Novi Sad J. Math. Vol. 38, No. 2, 2008, 145-152

A COMMON FIXED-POINT THEOREM IN 2 NON-ARCHIMEDEAN MENGER PM-SPACE FOR R-WEAKLY COMMUTING MAPS OF TYPE (P)

M. Alamgir Khan¹, Sumitra²

Abstract. The present paper deals with the establishment of common fixed-point theorem for R-weakly commuting maps of type (P) in 2 N.A. Menger PM-space.

AMS Mathematics Subject Classification (2000): 47H10, 54H25

Key words and phrases: 2 N.A. Menger PM-space, R-weakly commuting maps of type (P) and Fixed points

1. Introduction

The notion of probabilistic metric space was introduced in 1942 by K. Menger. The first idea of K. Menger was to use distribution functions instead of non-negative real numbers as values of the metric. Since then the theory of probabilistic metric spaces has been developed in many directions. Renu Chugh and Sumitra [7] introduced the concept of 2 N.A. Menger PM-space in 2001.

In 1994, Pant [8] introduced the concept of R-weakly commuting maps in metric spaces. Later Y.J.Cho et al. [11] generalized this aspect and gave the concept of R-weakly commuting maps of type (A_g) in metric spaces. Vasuki [9] proved some common fixed point theorems for R-weakly commuting maps in fuzzy metric spaces. Quite recently in 2007, Vyomesh Pant and R. P. Pant [10] introduced the concept of R-weakly commuting maps of the type (A_g) in fuzzy metric spaces.

In 2006, Mohd. Imdad and Javid Ali [5] introduced the concept of R-weakly commuting maps of the type (P) in fuzzy metric spaces. The intent of this paper is to define the concept of R-weakly commuting maps of the type (P) in this newly defined space and prove a common fixed theorem for R-weakly commuting three self maps of type (P) along with the example. Hereby we give some preliminary definitions and notations.

Definition 1.1. Let X be any non-empty set and D be the set of all leftcontinuous distribution functions. An ordered pair (X, F) is said to be 2 Non-Archimedean probabilistic metric space (briefly 2 N.A. PM-space) if F is a mapping from $X \times X \times X$ into D satisfying the following conditions where the

 $^{^1 \}rm Department$ of Mathematics, Eritrea Institute of Technology, Asmara, Eritrea (N.E. Africa), e-mail: <code>alam_alam3333@yahoo.com</code>

 $^{^2 \}rm Department$ of Mathematics, Eritrea Institute of Technology, Asmara, Eritrea (N.E. Africa), e-mail: mathsqueen_d@yahoo.com

value of F at $x, y, z \in X \times X \times X$ is represented by $F_{x,y,z}$ or F(x, y, z) for each $x, y, z \in X$ such that

- i) F(x, y, z; t) = 1 for all t > 0 if and only if at least two of the three points are equal
- ii) F(x, y, z) = F(x, z, y) = F(z, x, y)
- iii) F(x, y, z; 0) = 0
- iv) $F(x, y, s; t_1) = F(x, s, z; t_2) = F(s, y, z; t_3) = 1$ then $F(x, y, z; \max\{t_1, t_2, t_3\}) = 1$

Definition 1.2. A t-norm is a function $\Delta : [0,1] \times [0,1] \times [0,1] \rightarrow [0,1]$ which is associative, commutative, non-decreasing in each coordinate and $\Delta(a,1,1) = a$ for each $a \in [0,1]$.

Definition 1.3. A 2 N.A. Menger PM-space is an ordered triplet (X, F, Δ) , where Δ is a t-norm and (X, F) is a 2 N.A. PM-space satisfying the following condition

$$F(x, y, z; \max\{t_1, t_2, t_3\}) \ge \Delta\{F(x, y, s; t_1), F(x, s, z; t_2), F(s, y, z, t_3)\}$$

for each $x, y, z \in X, t_1, t_2, t_3 \ge 0$.

Definition 1.4. Let (X, F, Δ) be 2 N.A. Menger PM-space and Δ a continuous t-norm, then (X, F, Δ) is Hausdorff in the topology induced by the family of neighborhoods; $U_x(\varepsilon, \lambda, a_1, a_2, \ldots, a_n)$; $x, a_i \in X, \varepsilon > 0, i = 1, 2, \ldots, n \in Z^+$, where Z^+ is the set of all positive integers and

$$U_x(\varepsilon,\lambda,a_1,a_2,\ldots,a_n) = \{ y \in X; F(x,y,a_i;\varepsilon) > 1-\lambda, 1 \le i \le n \}$$
$$= \bigcap_{i=1}^n \{ y \in X; F(x,y,a_i;\varepsilon) > 1-\lambda, 1 \le i \le n \}.$$

Definition 1.5. A 2 N.A. Menger PM-space (X, F, Δ) is said to be of type $(C)_g$ if there exists a $g \in \Omega$ such that

$$g(F(x, y, z; t)) \le g(F(x, y, a; t)) + g(F(x, a, z; t)) + g(F(a, y, z; t))$$

for each $x, y, z \in X, t \ge 0$, where

$$\begin{split} \Omega &= \{g|g:[0,1] \to [0,\infty) \text{ is continuous, strictly} \\ & \text{decreasing, } g(1) = 0 \text{ and } g(0) < \infty \}. \end{split}$$

Definition 1.6. A 2 N.A. Menger PM-space (X, F, Δ) is said to be of type $(D)_g$ if there exists a $g \in \Omega$ such that $g(\Delta(t_1, t_2, t_3)) \leq g(t_1) + g(t_2) + g(t_3)$ for each $t_1, t_2, t_3 \in [0, 1]$.

A common fixed-point theorem ...

Remark 1.

- (i) If 2 N.A. Menger PM-space is of the type (D)_g, then (X, F, Δ) is of the type (C)_g.
- (ii) If (X, F, Δ) is 2 N.A. Menger PM-space and $\Delta \ge \Delta(r, s, t) = \min(r, s, t)$, then (X, F, Δ) is of the type $(D)_q$, for $g \in \Omega$ and g(t) = 1 - t.

2. Results

Throughout this paper, let (X, F, Δ) be a complete 2 N.A. Menger PM-space with a continuous strictly increasing t-norm Δ . Let $\phi : [0, \infty) \to [0, \infty)$ be a function satisfying the condition (Φ) ;

(Φ) ϕ is the upper semi-continuous from the right and $\phi(t) < t$ for t > 0.

Lemma 1. If a function $\phi : [0, \infty) \to [0, \infty)$ satisfies the condition (Φ) then we get

- i) For all $t \ge 0$, $\lim_{n\to\infty} \phi^n(t) = 0$ where $\phi^n(t)$ is the n^{th} iteration of $\phi(t)$.
- ii) If $\{t_n\}$ is a non-decreasing sequence of real numbers and $t_{n+1} \leq \phi(t_n)$, $n = 1, 2, \ldots$ then $\lim_{n \to \infty} t_n = 0$. In particular, if $t \leq \phi(t)$, for each $t \geq 0$, then t = 0.

Lemma 2. Let $\{y_n\}$ be a sequence in X such that $\lim_{n\to\infty} F(y_n, y_{n+1}, a; t) = 1$ for each t > 0. If the sequence $\{y_n\}$ is not a Cauchy sequence in X, then there exist $\varepsilon_0 > 0$, $t_0 > 0$, and two sequences $\{m_i\}$ and $\{n_i\}$ of positive integers such that

- i) $m_i > n_i + 1$ and $n_i \to \infty$ as $i \to \infty$.
- ii) $F(y_{m_i}, y_{n_i}, a; t_0) < 1 \varepsilon_0$ and $F(y_{m_i-1}, y_{n_i}, a; t_0) \ge 1 \varepsilon_0$, i = 1, 2, ...

Definition 2.1. Two maps f and g of a 2 N.A. Menger PM-space (X, F, Δ) into itself are said to be R-weakly commuting of the type (P) if there exists some R > 0 such that $g(F(ggx, ffx, a; t)) \leq g(F(fx, gx, a; t/R))$ for every $x \in X$ and t > 0.

Lemma 3. Let $A, S : X \to X$ be *R*-weakly commuting maps of the type (P) and $\{x_n\}$ be a sequence in X such that $\lim_{n\to\infty} Ax_n = z = \lim_{n\to\infty} Sx_n$ for some $z \in X$, then $\lim_{n\to\infty} ASx_n = Sz$ if S is continuous at z.

Proof. Suppose S is continuous and $\{x_n\}$ be a sequence in X such that

$$\lim_{n \to \infty} Ax_n = z = \lim_{n \to \infty} Sx_n$$

for some $z \in X$, so $SSx_n \to Sz$ as $n \to \infty$. Since A and S are R-weakly commuting maps of type (P), so $g(F(ASx_n, Sz, a; t)) = g(F(AAx_n, SSx_n, a; t)) \leq g(F(Ax_n, Sx_n, a; t)) \to 0$ as $n \to \infty$.

Thus $ASx_n \to Sz$ as $n \to \infty$.

Example 2.1. Let X = [0, 1] with 2-metric defined as

$$d(x, y, z) = \min[|x - y|, |y - z|, |z - x|] \text{ for each } x, y, z \in X, \ t > 0.$$

Define $F(x, y, z; t) = \frac{t}{t+d(x, y, z)}$, with $\Delta(r, s, t) = \min(r, s, t,)$ or $r \cdot s \cdot t$. Then (i) $F(x, y, z; 0) = \frac{0}{0+d(x, y, z)} = 0$

(ii) and (iii) are trivial;

(iv) Let $F(x, y, s; t_1) = F(x, s, z; t_2) = F(s, y, z; t_3) = 1$, then we need to prove that $F(x, y, z; \max\{t_1, t_2, t_3\}) = 1.$

Now, $F(x, y, s; t_1) = 1$ if and only if $\frac{t_1}{t_1 + d(x, y, s)} = 1$, if and only if d(x, y, s) = 10.

Similarly, $F(x, s, z; t_2) = 1$ if and only if $\frac{t_2}{t_2+d(x,s,z)} = 1$ if and only if d(x, s, z) = 0 and $F(s, y, z; t_3) = 1$ if and only if $\frac{t_3}{t_3+d(s,y,z)} = 1$ if and only if d(s, y, z) = 0.

Now, $d(x, y, z) \le d(x, y, s) + d(x, s, z) + d(s, y, z) = 0 + 0 + 0 = 0.$ Let $\max\{t_1, t_2, t_3\} = T$, so

$$F(x, y, z; \max\{t_1, t_2, t_3\}) = F(x, y, z; T) = \frac{T}{T + d(x, y, z)} = 1.$$

Also,

 $F(x, y, z; \max\{t_1, t_2, t_3\}) > \Delta(F(x, y, s; t_1), F(x, s, z; t_2), F(s, y, z; t_3)).$

Thus (X, F, Δ) is 2 N.A. Menger PM-space.

Theorem 1. Let S and T be two continuous self-maps of a complete 2 N.A. Menger PM-space (X, F, Δ) . Let A be self-map of X satisfying

(i) $\{A, S\}$ and $\{A, T\}$ are R-weakly commuting of the type (P) and $A(X) \subseteq S(X) \cap T(X)$

(ii)

$$g(F(Ax, Ay, a; t)) \le \phi[\max\{(Sx, Ty, a; t), g(F(Sx, Ax, a; t)), g(F(Sx, Ay, a; t)), g(F(Ty, Ay, a; t))\}]$$

for every $x, y \in X$, where $\phi : [0,1] \to [0,1]$ is a continuous function such that $\phi(t) < t$ and $\phi(1) = 1$.

Then A, S and T have a unique common fixed point in X.

148

Proof. Let $x_0 \in X$ such that $A(X) \subseteq S(X)$, there exists $x_1 \in X$ such that $Ax_0 = Sx_1$. Also, since $A(X) \subseteq T(X)$, there is another point $x_2 \in X$ such that $Ax_1 = Tx_2$. Inductively we can choose x_{2n+1} and x_{2n+2} in X such that

(2.1)
$$y_{2n} = Sx_{2n+1} = Ax_{2n}; Tx_{2n+2} = Ax_{2n+1} = y_{2n+1}$$
 for $n = 0, 1, ...$

Let $M_n = g(F(Ax_n, Ax_{n+1}, a; t)), n = 0, 1, 2, \dots$ then

$$M_{2n} = g(F(Ax_{2n+1}, Ax_{2n}, a; t))$$

$$\leq \phi[\max\{g(F(Sx_{2n+1}, Tx_{2n}, a; t)), g(F(Sx_{2n+1}, Ax_{2n+1}, a; t)), g(F(Sx_{2n+1}, Ax_{2n}, a; t)), g(F(Tx_{2n}, Ax_{2n}, a; t))\}]$$

$$= \phi[\max\{g(F(Sx_{2n+1}, Ax_{2n-1}, a; t)), g(F(Ax_{2n}, Ax_{2n+1}, a; t)), g(F(Ax_{2n}, Ax_{2n}, a; t)), g(F(Ax_{2n-1}, Ax_{2n}, a; t))\}].$$

Now, consider

$$g(F(Sx_{2n+1}, Ax_{2n-1}, a; t)) \leq g(F(Sx_{2n+1}, Ax_{2n-1}, Ax_{2n}; t)) + g(F(Sx_{2n+1}, Ax_{2n-1}, Ax_{2n}; t)) + g(F(Ax_{2n}, Ax_{2n-1}, a; t))] = g(F(Ax_{2n}, Ax_{2n-1}, Ax_{2n}; t)) + g(F(Ax_{2n}, Ax_{2n}, a; t)) + g(F(Ax_{2n}, Ax_{2n-1}, a; t))]].$$

Using (2.3) in (2.2) with $M_{2n} = g(F(Ax_{2n+1}, Ax_{2n}, a; t))$, we get

(2.4)
$$M_{2n} \le \phi \left[\max\{M_{2n-1}, M_{2n}, 0, M_{2n-1}\} \right]$$

If $M_{2n} > M_{2n-1}$, then by (2.4) $M_{2n} \le \phi(M_{2n})$, a contradiction.

If $M_{2n-1} > M_{2n}$ then (2.4) gives $M_{2n} \le \phi(M_{2n-1})$, then by Lemma 1, we get $\lim_{n\to\infty} M_{2n} = 0$ i.e., $\lim_{n\to\infty} g(F(Ax_{2n+1}, Ax_{2n}, a; t)) = 0$.

Similarly, we can show that $\lim_{n\to\infty} g(F(Ax_{2n+2}, Ax_{2n+1}, a; t)) = 0$. Thus we have

(2.5)
$$\lim_{n \to \infty} g(F(Ax_n, Ax_{n+1}, a; t)) = 0 \text{ for every } t > 0,$$

i.e., $\lim_{n \to \infty} g(F(y_n, y_{n+1}, a; t)) = 0 \text{ for every } t > 0.$

Before proceeding the proof of the theorem, we first prove a Claim. Claim: Let $A, S, T : X \to X$ be maps satisfying (i) and (ii), then the sequence $\{y_n\}$ defined by (2.1) such that $\lim_{n\to\infty} g(F(y_n, y_{n+1}, a; t)) = 0, a \in X$, is a Cauchy sequence in X.

Proof of the Claim: Since $g \in \Omega$ it follows that $\lim_{n \to \infty} F(y_n, y_{n+1}, a; t) = 1$ for each t > 0, $a \in X$ if and only if $\lim_{n \to \infty} g(F(y_n, y_{n+1}, a; t)) = 0$ for each t > 0.

By Lemma 2, if $\{y_n\}$ is not a Cauchy sequence in X, there exist $\varepsilon_0 > 0$, $t_0 > 0$, and two sequences $\{m_i\}$ and $\{n_i\}$ of positive integers such that

A) $m_i > n_i + 1$ and $n_i \to \infty$ as $i \to \infty$ B) $g(F(y_{m_i}, y_{n_i}, a; t_0)) > g(1 - \varepsilon_0)$ and $g(F(y_{m_i-1}, y_{n_i}, a; t_0)) \le g(1 - \varepsilon_0)$, i = 1, 2, ..., since g(t) = 1 - t. Thus, we have

$$g(1 - \varepsilon_0) < g(F(y_{m_i}, y_{n_i}, a; t_0)) \leq g(F(y_{m_i}, y_{n_i}, y_{m_i-1}; t_0)) + g(F(y_{m_i}, y_{m_i-1}, a; t_0)) + g(F(y_{m_i-1}, y_{n_i}, a; t_0))$$

$$(2.6)$$

$$(2.6) \qquad \leq \quad g(F(y_{m_i}, y_{n_i}, y_{m_i-1}; t_0)) + g(F(y_{m_i}, y_{m_i-1}, a; t_0)) + g(1 - \varepsilon_0)$$

as $i \to \infty$ in (2.6) we get

(2.7)
$$\lim_{n \to \infty} g(F(y_{m_i}, y_{n_i}, a; t_0)) = g(1 - \varepsilon_0).$$

On the other hand, we have

$$g(1 - \varepsilon_0) < g(F(y_{m_i}, y_{n_i}, a; t_0)) (2.8) \leq g(F(y_{m_i}, y_{n_i}, y_{n_i+1}; t_0)) + g(F(y_{m_i}, y_{n_i+1}, a; t_0)) + g(F(y_{n_i+1}, y_{n_i}, a; t_0)).$$

Now, consider $g(F(y_{m_i}, y_{n_i+1}, a; t_0))$ in (2.8) and assume that both m_i and n_i are even. Then by (ii), we have

$$g(F(y_{m_i}, y_{n_i+1}, a; t_0)) = g(F(Ax_{m_i}, Ax_{n_i+1}, a; t_0)) \\ \leq \phi[\max\{g(F(Sx_{m_i}, Tx_{n_i+1}, a; t_0)), g(F(Sx_{m_i}, Ax_{m_i}, a; t_0)), g(F(Sx_{m_i}, Ax_{n_i+1}, a; t_0)), g(F(Tx_{n_i+1}, Ax_{n_i+1}, a; t_0))\}] \\ (2.9) \leq \phi[\max\{g(F(y_{m_{i-1}}, y_{n_i}, a; t_0)), g(F(y_{m_i-1}, y_{m_i}, a; t_0)), g(y_{m_i-1}, y_{m_i}, a; t_0))]$$

$$g(F(y_{m_i-1}, y_{n_i+1}, a; t_0)), g(F(y_{n_i}, y_{n_i+1}, a; t_0))\}].$$

Now, consider $g(F(y_{m_i-1}, y_{n_i+1}, a; t_0))$ from (2.9).

$$(2.10) \qquad \qquad g(F(y_{m_i-1}, y_{n_i+1}, a; t_0)) \le g(F(y_{m_i-1}, y_{n_i+1}, y_{n_i}; t_0)) \\ + g(F(y_{m_i-1}, y_{n_i}, a; t_0)) + g(F(y_{n_i}, y_{n_i+1}, a; t_0)).$$

Using (2.10) in (2.9) and letting $i \to \infty$

$$g(1-\varepsilon_0) \le \phi \left[\max\{g(1-\varepsilon_0), 0, g(1-\varepsilon_0), 0\}\right]$$
 i.e., $g(1-\varepsilon_0) \le \phi \left(g(1-\varepsilon_0)\right)$

which is a contradiction. Hence the sequence $\{y_n = Ax_n\}$ defined by (2.1) is a Cauchy sequence, which completes the proof of Claim.

By the completeness of X, $\{Ax_n\}$ converges to a point $z \in X$. Consequently, the subsequences $\{Sx_{2n+1}\}$ and $\{Tx_{2n}\}$ of $\{Ax_n\}$ also converge to $z \in X$. Since A and S are R-weakly commuting of type (P), so $g(F(SSx_{2n+1}, AAx_{2n+1}, a; t)) \leq g(F(Ax_{2n+1}, Sx_{2n+1}, a; t/R))$, which gives (using Lemma 3) $\lim_{n\to\infty} ASx_{2n+1} = \lim_{n\to\infty} SSx_{2n+1} = Sz$ (as S is continuous), now, we prove that Sz = z.

A common fixed-point theorem ...

Suppose that $Sz \neq z$, then using (ii) we get

$$g(F(ASx_{2n+1}, Ax_{2n}, a; t)) \le \phi[\max\{g(F(SSx_{2n+1}, Tx_{2n}, a; t)),$$

 $g(F(SSx_{2n+1}, ASx_{2n+1}, a; t)), g(F(SSx_{2n+1}, Ax_{2n}, a; t)), g(F(Ax_{2n}, Tx_{2n}, a; t))\}].$

Taking $n \to \infty$ we get,

$$g(F(Sz, z, a; t)) \le \phi[\max\{g(F(Sz, z, a; t)), g(F(Sz, Sz, a; t)), g(F(Sz, z, a; t)), g(F(Sz, z, a; t)), g(F(Z, z, a; t))\}] = \phi(g(F(Sz, z, a; t))) < g(F(Sz, z, a; t)),$$

which is a contradiction.

Thus z is a fixed point of S. Similarly, we can show that z is a fixed point of A.

Now, the pair $\{A, T\}$ is R weakly commuting of the type (P), so

$$g(F(AAx_{2n+1}, TTx_{2n+1}, a; t)) \le g(F(Ax_{2n+1}, Tx_{2n+1}, a; t/R))$$

which gives $\lim_{n\to\infty} ATx_{2n+1} = \lim_{n\to\infty} TTx_{2n+1} = Tz$ (as T is continuous). Now, we claim that z is also a fixed point of T. Suppose that $Tz \neq z$, then using (ii) we have

$$g(F(Az, ATx_{2n}, a; t)) \leq \phi[\max\{g(F(Sz, T^2x_{2n}, a; t)), g(F(Sz, Az, a; t)), g(F(Sz, Az, a; t)), g(F(Sz, ATx_{2n}, a; t)), g(F(T^2x_{2n}, ATx_{2n}, a; t))\}].$$

On taking limit as $n \to \infty$, it yields

$$g(F(z, Tz, a; t)) \leq \phi[\max\{g(F(z, Tz, a; t)), g(F(z, z, a; t)), g(F(z, z, a; t)), g(F(z, Tz, a; t)), g(F(Tz, Tz, a; t))\}].$$

This gives that z = Tz. Thus z is a common fixed point of A, S and T.

Uniqueness can be proved by using condition (ii).

Taking T = S in the above theorem we get the following corollary unifying Vasuki's theorem [9], which in turn also generalizes the result of Pant [8].

Corollary 1. Let (X, F, Δ) be a complete 2 N.A. Menger PM-space and S be a continuous self-mappings of X. Let A be another self-mapping of X satisfying that $\{A, S\}$ is R-weakly commuting of the type (P) with $A(X) \subseteq S(X)$ and

$$g(F(Ax, Ay, a; t)) \leq \phi[\max\{g(F(Sx, Ty, a; t)), g(F(Sx, Ax, a; t)), g(F(Sx, Ay, a; t)), g(F(Sx, Ay, a; t)), g(F(Ty, Ay, a; t))\}]$$

for each $x, y \in X$, where $\phi : [0,1] \to [0,1]$ is a continuous function such that $\phi(t) < t$ for each $0 \le t < 1$ and $\phi(t) = 1$ for t = 1, then the maps A and S have a unique common fixed point.

Remark 2. Our results extend, generalize and unify the results of Jungck [3], B. Shweizer and A. Sklar [2], Mohd. Imdad and Javid Ali [5], R. Vasuki [9], R. P. Pant [8] and B. C. Dhage [1] in different spaces like metric space, probabilistic metric space, fuzzy metric space and D metric space in the framework of 2 N.A. Menger PM space.

References

- Dhage, B. C., Generalized metric spaces and mappings with fixed points. Bull. Calcutta Math. Soc. 84 (1992), 329-336.
- [2] Shweizer, B., Sklar, A., Probabilistic Metric Spaces. Amsterdam: North Holland 1983.
- [3] Jungck, G., Commuting maps and fixed points. Math. Monthly 83 (1976), 261-263.
- [4] Grabeic, M., Fixed points in fuzzy metric spaces. Fuzzy sets and systems 27 (1083), 385-389.
- [5] Imdad, Mohd., Ali, Javid, Some Common fixed point theorems in fuzzy metric spaces. Mathematical Communications 11 (2006), 153-163.
- [6] Subrahmanyam, P. V., A common fixed point theorem in fuzzy metric spaces. Information Sciences 83 (1995), 109-112.
- [7] Renu, Chugh, Sumitra, Common fixed point theorems in 2 Non Archimedean Menger PM-spaces. Int. J. Math. and Math. Sci. 26, 8 (2001), 475 - 483.
- [8] Pant, R. P., Non compatible maps and common fixed points. Soochow J. Math. 26 (2000), 29-35.
- [9] Vasuki, R., Common fixed points for R-weakly commuting maps in fuzzy metric spaces. Indian J. Pure and Applied Math. 30 (1999), 419-423.
- [10] Pant, V., Pant, R. P., Fixed points in fuzzy metric space for non compatible maps. Soochow J. Math. Vol 33 No 4, October 2007, 647-655.
- [11] Cho, Y. J., Patak, H. K., Kang, S. M., Remarks on R-weakly commuting maps and common fixed point theorems. Bull. Korean Math. Soc. 34 (1997), 247-257.

Received by the editors July 16, 2008