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A COMMON FIXED-POINT THEOREM IN
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FOR R-WEAKLY COMMUTING MAPS OF TYPE (P)
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Abstract. The present paper deals with the establishment of common
fixed-point theorem for R-weakly commuting maps of type (P ) in 2 N.A.
Menger PM-space.
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1. Introduction

The notion of probabilistic metric space was introduced in 1942 by K.
Menger. The first idea of K. Menger was to use distribution functions instead
of non-negative real numbers as values of the metric. Since then the theory of
probabilistic metric spaces has been developed in many directions. Renu Chugh
and Sumitra [7] introduced the concept of 2 N.A. Menger PM-space in 2001.

In 1994, Pant [8] introduced the concept of R-weakly commuting maps in
metric spaces. Later Y.J.Cho et al. [11] generalized this aspect and gave the
concept of R-weakly commuting maps of type (Ag) in metric spaces. Vasuki [9]
proved some common fixed point theorems for R-weakly commuting maps in
fuzzy metric spaces. Quite recently in 2007, Vyomesh Pant and R. P. Pant [10]
introduced the concept of R-weakly commuting maps of the type (Ag) in fuzzy
metric spaces.

In 2006, Mohd. Imdad and Javid Ali [5] introduced the concept of R-weakly
commuting maps of the type (P) in fuzzy metric spaces. The intent of this
paper is to define the concept of R-weakly commuting maps of the type (P)
in this newly defined space and prove a common fixed theorem for R-weakly
commuting three self maps of type (P) along with the example. Hereby we give
some preliminary definitions and notations.

Definition 1.1. Let X be any non-empty set and D be the set of all left-
continuous distribution functions. An ordered pair (X, F ) is said to be 2 Non-
Archimedean probabilistic metric space (briefly 2 N.A. PM-space) if F is a
mapping from X ×X ×X into D satisfying the following conditions where the
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value of F at x, y, z ∈ X ×X ×X is represented by Fx,y,z or F (x, y, z) for each
x, y, z ∈ X such that

i) F (x, y, z; t) = 1 for all t > 0 if and only if
at least two of the three points are equal

ii) F (x, y, z) = F (x, z, y) = F (z, x, y)

iii) F (x, y, z; 0) = 0

iv) F (x, y, s; t1) = F (x, s, z; t2) = F (s, y, z; t3) = 1 then
F (x, y, z;max{t1, t2, t3}) = 1

Definition 1.2. A t-norm is a function ∆ : [0, 1]×[0, 1]×[0, 1] → [0, 1] which is
associative, commutative, non-decreasing in each coordinate and ∆(a, 1, 1) = a
for each a ∈ [0, 1].

Definition 1.3. A 2 N.A. Menger PM-space is an ordered triplet (X, F, ∆),
where ∆ is a t-norm and (X, F ) is a 2 N.A. PM-space satisfying the following
condition

F (x, y, z;max{t1, t2, t3}) ≥ ∆{F (x, y, s; t1), F (x, s, z; t2), F (s, y, z, t3)}

for each x, y, z ∈ X, t1, t2, t3 ≥ 0.

Definition 1.4. Let (X, F, ∆) be 2 N.A. Menger PM-space and ∆ a continu-
ous t-norm, then (X, F,∆) is Hausdorff in the topology induced by the family
of neighborhoods; Ux(ε, λ, a1, a2, . . . , an); x, ai ∈ X, ε > 0, i = 1, 2, . . . , n ∈ Z+,
where Z+ is the set of all positive integers and

Ux(ε, λ, a1, a2, . . . , an) = {y ∈ X; F (x, y, ai; ε) > 1− λ, 1 ≤ i ≤ n}

=
n⋂

i=1

{y ∈ X;F (x, y, ai; ε) > 1− λ, 1 ≤ i ≤ n}.

Definition 1.5. A 2 N.A. Menger PM-space (X, F,∆) is said to be of type
(C)g if there exists a g ∈ Ω such that

g(F (x, y, z; t)) ≤ g(F (x, y, a; t)) + g(F (x, a, z; t)) + g(F (a, y, z; t))

for each x, y, z ∈ X, t ≥ 0, where

Ω = {g|g : [0, 1] → [0,∞) is continuous, strictly
decreasing, g(1) = 0 and g(0) < ∞}.

Definition 1.6. A 2 N.A. Menger PM-space (X, F,∆) is said to be of type
(D)g if there exists a g ∈ Ω such that g(∆(t1, t2, t3)) ≤ g(t1) + g(t2) + g(t3) for
each t1, t2, t3 ∈ [0, 1].
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Remark 1.

(i) If 2 N.A. Menger PM-space is of the type (D)g, then (X, F, ∆) is of the
type (C)g.

(ii) If (X,F, ∆) is 2 N.A. Menger PM-space and ∆ ≥ ∆(r, s, t) = min (r, s, t),
then (X, F, ∆) is of the type (D)g , for g ∈ Ω and g(t) = 1− t.

2. Results

Throughout this paper, let (X,F, ∆) be a complete 2 N.A. Menger PM-space
with a continuous strictly increasing t-norm ∆. Let φ : [0,∞) → [0,∞) be a
function satisfying the condition (Φ);

(Φ) φ is the upper semi-continuous from the right and φ(t) < t for t > 0.

Lemma 1. If a function φ : [0,∞) → [0,∞) satisfies the condition (Φ) then
we get

i) For all t ≥ 0, limn→∞ φn(t) = 0 where φn(t) is the nth iteration of φ(t).

ii) If {tn} is a non-decreasing sequence of real numbers and tn+1 ≤ φ(tn),
n = 1, 2, . . . then limn→∞ tn = 0. In particular, if t ≤ φ(t), for each t ≥ 0,
then t = 0.

Lemma 2. Let {yn} be a sequence in X such that limn→∞ F (yn, yn+1, a; t) =
1 for each t > 0. If the sequence {yn} is not a Cauchy sequence in X, then
there exist ε0 > 0, t0 > 0, and two sequences {mi} and {ni} of positive integers
such that

i) mi > ni + 1 and ni →∞ as i →∞.

ii) F (ymi , yni , a; t0) < 1− ε0 and F (ymi−1, yni , a; t0) ≥ 1− ε0, i = 1, 2, . . .

Definition 2.1. Two maps f and g of a 2 N.A. Menger PM-space (X, F,∆)
into itself are said to be R-weakly commuting of the type (P) if there exists some
R > 0 such that g(F (ggx, ffx, a; t)) ≤ g(F (fx, gx, a; t/R)) for every x ∈ X and
t > 0.

Lemma 3. Let A,S : X → X be R-weakly commuting maps of the type (P)
and {xn} be a sequence in X such that limn→∞Axn = z = limn→∞ Sxn for
some z ∈X , then limn→∞ASxn = Sz if S is continuous at z.

Proof. Suppose S is continuous and {xn} be a sequence in X such that

lim
n→∞

Axn = z = lim
n→∞

Sxn

for some z ∈ X, so SSxn → Sz as n → ∞. Since A and S are R-weakly com-
muting maps of type (P), so g(F (ASxn, Sz, a; t)) = g(F (AAxn, SSxn, a; t)) ≤
g(F (Axn, Sxn, a; t)) → 0 as n →∞.
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Thus ASxn → Sz as n →∞. 2

Example 2.1. Let X = [0, 1] with 2-metric defined as

d(x, y, z) = min[|x− y|, |y − z|, |z − x|] for each x, y, z ∈ X, t > 0.

Define F (x, y, z; t) = t
t+d(x,y,z) , with ∆(r, s, t) = min(r, s, t, ) or r · s · t.

Then (i) F (x, y, z; 0) = 0
0+d(x,y,z) = 0

(ii) and (iii) are trivial;
(iv) Let F (x, y, s; t1) = F (x, s, z; t2) = F (s, y, z; t3) = 1, then we need to

prove that F (x, y, z; max{t1, t2, t3}) = 1.
Now, F (x, y, s; t1) = 1 if and only if t1

t1+d(x,y,s) = 1, if and only if d(x, y, s) =
0.

Similarly, F (x, s, z; t2) = 1 if and only if t2
t2+d(x,s,z) = 1 if and only if

d(x, s, z) = 0 and F (s, y, z; t3) = 1 if and only if t3
t3+d(s,y,z) = 1 if and only

if d(s, y, z) = 0.
Now, d(x, y, z) ≤ d(x, y, s) + d(x, s, z) + d(s, y, z) = 0 + 0 + 0 = 0.

Let max{t1, t2, t3} = T , so

F (x, y, z;max{t1, t2, t3}) = F (x, y, z;T ) =
T

T + d(x, y, z)
= 1.

Also,

F (x, y, z;max {t1, t2, t3}) ≥ ∆(F (x, y, s; t1), F (x, s, z; t2), F (s, y, z; t3)).

Thus (X, F,∆) is 2 N.A. Menger PM-space.

Theorem 1. Let S and T be two continuous self-maps of a complete 2 N.A.
Menger PM-space (X, F, ∆). Let A be self-map of X satisfying

(i) {A,S} and {A, T} are R-weakly commuting of the type (P) and
A(X) ⊆ S(X) ∩ T (X)

(ii)

g(F (Ax,Ay, a; t)) ≤ φ[max{(Sx, Ty, a; t), g(F (Sx, Ax, a; t)),
g(F (Sx,Ay, a; t)), g(F (Ty, Ay, a; t))}]

for every x, y ∈ X, where φ : [0, 1] → [0, 1] is a continuous function such
that φ(t) < t and φ(1) = 1.

Then A, S and T have a unique common fixed point in X.
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Proof. Let x0 ∈ X such that A(X) ⊆ S(X), there exists x1 ∈ X such that
Ax0 = Sx1. Also, since A(X) ⊆ T (X), there is another point x2 ∈ X such that
Ax1 = Tx2. Inductively we can choose x2n+1 and x2n+2 in X such that

(2.1) y2n = Sx2n+1 = Ax2n; Tx2n+2 = Ax2n+1 = y2n+1 for n = 0, 1, . . .

Let Mn = g(F (Axn, Axn+1, a; t)), n = 0, 1, 2, . . . then

M2n = g(F (Ax2n+1, Ax2n, a; t))
≤ φ[max{g(F (Sx2n+1, Tx2n, a; t)), g(F (Sx2n+1, Ax2n+1, a; t)),

g(F (Sx2n+1, Ax2n, a; t)), g(F (Tx2n, Ax2n, a; t))}](2.2)
= φ[max{g(F (Sx2n+1, Ax2n−1, a; t)), g(F (Ax2n, Ax2n+1, a; t)),

g(F (Ax2n, Ax2n, a; t)), g(F (Ax2n−1, Ax2n, a; t))}].

Now, consider

g(F (Sx2n+1, Ax2n−1, a; t))
≤ g(F (Sx2n+1, Ax2n−1, Ax2n; t)) +

g(F (Sx2n+1, Ax2n, a; t))
+g(F (Ax2n, Ax2n−1, a; t))}]

= g(F (Ax2n, Ax2n−1, Ax2n; t))(2.3)
+g(F (Ax2n, Ax2n, a; t)) +
g(F (Ax2n, Ax2n−1, a; t))}].

Using (2.3) in (2.2) with M2n = g(F (Ax2n+1, Ax2n, a; t)), we get

(2.4) M2n ≤ φ [max{M2n−1,M2n, 0,M2n−1}]

If M2n > M2n−1, then by (2.4) M2n ≤ φ(M2n), a contradiction.
If M2n−1 > M2n then (2.4) gives M2n ≤ φ(M2n−1), then by Lemma 1, we

get limn→∞M2n = 0 i.e., limn→∞ g(F (Ax2n+1, Ax2n, a; t)) = 0.
Similarly, we can show that limn→∞ g(F (Ax2n+2, Ax2n+1, a; t)) = 0.
Thus we have

(2.5)
limn→∞ g(F (Axn, Axn+1, a; t)) = 0 for every t > 0,

i.e., limn→∞ g(F (yn, yn+1, a; t)) = 0 for every t > 0.

Before proceeding the proof of the theorem, we first prove a Claim.
Claim: Let A, S, T : X → X be maps satisfying (i) and (ii), then the sequence
{yn} defined by (2.1) such that limn→∞ g(F (yn, yn+1, a; t)) = 0, a ∈ X, is a
Cauchy sequence in X.
Proof of the Claim: Since g ∈ Ω it follows that limn→∞ F (yn, yn+1, a; t) = 1 for
each t > 0, a ∈ X if and only if limn→∞ g(F (yn, yn+1, a; t)) = 0 for each t > 0.

By Lemma 2, if {yn} is not a Cauchy sequence in X, there exist ε0 > 0,
t0 > 0, and two sequences {mi} and {ni} of positive integers such that
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A) mi > ni + 1 and ni →∞ as i →∞
B) g(F (ymi , yni , a; t0)) > g(1 − ε0) and g(F (ymi−1, yni , a; t0)) ≤ g(1 − ε0),

i = 1, 2, .., since g(t) = 1− t. Thus, we have

g(1− ε0) < g(F (ymi , yni , a; t0))
≤ g(F (ymi

, yni
, ymi−1; t0)) + g(F (ymi

, ymi−1, a; t0))
+g(F (ymi−1, yni

, a; t0))
≤ g(F (ymi , yni , ymi−1; t0)) + g(F (ymi , ymi−1, a; t0)) + g(1− ε0)(2.6)

as i →∞ in (2.6) we get

(2.7) lim
n→∞

g(F (ymi
, yni

, a; t0)) = g(1− ε0).

On the other hand, we have

g(1− ε0) < g(F (ymi
, yni

, a; t0))
≤ g(F (ymi , yni , yni+1; t0)) + g(F (ymi , yni+1, a; t0))(2.8)

+g(F (yni+1, yni , a; t0)).

Now, consider g(F (ymi , yni+1, a; t0)) in (2.8) and assume that both mi and ni

are even. Then by (ii), we have

g(F (ymi , yni+1, a; t0))
= g(F (Axmi , Axni+1, a; t0))
≤ φ[max{g(F (Sxmi , Txni+1, a; t0)), g(F (Sxmi , Axmi , a; t0)),

g(F (Sxmi , Axni+1, a; t0)), g(F (Txni+1, Axni+1, a; t0))}]
≤ φ[max{g(F (ymi−1 , yni , a; t0)), g(F (ymi−1, ymi , a; t0)),(2.9)

g(F (ymi−1, yni+1, a; t0)), g(F (yni , yni+1, a; t0))}].

Now, consider g(F (ymi−1, yni+1, a; t0)) from (2.9).

(2.10)
g(F (ymi−1, yni+1, a; t0)) ≤ g(F (ymi−1, yni+1, yni ; t0))

+g(F (ymi−1, yni , a; t0)) + g(F (yni , yni+1, a; t0)).

Using (2.10) in (2.9) and letting i →∞

g(1− ε0) ≤ φ [max{g(1− ε0), 0, g(1− ε0), 0}] i.e., g(1− ε0) ≤ φ (g(1− ε0)

which is a contradiction. Hence the sequence {yn = Axn} defined by (2.1) is a
Cauchy sequence, which completes the proof of Claim.

By the completeness of X, {Axn} converges to a point z ∈ X. Consequently,
the subsequences {Sx2n+1} and {Tx2n} of {Axn} also converge to z ∈ X. Since
A and S are R-weakly commuting of type (P), so g(F (SSx2n+1, AAx2n+1, a; t)) ≤
g(F (Ax2n+1, Sx2n+1, a; t/R)), which gives (using Lemma 3) limn→∞ASx2n+1 =
limn→∞ SSx2n+1 = Sz (as S is continuous), now, we prove that Sz = z.
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Suppose that Sz 6= z, then using (ii) we get

g(F (ASx2n+1, Ax2n, a; t)) ≤ φ[max{g(F (SSx2n+1, Tx2n, a; t)),
g(F (SSx2n+1, ASx2n+1, a; t)), g(F (SSx2n+1, Ax2n, a; t)), g(F (Ax2n, Tx2n, a; t))}].
Taking n →∞ we get,

g(F (Sz, z, a; t)) ≤ φ[max{g(F (Sz, z, a; t)),g(F (Sz, Sz, a; t)), g(F (Sz, z, a; t)),
g(F (z, z, a; t))}] = φ(g(F (Sz,z, a; t))) < g(F (Sz, z, a; t)),

which is a contradiction.
Thus z is a fixed point of S. Similarly, we can show that z is a fixed point

of A.
Now, the pair {A, T} is R weakly commuting of the type (P), so

g(F (AAx2n+1, TTx2n+1, a; t)) ≤ g(F (Ax2n+1, Tx2n+1, a; t/R))

which gives limn→∞ATx2n+1 = limn→∞ TTx2n+1 = Tz (as T is continuous).
Now, we claim that z is also a fixed point of T .
Suppose that Tz 6= z, then using (ii) we have

g(F (Az,ATx2n, a; t)) ≤ φ[max{g(F (Sz, T 2x2n, a; t)), g(F (Sz, Az, a; t)),
g(F (Sz,ATx2n, a; t)), g(F (T 2x2n, ATx2n, a; t))}].

On taking limit as n →∞, it yields

g(F (z, Tz, a; t)) ≤ φ[max{g(F (z, Tz, a; t)), g(F (z, z, a; t)),
g(F (z, Tz, a; t)), g(F (Tz, Tz, a; t))}].

This gives that z = Tz. Thus z is a common fixed point of A , S and T .
Uniqueness can be proved by using condition (ii).
Taking T = S in the above theorem we get the following corollary unifying

Vasuki’s theorem [9], which in turn also generalizes the result of Pant [8].

Corollary 1. Let (X, F,∆) be a complete 2 N.A. Menger PM-space and S be
a continuous self-mappings of X. Let A be another self-mapping of X satisfying
that {A,S} is R-weakly commuting of the type (P) with A(X) ⊆ S(X) and

g(F (Ax,Ay, a; t)) ≤ φ[max{g(F (Sx, Ty, a; t)), g(F (Sx,Ax, a; t)),
g(F (Sx, Ay, a; t)), g(F (Ty,Ay, a; t))}]

for each x, y ∈ X, where φ : [0, 1] → [0, 1] is a continuous function such that
φ(t) < t for each 0 ≤ t < 1 and φ(t) = 1 for t = 1, then the maps A and S have
a unique common fixed point.

Remark 2. Our results extend, generalize and unify the results of Jungck [3],
B. Shweizer and A. Sklar [2], Mohd. Imdad and Javid Ali [5], R. Vasuki [9], R.
P. Pant [8] and B. C. Dhage [1] in different spaces like metric space, probabilistic
metric space, fuzzy metric space and D metric space in the framework of 2 N.A.
Menger PM space.
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