# THE POLAR MOMENT OF INERTIA OF THE ENVELOPING CURVE 

M. Düldül ${ }^{11}$, S. Yüce ${ }^{22}$, N. Kuruoğlu ${ }^{3}$


#### Abstract

The polar moment of inertia of a closed orbit curve of a point under one-parameter closed planar motions was studied by H. R. Müller, [1]. We study the polar moment of inertia of the enveloping curve of a line under one-parameter closed homothetic motions of planar kinematics.


AMS Mathematics Subject Classification (2000): 53A17, 53A04
Key words and phrases: homothetic motion, polar moment of inertia, enveloping curve

## 1. Introduction

Let $E$ and $E^{\prime}$ be moving and fixed Euclidean planes and $\left\{O ; \mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}\right\}$ and $\left\{O^{\prime} ; \mathbf{e}_{\mathbf{1}}^{\prime}, \mathbf{e}_{\mathbf{2}}^{\prime}\right\}$ be their orthonormal frames, respectively; $\varphi$ be the rotation angle between the vectors $\mathbf{e}_{\mathbf{1}}$ and $\mathbf{e}_{\mathbf{1}}^{\prime}$. If the homothetic scale $h, u_{1}, u_{2}$ and $\varphi$ are continuously differentiable functions of a real parameter $t$, then a one-parameter planar homothetic motion of $E$ with respect to $E^{\prime}$ is defined (such a motion will be denoted by $H_{1}$ ) and represented in vector notation by

$$
\begin{equation*}
\mathbf{x}^{\prime}=h \mathbf{x}-\mathbf{u} \tag{1}
\end{equation*}
$$

where $\mathbf{O O}^{\prime}=\mathbf{u}=u_{1} \mathbf{e}_{\mathbf{1}}+u_{2} \mathbf{e}_{\mathbf{2}}, \mathbf{x}$ and $\mathbf{x}^{\prime}$ are the position vectors of a point $X \in E$ with respect to the moving and fixed frames, respectively.

The motion $H_{1}$ is called closed if there exists $T>0$ such that

$$
h(t+T)=h(t), \quad \varphi(t+T)=\varphi(t)+2 \pi \nu, \quad u_{i}(t+T)=u_{i}(t), \quad i=1,2
$$

for all $t$. The smallest number $T$ with this property is called the period of the closed motion, the integer $\nu$ is called the rotation number of the motion.

During $H_{1}$, the moving and fixed polodes are the curves obtained as locus of momentarily fixed points (centers of infinitesimal homotheties) in both, moving and fixed plane, respectively. Thus, for the pole point $P=\left(p_{1}, p_{2}\right) \in E$ we have

$$
\begin{equation*}
\left.\dot{u}_{1}=p_{1} \dot{h}-p_{2} h \dot{\varphi}+u_{2} \dot{\varphi}, \quad \dot{u}_{2}=p_{2} \dot{h}+p_{1} h \dot{\varphi}-u_{1} \dot{\varphi}, \quad 2\right] . \tag{2}
\end{equation*}
$$

[^0]The Steiner point $S=\left(s_{1}, s_{2}\right)$, which is the center of gravity of the moving pole curve, is given by

$$
\begin{equation*}
s_{i}=\frac{\oint h^{2} p_{i} d \varphi}{\oint h^{2} d \varphi}=\frac{\oint h^{2} p_{i} d \varphi}{2 h^{2}\left(t_{0}\right) \pi \nu}, \quad \text { for some } t_{0} \in[0, T], \quad[2] . \tag{3}
\end{equation*}
$$

A point $X$ traces a closed curve $k_{X}$ in $E^{\prime}$ during the closed $H_{1}$. The polar moment of inertia (PMI) of the curve $k_{X}$ covered with the mass elements $d \varphi$ is

$$
\begin{equation*}
T_{X}=\oint\left(\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right) d \varphi \tag{4}
\end{equation*}
$$

where $x^{\prime}$ and $y^{\prime}$ are the coordinates of $X=(x, y) \in E$ with respect to the fixed coordinate system.

Let a line $g$ be given by

$$
\begin{equation*}
g: x \cos \theta+y \sin \theta=k, \quad k, \theta=\mathrm{constant} \tag{5}
\end{equation*}
$$

in the moving coordinate system, where $k$ is the distance of the origin point $O$ to the line $g$ (Fig. 1).


Fig. 1
The equation of the line $g$ with respect to the fixed coordinate system is

$$
x^{\prime} \cos \theta^{\prime}+y^{\prime} \sin \theta^{\prime}=k^{\prime}, \quad \theta^{\prime}=\theta+\varphi, \quad d \theta^{\prime}=d \varphi
$$

where

$$
\begin{equation*}
k^{\prime}\left(\theta^{\prime}\right)=h k-u_{1} \cos \theta-u_{2} \sin \theta \tag{6}
\end{equation*}
$$

Then, the PMI of the enveloping curve of $g$ with respect to the origin point $O^{\prime}$ is

$$
\begin{equation*}
T_{g}=\oint\left(\left(k^{\prime}\right)^{2}+\left(\dot{k}^{\prime}\right)^{2}\right) d \theta^{\prime}, \quad \text { "." means } \frac{d}{d \theta^{\prime}} . \tag{7}
\end{equation*}
$$

## 2. The PMI of the enveloping curve

Let us consider two non-parallel fixed lines (through $O$ )

$$
\left\{\begin{array}{l}
g_{1}: x \cos \theta_{1}+y \sin \theta_{1}=0  \tag{8}\\
g_{2}: x \cos \theta_{2}+y \sin \theta_{2}=0
\end{array}\right.
$$

which have the same closed enveloping curve under closed $H_{1}$ in $E^{\prime}$ ( $g_{2}$ can be taken as a second tangent to the envelope of $g_{1}$ ). Then, in the fixed coordinate system $\left\{O^{\prime} ; \mathbf{e}_{\mathbf{1}}^{\prime}, \mathbf{e}_{\mathbf{2}}^{\prime}\right\}$ we have

$$
\left\{\begin{array}{lll}
k_{1}^{\prime}\left(\theta_{1}^{\prime}\right)=-u_{1} \cos \theta_{1}-u_{2} \sin \theta_{1}, & \theta_{1}^{\prime}=\theta_{1}+\varphi, & d \theta_{1}^{\prime}=d \varphi  \tag{9}\\
k_{2}^{\prime}\left(\theta_{2}^{\prime}\right)=-u_{1} \cos \theta_{2}-u_{2} \sin \theta_{2}, & \theta_{2}^{\prime}=\theta_{2}+\varphi, & d \theta_{2}^{\prime}=d \varphi
\end{array}\right.
$$

In this case, since $g_{1}$ and $g_{2}$ have the same closed enveloping curve, we obtain

$$
\begin{align*}
T_{g_{1}}= & \cos ^{2} \theta_{1} \oint\left(u_{1}^{2}+\dot{u}_{1}^{2}\right) d \theta_{1}^{\prime}+\sin ^{2} \theta_{1} \oint\left(u_{2}^{2}+\dot{u}_{2}^{2}\right) d \theta_{1}^{\prime}+ \\
& 2 \sin \theta_{1} \cos \theta_{1} \oint\left(u_{1} u_{2}+\dot{u}_{1} \dot{u}_{2}\right) d \theta_{1}^{\prime} \\
=T_{g_{2}}= & \cos ^{2} \theta_{2} \oint\left(u_{1}^{2}+\dot{u}_{1}^{2}\right) d \theta_{2}^{\prime}+\sin ^{2} \theta_{2} \oint\left(u_{2}^{2}+\dot{u}_{2}^{2}\right) d \theta_{2}^{\prime}+ \\
& 2 \sin \theta_{2} \cos \theta_{2} \oint\left(u_{1} u_{2}+\dot{u}_{1} \dot{u}_{2}\right) d \theta_{2}^{\prime} . \tag{10}
\end{align*}
$$

We now choose the moving coordinate frame such that $\mathbf{e}_{\mathbf{1}}$ is a bisector of the lines $g_{1}$ and $g_{2}$. In this case, we have $\theta_{1}=-\theta_{2}$. If we substitute $\theta_{1}=-\theta_{2}$ into (10), we find

$$
\begin{equation*}
\oint\left(u_{1} u_{2}+\dot{u}_{1} \dot{u}_{2}\right) d \varphi=0 \tag{11}
\end{equation*}
$$

Now, we want to express the PMI of the enveloping curve of an arbitrary fixed line $g$ (given by (5) and $k \neq 0$ ). Let $g_{1}$ denote the line parallel to $g$ through $O$. Hence, if we substitute (6) into (7) and use (11), we get

$$
\begin{aligned}
T_{g}= & T_{g_{1}}+k^{2} \oint\left(h^{2}+\dot{h}^{2}\right) d \theta^{\prime}-2 k \cos \theta \oint\left(h u_{1}+\dot{h} \dot{u}_{1}\right) d \theta^{\prime} \\
& -2 k \sin \theta \oint\left(h u_{2}+\dot{h} \dot{u}_{2}\right) d \theta^{\prime}
\end{aligned}
$$

If we take $u_{1} \equiv u_{2} \equiv 0$, we obtain the closed homothetic motion $\bar{H}_{1}$ with the constant origin $O$. Then, the PMI of the enveloping curve of $g$ under $\bar{H}_{1}$ is

$$
\bar{T}_{g}=k^{2} \oint\left(h^{2}+\dot{h}^{2}\right) d \theta^{\prime}
$$

Thus, if we take $\varphi$ as the parameter of the motion and use (2) and (3), we get

$$
\begin{equation*}
T_{g}=T_{g_{1}}+\bar{T}_{g}-4 h^{2}\left(t_{0}\right) \pi \nu k\left(s_{1} \cos \theta+s_{2} \sin \theta\right)-2 k(A \cos \theta+B \sin \theta) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\oint\left(p_{2} h \dot{h}-h \dot{u}_{2}+\dot{h} \dot{u}_{1}\right) d \varphi, B=\oint\left(-p_{1} h \dot{h}+h \dot{u}_{1}+\dot{h} \dot{u}_{2}\right) d \varphi \tag{13}
\end{equation*}
$$

It is easy to see that (12) can be written as

$$
T_{g}=T_{g_{1}}+\bar{T}_{g}-4 h^{2}\left(t_{0}\right) \pi \nu k(d+k)-2 k(D+k)
$$

where $d$ and $D$ are the distances of the points $\left(s_{1}, s_{2}\right)$ and $(A, B)$ from the line $g$, respectively.

So, we may give the following theorem:
Theorem: Let $g$ be an arbitrary fixed line on the moving plane and $g_{1}$ be the line through $O$ parallel to $g$. Under a one-parameter closed homothetic motion, the PMI of the enveloping curve of $g$ with respect to $O^{\prime}$ is given by (12). It depends on

- the PMI of the enveloping curve of $g_{1}$,
- the PMI of the enveloping curve of $g$ under the homothetic motion obtained by omitting the translational components,
- the distance of the motion's Steiner point $\left(s_{1}, s_{2}\right)$ to the line $g$,
- the distance of $g$ to a certain point $(A, B)$ (given by the integral formula (13)) that depends only on the one-parameter homothetic motion.

Acknowledgment: The authors would like to thank referees whose suggestions have significantly improved the readability of this paper.

## References

[1] Müller, H. R., Über Trägheitsmomente bei Steinerscher Massenbelegung. Abh. Braunschw. Wiss. Ges. 29 (1978), 115-119.
[2] Tutar, A., Kuruoğlu, N., The Steiner formula and the Holditch theorem for the homothetic motions on the planar kinematics. Mech. Mach. Theory 34 (1) (1999), 1-6.


[^0]:    ${ }^{1}$ Sinop University, Faculty of Arts and Science, Department of Mathematics, 57000, Sinop, Turkey, e-mail: mduldul@omu.edu.tr
    ${ }^{2}$ Yıldız Technical University, Faculty of Arts and Science, Department of Mathematics, Esenler 34210, İstanbul, Turkey, e-mail: sayuce@yildiz.edu.tr
    ${ }^{3}$ Bahçeşehir University, Faculty of Arts and Science, Department of Mathematics and Computer Sciences, Beşiktaş 34100, İstanbul, Turkey, e-mail: kuruoglu@bahcesehir.edu.tr

