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A REMARK ON REGULAR STURM-LIOUVILLE
SYSTEM

M. Budinčević1, V. Marić2

Abstract. A self-contained proof of a classical (text-book) oscillation
theorem for a regular Sturm-Liouville problem is presented.
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The (text-book) oscillation theorem states that the regular Sturm-Liouville
system

(P (x)y′)′ + Q(x, λ)y = 0, x ∈ [a, b], λ ∈ R
hy(a) + h′y′(a) = ky(b) + k′y′(b) = 0,

where h, h′ and k, k′ are given constants not simultaneously equal to zero,
possesses increasing sequence of eigenvalues {λn}, tending to infinity with n,
and a sequence of corresponding eigenfunctions yn(x) having n zeros in the
interval (a, b).

For the proof of that fact the following result is crucial:

Theorem 1. Let P (x) be continuous and positive for x ∈ [a, b], Q(x, λ) con-
tinuous on [a, b]× R and such that

(1) Q(x, λ) →∞, as λ →∞

uniformly in x ∈ [a, b]. Then for the solution θ(x) = θ(x, λ) of the initial value
problem

(2)
a) θ′(x) = Q(x, λ) sin2 θ(x) + 1

P (x) cos2 θ(x)

b) θ(a, λ) = γ, 0 ≤ γ < π, for each λ ∈ R

there holds
lim

λ→∞
θ(x, λ) = ∞ for each x ∈ (a, b].

The aim of this paper is to present a short and self-contained proof of that result
at variance to the ones known to us (see, for example [1]).
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Proof. Suppose to the contrary that for at least one x∗ ∈ (a, b] and for
at least one sequence {µν} such that µν → ∞, as ν → ∞, there exists an
M ∈ (0,∞) such that

(3) lim
ν→∞

θ(x∗, µν) = M.

First observe that, due to (1), for any constant M1 > 0 there exists m = m(M1)
such that for all x ∈ [a, b] and λ > m

(4) Q(x, λ) > M1,

which, by (2a) imply θ′(x, λ) > 0 for x ∈ [a, b] and λ > m, so that the solution
θ(x, λ) is strictly increasing in x for all λ > m.

Put I := (a, x∗], k0 =
[

M
π

]
and choose δ such that δ ∈ (0, π

2 ). For k =
0, 1, . . . , k0 + 1, one can define the following closed intervals

(5) Ik(µν) := {x ∈ I : |θ(x, λ)− kπ| ≤ δ} = [xk, x′k],

where the end points xk, x′k depend on µν . Notice that the intervals I0(µν) and
Ik0+1(µν) are empty for γ ≥ δ and (k0 + 1)π −M ≥ δ but the others are never
such due to (2b) and the monotonicity of θ(x).

Further put

I1(µν) =
k0+1⋃

k=0

Ik(µν), I2(µν) = I \ I1(µν).

Then, in view of (2a) and (4), the following estimates hold for µν > m:

(6)
θ′(x, µν) ≥ cos2 δ

P (x) ≥ M2 > 0 for x ∈ I1(µν)

θ′(x, µν) ≥ M1 · sin2 δ for x ∈ I2(µν).

By applying the mean value theorem over each of the intervals Ik(µν) and their
complements, one obtains

(7) θ(x∗, µν)− γ =
k0+1∑

k=0

θ′(ξk, µν)(x′k − xk) +
k0∑

k=0

θ′(ηk, µν)(xk+1 − x′k)

where ξk, ηk belong to the corresponding (open) intervals. Denote the sum of
the lengths of intervals Ik(µν) by d(I1(µν)), so that

(8) d(I2(µν)) = x∗ − a− d(I1(µν)).

Then, equality (7) and estimate (6) yield for µν > m

(9) θ(x∗, µν) ≥ M2d(I1(µν)) + M1d(I2(µν)) sin2 δ.

Since M1 is arbitrary, the above inequality will lead to a contradiction provided
that d(I2(µν)) is bounded below.
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But, by applying the mean value theorem over each of intervals Ik(µν), and
due to (6), one obtains

d(I1(µν)) =
k0+1∑

k=0

d(Ik(µν)) ≤ 2δ

k0+1∑

k=0

1
θ′(ξk)

≤ 2δ
k0 + 2
M2

.

Whence, for conveniently chosen δ, (8) implies

d(I2(µν)) ≥ x∗ − a− 2δ
k0 + 2
M2

≥ M3 > 0.

Therefore, one can choose M1 (sufficiently large) such that, in virtue of (9)

θ(x∗, µν) > M for all µν > m

contradicting (3).
It is worthwhile to add that for Q(x, λ) = λr(x) + q(x) the hypothesis (1)

is fulfilled if r(x) and q(x) are continuous and r(x) > 0 for x ∈ [a, b], which,
therefore, are the sole hypotheses needed in this special case important in ap-
plications.
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