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Abstract. A 4n-parametric family of 4n-dimensional quasi-Kähler man-
ifolds with Killing Norden metric is constructed on a Lie group. This
family is characterized geometrically.
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1. Introduction

It is a fundamental fact that on an almost complex manifold with Hermitian
metric (almost Hermitian manifold), the action of the almost complex structure
on the tangent space at each point of the manifold is isometry. There is another
type of metric, called Norden metric or B-metric on an almost complex manifold,
such as the action of the almost complex structure is anti-isometry with respect
to the metric. Such a manifold is called an almost complex manifold with
Norden metric [1] or with B-metric [2]. See also [6] for generalized B-manifolds.
It is known [1] that these manifolds are classified into three basic classes, Wi

(i = 1, 2, 3), which give rise to eight classes in all.
Among the basic three classes of this classification, the almost complex struc-

ture is nonintegrable only in the classW3. This is the class of the so-called quasi-
Kähler manifolds with Norden metric, which we call briefly W3-manifolds. We
studied the geometry of manifolds belonging to this class in [5], [7], [8], [9], [10].

The purpose of the present paper is to show, by construction, almost complex
structures with Norden metric on Lie groups as 4n-manifolds, which are of the
class W3. This 4n-parametric family of manifolds is characterized geometrically.

The case of the initial dimension 4 is considered in [5] and [10].
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2. Almost complex manifolds with Norden metric

Let (M, J, g) be a 2n-dimensional almost complex manifold with Norden
metric, i. e. J is an almost complex structure and g is a metric on M such that

(2.1) J2X = −X, g(JX, JY ) = −g(X,Y )

for all differentiable vector fields X, Y on M , i. e. X, Y ∈ X(M).
The associated metric g̃ of g on M given by g̃(X, Y ) = g(X, JY ) for all

X,Y ∈ X(M) is a Norden metric, too. Both metrics are necessarily of signature
(n, n). The manifold (M, J, g̃) is an almost complex manifold with Norden
metric, too.

Further, X, Y , Z, U (x, y, z, u, respectively) will stand for arbitrary differ-
entiable vector fields on M (vectors in TpM , p ∈ M , respectively).

The Levi-Civita connection of g is denoted by ∇. The tensor filed F of type
(0, 3) on M is defined by

(2.2) F (X, Y, Z) = g
(
(∇XJ)Y, Z

)
.

It has the following symmetries

(2.3) F (X,Y, Z) = F (X, Z, Y ) = F (X, JY, JZ).

Further, let {ei} (i = 1, 2, . . . , 2n) be an arbitrary basis of TpM at a point
p of M . The components of the inverse matrix of g are denoted by gij with
respect to the basis {ei}.

The eight classes of almost complex manifolds with Norden metric are de-
termined in [1] according to the properties of F . The three basic classes are
given as follows:

W1 : F (x, y, z) = 1
4n {g(x, y)θ(z) + g(x, z)θ(y)

+g(x, Jy)θ(Jz) + g(x, Jz)θ(Jy)} ;

W2 : S
x,y,z

F (x, y, Jz) = 0, θ = 0;

W3 : S
x,y,z

F (x, y, z) = 0,

where S is the cyclic sum over three arguments and θ(z) = gijF (ei, ej , z). The
special class W0 of the Kähler manifolds with Norden metric belonging to any
other class is determined by the condition F = 0.

The curvature tensor field R of ∇ is R(X,Y )Z = ∇X∇Y Z − ∇Y∇XZ −
∇[X,Y ]Z, and the corresponding tensor field of type (0, 4) is determined by
R(X, Y, Z, U) = g(R(X,Y )Z, U). The Ricci tensor ρ and the scalar curvature τ
are defined as usual by

(2.4) ρ(y, z) = gijR(ei, y, z, ej), τ = gijρ(ei, ej).

It is well known that the Weyl tensor W on an m-dimensional pseudo-Riema-
nnian manifold (m ≥ 3) is given by

(2.5) W = R− 1
m− 2

(
ψ1(ρ)− τ

m− 1
π1

)
,
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where
ψ1(ρ)(x, y, z, u) = g(y, z)ρ(x, u)− g(x, z)ρ(y, u)

+ ρ(y, z)g(x, u)− ρ(x, z)g(y, u);
π1 = 1

2ψ1(g) = g(y, z)g(x, u)− g(x, z)g(y, u).

Moreover, for m ≥ 4 the Weyl tensor W is zero if and only if the manifold
is conformally flat.

Let α = {x, y} be a non-degenerate 2-plane spanned by vectors x, y ∈ TpM ,
p ∈ M . It means that π1(x, y, y, x) = g(x, x)g(y, y)− g(x, y)2 6= 0). Then, as is
known, the sectional curvature of α is defined by the following equation

(2.6) k(α) = k(x, y) =
R(x, y, y, x)
π1(x, y, y, x)

.

The basic sectional curvatures in TpM with an almost complex structure
and a Norden metric g are:

• holomorphic sectional curvatures if Jα = α;

• totally real sectional curvatures if Jα ⊥ α with respect to g.

In [4], a holomorphic bisectional curvature h(x, y) for a pair of holomorphic
2-planes α1 = {x, Jx} and α2 = {y, Jy} is defined by

(2.7) h(x, y) = − R(x, Jx, y, Jy)√
π1(x, Jx, x, Jx)π1(y, Jy, y, Jy)

,

where x, y do not lie along the totally isotropic directions, i. e. both of the
couples

(
g(x, x), g(x, Jx)

)
and

(
g(y, y), g(y, Jy)

)
are different from the couple

(0, 0). The holomorphic bisectional curvature is invariant with respect to the
basis of the 2-planes α1 and α2. In particular, if α1 = α2, then the holomorphic
bisectional curvature coincides with the holomorphic sectional curvature of the
2-plane α1 = α2.

The square norm ‖∇J‖2 of ∇J is defined in [3] by

‖∇J‖2 = gijgklg
(
(∇eiJ) ek,

(∇ej J
)
el

)
.

Having in mind the definition (2.2) of the tensor F and the properties (2.3),
we obtain the following equation for the square norm of ∇J

(2.8) ‖∇J‖2 = gijgklgpqFikpFjlq,

where Fikp = F (ei, ek, ep).
An almost complex manifold with Norden metric satisfying the condition

‖∇J‖2 = 0 is called isotropic Kähler manifold with Norden metric [9]. It is
clear, if a manifold belongs to the class W0, then it is isotropic Kählerian, but
the inverse statement is not always true.
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3. A Lie group as a 4n-dimensional W3-manifold

Let V be a 4n-dimensional vector space and let us consider the struc-
ture of the Lie algebra g defined by the brackets [Ei, Ej ] = Ck

ijEk, where
{E1, E2, . . . , E4n} is a basis of V and Ck

ij ∈ R.
Let G be the associated connected Lie group and {X1, X2, . . . , X4n} be a

global basis of left invariant vector fields. Then the Jacobi identity holds:

(3.1) S
Xi,Xj ,Xk

[
[Xi, Xj ], Xk

]
= 0.

Next we define an almost complex structure J by the conditions

(3.2)
JX4α−3 = X4α−1, JX4α−2 = X4α,

JX4α−1 = −X4α−3, JX4α = −X4α−2,

where α ∈ {1, 2, . . . , n}.
Let us consider the left invariant metric g defined in the following way

g(X4α−3, X4α−3) = g(X4α−2, X4α−2) = −g(X4α−1, X4α−1)

= −g(X4α, X4α) = 1,

g(Xi, Xj) = 0 for i 6= j.

(3.3)

The introduced metric is a Norden metric because of (3.2).
In this way, the induced 4n-dimensional manifold (G, J, g) is an almost com-

plex manifold with Norden metric, in short almost Norden manifold.
From this point on, until the end of this paper, we shall consider almost

Norden manifolds (G, J, g) with Killing metric g. This means that g satisfies
the following condition for arbitrary X, Y, Z ∈ g

g ([X,Y ], Z) + g ([X,Z], Y ) = 0.

In [7] is shown that each almost Norden manifold with Killing metric is a
locally symmetric W3-manifold. Moreover, the following formulae are valid:

(3.4) ∇XiXj =
1
2
[Xi, Xj ],

(3.5) F (Xi, Xj , Xk) =
1
2

{
g
(
[Xi, JXj ], Xk

)− g
(
[Xi, Xj ], JXk

)}
,

(3.6) R(Xi, Xj , Xk, Xl) = −1
4
g
(
[Xi, Xj ], [Xk, Xl]

)
,

(3.7) [Xi, Xj ]⊥ span{Xi, Xj},
where i, j, k, l ∈ {1, 2, . . . , 4n}.
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Since g is a Killing metric, the structural constants Ck
ij are specialized so

that the commutators have the following decompositions:

(3.8)

[X4α−3, X4α−1] = λ4α−2X4α−2 + λ4αX4α,

[X4α−2, X4α] = λ4α−3X4α−3 + λ4α−1X4α−1,

[X4α−2, X4α−1] = −λ4α−2X4α−3 − λ4α−1X4α,

[X4α−1, X4α] = −λ4αX4α−3 + λ4α−1X4α−2,

[X4α, X4α−3] = λ4α−3X4α−2 + λ4αX4α−1,

[X4α−2, X4α−3] = −λ4α−2X4α−1 + λ4α−3X4α,

where λ4α−i ∈ R (i = 1, 2, 3, 4;α = 1, 2, . . . , n). The other commutators are
zero.

By direct verification we prove that the commutators from (3.8) satisfy the
Jacobi identity (3.1). The Lie groups G thus obtained are a family which is
characterized by 4n real parameters λ4α−i.

Vice versa, let the condition (3.8) is valid for an almost Norden manifold
(G, J, g) with a structure J and a metric g determined by (3.2) and (3.3), re-
spectively. Then we verify directly that g is a Killing metric, i.e. (G, J, g) is
locally symmetric W3-manifold.

Therefore we establish the truthfulness of the following theorem.

Theorem 3.1. Let (G, J, g) be a 4n-dimensional almost Norden manifold,
where G is a connected Lie group with corresponding Lie algebra g determined
by the global basis of left invariant vector fields {X1, X2, . . . , X4n}; J is an al-
most complex structure defined by (3.2) and g is a Norden metric determined
by (3.3). Then (G, J, g) is a W3-manifold with Killing metric g if and only if G
belongs to the 4n-parametric family of Lie groups determined by the conditions
(3.8).

4. Geometric characteristics of the constructed manifold

Let (G, J, g) be the 4n-dimensional quasi-Kähler manifold with Norden met-
ric introduced in the previous section. Let us introduce the following index
denotations: 1̄ = 4α − 3, 2̄ = 4α − 2, 3̄ = 4α − 1, 4̄ = 4α for any fixed
α ∈ {1, 2, . . . , n}.

Having in mind (3.5), (3.2), (3.3) and (3.8), we obtain immediately the
nonzero components of the tensor F as follows:

(4.1)

−F1̄2̄2̄ = −F1̄4̄4̄ = 2F2̄1̄2̄ = 2F2̄3̄4̄ = 2F4̄1̄4̄ = −2F4̄2̄3̄ = λ1̄,

2F1̄1̄2̄ = 2F1̄3̄4̄ = −2F2̄1̄1̄ = −2F2̄3̄3̄ = −2F3̄1̄4̄ = 2F3̄2̄3̄ = λ2̄,

2F2̄1̄4̄ = −2F2̄2̄3̄ = F3̄2̄2̄ = F3̄4̄4̄ = −2F4̄1̄2̄ = −2F4̄3̄4̄ = λ3̄,

−2F1̄1̄4̄ = 2F1̄2̄3̄ = −2F3̄1̄2̄ = −2F3̄3̄4̄ = F4̄1̄1̄ = F4̄3̄3̄ = λ4̄.
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The other nonzero components are obtained from the property Fīj̄k̄ = Fīk̄j̄ .
Let N be the Nijenhuis tensor of the almost complex structure J on G, i.e.

N(X, Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ], X, Y ∈ g.

Having in mind (3.8) and (3.2) we obtain the nonzero components Nīj̄ =
N(Xī, Xj̄) as follows

(4.2)
N1̄2̄ = −N3̄4̄ = 2 (λ4̄X1̄ − λ3̄X2̄ + λ2̄X3̄ − λ1̄X4̄) ,

N1̄4̄ = −N2̄3̄ = 2 (λ2̄X1̄ − λ1̄X2̄ − λ4̄X3̄ + λ3̄X4̄) .

The other nonzero components are obtained from the property Nīj̄ = −Nj̄ī.
Hence its square norm ‖N‖2 = gikgksg(Nij , Nks) for i, j, k, s ∈ {1, 2, . . . , 4n}
has the form

(4.3) ‖N‖2 = −32
n∑

α=1

(
λ2

4α−3 + λ2
4α−2 − λ2

4α−1 − λ2
4α

)
,

where the inverse matrix of g has the form

(4.4)
(
gij

)
=




Ẽ4 0 . . . 0
0 Ẽ4 . . . 0

. . . . . . . . . . . .

0 0 0 Ẽ4


 , Ẽ4 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




According to (3.2), (3.3), (3.8) and (4.4), from (2.8) we obtain the square
norm of ∇J as

(4.5) ‖∇J‖2 = 4
n∑

α=1

(
λ2

4α−3 + λ2
4α−2 − λ2

4α−1 − λ2
4α

)
.

From (3.6) and (3.8) we get the nonzero components of R as follows

(4.6)

R1̄2̄2̄1̄ = − 1
4

(
λ2

1̄ + λ2
2̄

)
, R1̄3̄3̄1̄ = 1

4

(
λ2

2̄ − λ2
4̄

)
,

R1̄4̄4̄1̄ = − 1
4

(
λ2

1̄ − λ2
4̄

)
, R2̄3̄3̄2̄ = 1

4

(
λ2

2̄ − λ2
3̄

)
,

R2̄4̄4̄2̄ = 1
4

(
λ2

1̄ − λ2
3̄

)
, R3̄4̄4̄3̄ = 1

4

(
λ2

3̄ + λ2
4̄

)
,

R1̄3̄4̄1̄ = R2̄3̄4̄2̄ = − 1
4λ1̄λ2̄, R2̄1̄3̄2̄ = −R4̄1̄3̄4̄ = 1

4λ1̄λ3̄,

R1̄2̄3̄1̄ = −R4̄2̄3̄4̄ = 1
4λ1̄λ4̄, R2̄1̄4̄2̄ = −R3̄1̄4̄3̄ = 1

4λ2̄λ3̄,

R1̄2̄4̄1̄ = −R3̄2̄4̄3̄ = 1
4λ2̄λ4̄, R3̄1̄2̄3̄ = R4̄1̄2̄4̄ = 1

4λ3̄λ4̄.

The other nonzero components of R are obtained from the properties Rīj̄k̄s̄ =
Rk̄s̄̄ij̄ and Rīj̄k̄s̄ = −Rj̄īk̄s̄ = −Rīj̄s̄k̄.
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Having in mind (2.4), (4.4) and (4.6), we obtain the components ρīj̄ =
ρ(Xī, Xj̄) of the Ricci tensor ρ and the scalar curvature τ as follows:

(4.7)

ρ1̄1̄ = − 1
2

(
λ2

1̄ + λ2
2̄ − λ2

4̄

)
, ρ2̄2̄ = − 1

2

(
λ2

1̄ + λ2
2̄ − λ2

3̄

)
,

ρ3̄3̄ = 1
2

(
λ2

2̄ − λ2
3̄ − λ2

4̄

)
, ρ4̄4̄ = 1

2

(
λ2

1̄ − λ2
3̄ − λ2

4̄

)
,

ρ1̄2̄ = ρ2̄1̄ = − 1
2λ3̄λ4̄, ρ1̄3̄ = ρ3̄1̄ = 1

2λ1̄λ3̄,

ρ1̄4̄ = ρ4̄1̄ = 1
2λ2̄λ3̄, ρ2̄3̄ = ρ3̄2̄ = 1

2λ1̄λ4̄,

ρ2̄4̄ = ρ4̄2̄ = 1
2λ2̄λ4̄, ρ3̄4̄ = ρ4̄3̄ = − 1

2λ1̄λ2̄;

(4.8) τ = −3
2

n∑
α=1

(
λ2

4α−3 + λ2
4α−2 − λ2

4α−1 − λ2
4α

)
.

Taking into account (3.3), (4.6), (4.7), (4.8) and (2.5) for m = 4n, we estab-
lish that the Weyl tensor vanishes. Then (G, J, g) is a conformally flat manifold.

For the sectional curvatures kīj̄ = k(αīj̄) of the basic 2-planes ααīj̄
=

{Xī, Xj̄}, according to (2.6), (3.3) and (4.6), we have:

(4.9)

k1̄3̄ = − 1
4

(
λ2

2̄ − λ2
4̄

)
, k2̄4̄ = − 1

4

(
λ2

1̄ − λ2
3̄

)
,

k1̄2̄ = − 1
4

(
λ2

1̄ + λ2
2̄

)
, k1̄4̄ = − 1

4

(
λ2

1̄ − λ2
4̄

)
,

k2̄3̄ = − 1
4

(
λ2

2̄ − λ2
3̄

)
, k3̄4̄ = 1

4

(
λ2

3̄ + λ2
4̄

)
.

The obtained geometric characteristics of the considered manifold we gener-
alize in the following theorem.

Theorem 4.1. Let (G, J, g) be a 4n-dimensional almost Norden manifold,
where G is a connected Lie group with corresponding Lie algebra g determined
by the global basis of left invariant vector fields {X1, X2, . . . , X4n}; J is an al-
most complex structure defined by (3.2) and g is a Norden metric determined
by (3.3). Then

(i) (G, J, g) is a locally symmetric conformally flat W3-manifold with Killing
metric g;

(ii) The nonzero components of the basic tensor F , the Nijenhuis tensor N ,
the curvature tensor R and the Ricci tensor ρ are (4.1), (4.2), (4.6) and
(4.7), respectively;

(iii) The square norms of the Nijenhuis tensor N and ∇J are (4.3) and (4.5),
respectively;

(iv) The scalar curvature τ and the sectional curvatures kīj̄ of the basic 2-
planes are (4.8) and (4.9), respectively.

The last theorem implies immediately the following corollary.
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Corollary 4.2. Let (G, J, g) be a 4n-dimensional almost Norden manifold,
where G is a connected Lie group with corresponding Lie algebra g determined
by the global basis of left invariant vector fields {X1, X2, . . . , X4n}; J is an
almost complex structure defined by (3.2) and g is a Norden metric determined
by (3.3). Then the following propositions are equivalent:

(i) (G, J, g) is an isotropic Kähler manifold;

(ii) (G, J, g) is a scalar flat manifold;

(iii) The Nijenhuis tensor is isotropic;

(iv) The condition
∑n

α=1

(
λ2

4α−3 + λ2
4α−2 − λ2

4α−1 − λ2
4α

)
= 0 holds.

The condition (iv) of the last theorem means that the set of vectors with the
coordinates (λ1, λ2, . . . , λ4n) at an arbitrary point p ∈ G describes the isotropic
cone in TpG with respect to the Norden metric g.

Let us remark that the 2-planes α1̄3̄ and α2̄4̄ are holomorphic 2-planes and
the 2-planes α1̄2̄, α1̄4̄, α2̄3̄, α3̄4̄ are totally real 2-planes. Taking into account
(2.7), (3.3) and (4.6), we obtain that the holomorphic bisectional curvature of
the unique pair of basis holomorphic 2-planes {α1̄3̄, α2̄4̄} vanishes. Moreover,
the equalities (4.9) imply the following

Theorem 4.3. Let (G, J, g) be a 4n-dimensional almost Norden manifold,
where G is a connected Lie group with corresponding Lie algebra g determined
by the global basis of left invariant vector fields {X1, X2, . . . , X4n}; J is an al-
most complex structure defined by (3.2) and g is a Norden metric determined
by (3.3). Then

(i) (G, J, g) is of constant holomorphic sectional curvatures iff

λ2
1̄ + λ2

4̄ = λ2
2̄ + λ2

3̄;

(ii) (G, J, g) does not admit constant totally real sectional curvatures.
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