4. Let ∆ABC be a hyperbolic triangle in the Poincaré disc, whose
vertices are the points A,B and C of the disc and whose sides (directed coun-
terclockwise) are a = −B ⊕ C, b = −C ⊕ A and c = −A ⊕ B. Let the points
Ap, Bp and C p be located on the sides a, b and c of the hyperbolic triangle ∆ABC
respectively. If the perpendiculars to the sides of the hyperbolic triangle at the
points Ap, Bp and C p are concurrent, then the following holds:

(2) |−A⊕ C p|2 Ä |−B ⊕ C p|2 ⊕ |−B ⊕Ap|2
Ä |−C ⊕Ap|2 ⊕ |−C ⊕Bp|2 Ä |−A⊕Bp|2 = 0.

Proof. We assume that three perpendiculars meet at a point of ∆ABC and
let denote this point by P . The geodesic segments −A⊕ P , −B ⊕ P , −C ⊕ P ,
−Ap ⊕ P , −Bp ⊕ P , −C p ⊕ P split the hyperbolic triangle into six right-angled
hyperbolic triangles. Notice that three pairs of them share a hypotenuse, whilst
three other pairs share a leg with a vertex at P . Now we apply the Hyperbolic
Pythgorean theorem to these six right-angled hyperbolic triangles one by one,
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and we easily obtain:

|−P ⊕A|2 =
∣∣−A⊕ C p

∣∣2 ⊕
∣∣−C p ⊕ P

∣∣2 ,

|−B ⊕ P |2 =
∣∣−P ⊕ C p

∣∣2 ⊕ ∣∣−C p ⊕B
∣∣2 ,

|−P ⊕B|2 =
∣∣−B ⊕Ap

∣∣2 ⊕ ∣∣−Ap ⊕ P
∣∣2 ,

|−C ⊕ P |2 =
∣∣−P ⊕Ap

∣∣2 ⊕
∣∣−Ap ⊕ C

∣∣2 ,

|−P ⊕ C|2 =
∣∣−C ⊕Bp

∣∣2 ⊕ ∣∣−Bp ⊕ P
∣∣2 ,

|−A⊕ P |2 =
∣∣−P ⊕Bp

∣∣2 ⊕
∣∣−Bp ⊕A

∣∣2 .

Using the equalities

|−P ⊕A|2 = |−A⊕ P |2 ,

|−B ⊕ P |2 = |−P ⊕B|2 ,

|−C ⊕ P |2 = |−P ⊕ C|2 ,

we have

α =
∣∣−A⊕ C p

∣∣2 ⊕
∣∣−C p ⊕ P

∣∣2 =
∣∣−P ⊕Bp

∣∣2 ⊕
∣∣−Bp ⊕A

∣∣2 = αp,

β =
∣∣−B ⊕Ap

∣∣2 ⊕ ∣∣−Ap ⊕ P
∣∣2 =

∣∣−P ⊕ C p
∣∣2 ⊕ ∣∣−C p ⊕B

∣∣2 = βp,

γ =
∣∣−C ⊕Bp

∣∣2 ⊕
∣∣−Bp ⊕ P

∣∣2 =
∣∣−P ⊕Ap

∣∣2 ⊕
∣∣−Ap ⊕ C

∣∣2 = γp.

This implies
(α⊕ β)⊕ γ =

(
αp ⊕ βp

)⊕ γp.

Since ((−1, 1) ,⊕) is a commutative group, we immediately obtain
∣∣−A⊕ C p

∣∣2⊕
∣∣−Bp ⊕A

∣∣2⊕
∣∣−C ⊕Bp

∣∣2 =
∣∣−Bp ⊕A

∣∣2⊕
∣∣−C p ⊕B

∣∣2⊕
∣∣−Ap ⊕ C

∣∣2 ,

i.e.
|−A⊕ C p|2 Ä |−B ⊕ C p|2 ⊕ |−B ⊕Ap|2

Ä |−C ⊕Ap|2 ⊕ |−C ⊕Bp|2 Ä |−A⊕Bp|2 = 0.

2

Naturally, one may wonder whether the converse of the Carnot theorem ex-
ists. Indeed, a partially converse theorem does exist as we show in the following
theorem.

Theorem 5. Let ∆ABC be a hyperbolic triangle in the Poincaré disc, whose
vertices are the points A, B and C of the disc and whose sides (directed coun-
terclockwise) are a = −B ⊕ C, b = −C ⊕ A and c = −A ⊕ B. Let the points
Ap, Bp and C p be located on the sides a, b and c of hyperbolic triangle ∆ABC
respectively. If (2) holds and two of the three perpendiculars to the sides of the
hyperbolic triangle at the points Ap, Bp and C p are concurrent, then the three
perpendiculars are concurrent.
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Figure 1: The hyperbolic Carnot theorem in the open unit disc. Here the
geodesic lines are circular arcs that intersect the boundary of the disc orthogo-
nally

Proof. Let −Ap ⊕ P and −Bp ⊕ P be perpendiculars to the sides a and b
respectively and P be the intersection point of these perpendiculars. Draw a
perpendicular −K ⊕ P from P to c. Using the already proven equality (2), we
obtain

|−A⊕K|2Ä|−B ⊕K|2⊕
∣∣−B ⊕Ap

∣∣2Ä
∣∣−C ⊕Ap

∣∣2⊕
∣∣−C ⊕Bp

∣∣2Ä
∣∣−A⊕Bp

∣∣2 = 0,

then we get

|−A⊕K|2 Ä |−B ⊕K|2 =
∣∣−A⊕ C p

∣∣2 Ä
∣∣−B ⊕ C p

∣∣2 .

This equation holds only for K = C p. Indeed, if we take x := d(B,K) and h :=
|−A⊕B| , then we get d(A, K) = hª x. For x, y ∈ (−1, 1) define

f(x) = (h Ä x)2 Ä x2.

Since the following equality holds

f(x)− f(y) =
−2h

(
1− h2

)
(1− xy)

(1− 2hx + x2) (1− 2hy + y2)
(x− y) ,
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we get f(x) is an injective function and this implies K = C p. 2

Remark 6. Two perpendiculars to the sides of the hyperbolic triangle at any
two points of the three points Ap, Bp and C p need not be concurrent, as we can
see from Figure 1. If we place Bp close enough to A, and Ap close enough to
B, then the two perpendiculars do not intersect, and the point P does not exist
in this case. Hence, the converse of the hyperbolic Carnot theorem is valid only
partially.
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hyperbolic geometry. Amer. Math. Monthly 106(8) (1999), 759–763.

[4] Ungar, A. A., Analytic Hyperbolic Geometry : Mathematical Foundations and
Applications. Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., 2005.

[5] Ungar, A. A., Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory
of Relativity. Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., 2008.

Received by the editors August 17, 2007

http://www.cut-the-knot.org/pythagoras/Carnot.shtml

	Introduction
	Reverse Möbius Triangle Inequality

	The hyperbolic Carnot theorem in the Poincaré disc model of hyperbolic geometry

