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DIVERGENT LEGENDRE-SOBOLEV POLYNOMIAL
SERIES

Bujar Xh. Fejzullahu®

Abstract. Let be introduced the Sobolev-type inner product
1 1
(f,9)= 5/ f(@)g(a)dz + M[f'(1)g' (1) + f'(-1)g'(-1)],
-1

where M > 0. In this paper we will prove that for 1 < p < % there
are functions f € LP([—1,1]) whose Fourier expansion in terms of the
orthonormal polynomials with respect to the above Sobolev inner product
are divergent almost everywhere on [—1, 1]. We also show that, for some
values of 4, there are functions whose Legendre-Sobolev expansions have

almost everywhere divergent Cesaro means of order 4.
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1. Introduction

For f and g in L?([—1,1]), such that there exists the first derivative in 1 and
—1, we can introduce the Sobolev-type inner product

() ()= [ F@s@de+ MLF 0 (1) + 1D/ (1)

where M > 0. We denote by B,, the orthonormal polynomials with respect to
the inner product (1.1) (see [5]). We call them Legendre-Sobolev polynomials.
For M = 0 we have classical Legendre polynomials.

For every function f such that (f, Bn) exists for n = 0,1,... we introduce
the Nth partial sum of the associated Fourier-Sobolev series

N

(1.2) Sn(f) = 3 enlf)Bala),

n=0

where

ca(f) = (f, Bu).
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The study of the convergence of standard Fourier-Legendre expansion has
been discussed by many authors. We refer to ( [I3], [1I], [10]) and the references
therein. It was proved that p € (4/3,4) if and only if

SN fllzr =117 < Clfllze =11 VN >0, Vf e LP([-1,1]).

In 1972 Pollard [14] raised the following question: Is there an f € L*/3([—1,1])
whose Fourier-Legendre expansion diverges almost everywhere? This problem
was solved by Meaney [8]. Furthermore, he proved that this is a special case of
the divergence result for series of Jacobi polynomials.

In this paper we will prove that for 1 < p < % there are functions f €
LP([-1,1]) whose expansions in terms of the polynomials associated to the
Sobolev inner product

/ f@)g(@)dz + M{f'(1)g' (1) + f(~1)g' (~1)],

where M > 0, are divergent almost everywhere on [—1,1].
Notice that the behaviour of the Fourier expansion in terms of the polyno-
mials with respect to the Sobolev inner product

K N

1
:/lf(x dx—i—ZZN;”f (ar)g"?(ar), Ng;>0

k=1 1i=0

has been discussed in ([6],[15]) and for ¢ = 0 in [4]. Also we refer to [12],
where some interesting results about Fourier expansions with respect to Sobolev
orthogonal polynomials are obtained.

2. Legendre-Sobolev polynomials

Some basic properties of B, [5] (see also [1], [2]), we will needed in the
sequel are given in below:

(2.1) [Ba(1)] ~ /2
(2.2) (B ()] ~ "
(2.3) Bu(~2) = (~1)"Bu(w)

OH~1?) ife/n<6<7/2,

(24) | B (cost)| = {O(nlﬂ) if0<6<c/n

where n > 1 and ¢ is a positive constant.
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Asymptotic behaviour of the ultraspherical polynomials {PT(LO‘)};’f:O is given
in [I6] (8.21.10)]

1 0 —a—1/2
pla) — | sinzcos= —3/2
Y (cosh) Trn (sm20032) c08(kab + Ya) + O(n™7%),

where ko =n+a+1/2, 74 = —(a+1/2)7/2 and 0 € [e, 7 — €.
Combining this with [5, Lemma 1] we obtain the strong inner asymptotics
of By, for 0 € [e,m —¢] and € > 0

—1/2
(2.5) B, (cost) = u, (singcos2> cos(kob + 7o) + O(n™1),

where kg =n+1/2, v = —7/4 and lim u,, = ﬁ

For every function f such that (f,B,) exists for n = 0,1,... the Fourier-
Sobolev coefficients of the series (1.2) can be written as

(26)  ealf) = (/. Ba) = () + MIF) (Ba) () + £(-1) (B.) (1))
where

& (f) = %[1f(x)én(x)dx.

Now we will estimate the Lebesgue norm

1
1Bally = [ 1Bo(a)lods

where 1 < ¢ < oo. For M = 0 the calculation of this norm appears in [I6, p.
391. Exercise 91] (see also [1]).

Theorem 2.1. Let M > 0. Then

1 c if g <4,
/ | B (z)|%dx ~ < logn  if g =4,
0 nd/2=2  if g > 4.

Proof. From (2.4), for ¢ # 4, we have

1 /2 .
/ | B, (x)|%dx N/ 0 | By (cost)|1do
0 0

nt /2
= 0(1)/ 0 n2d0 + 0(1)/ 0 6924
0 n

—1

= 0(n"*7%) + O(1),
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and for ¢ = 4 we have

/0 | B, ()|%dx = O(log n).

Now we will prove the lower bounds for integrals involving Legendre-Sobolev
polynomials. Taking into account the continuity of the polynomials Bn(cos 0),
there exists & > 0 such that 2|B,(cosf)| > |B,(1)| for all § with 0 < 6 <
0. Hence, from (2.1) and [16, Theorem 7.32.2], for 0 < § < ¢ we have

2| B, (cosh)| > en/? > ¢1|pn(cosh)|,

where p,, are Legendre orthonormal polynomials (see [I6, Chapter IV]).
On the other hand, from (2.5) and [16], Theorem 8.21.8], we have

By (cosh) = capp(cosh) + O(n™1),

where 0 € [0, 7/2]. Therefore, according to the Lebesgue norms of Legendre
polynomials (see [I6l p. 391. Exercise 91], [7]), we have

/2 /2 Cq if q <4,
/ 0 | By (cosh)|?df > 03/ 0 |pn(cosd)|%dd ~ < logn  if ¢ =4,
0 0 nd/?=2 if ¢ > 4.

The proof of Theorem 2.1 is complete. a

3. Divergent Legendre-Sobolev polynomial series

From Egorov’s theorem follows that if the series (1.2) converges on a set of
positive measure in [—1, 1] then there is a subset of positive measure E on which

‘Cn(f)Bn(CU” — 0, as n — oo,
uniformly for € E. Hence, from (2.5), we have
len(f) (cos(kof +70) + O(n™1)) [ =0, asn — oo,

uniformly for cosf € E. Using the Cantor-Lebesgue Theorem, as described in
[9, Subsection 1.5](see also [I7, p.316]), we obtain

(3.1) len(f)] — 0,  asn— oo.

From Theorem 2.1, for 1 < ¢ < oo, we have

1 1/q 1/4 e
- - (log m) if p=
B2 B> ([ Buolas) {nlm/q

[SMIESNIVI N

if p<

where p is a conjugate of g i.e. 1/p+1/q = 1.
For ¢ = oo we have

(3.3) | Bnloo = ent/?.

Now we are in position to prove our first main result.
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Theorem 3.1. There is an f € LP([-1,1]), 1 < p < 4/3, such that there
exists the first derivative in 1, supported in [0, 1], whose Legendre-Sobolev series
diverges almost everywhere on [—1,1].

Proof. The uniform boundedness principles, (3.2) and (3.3) imply that there are
the functions f € L?([—1,1]), supported on [0, 1], for which the linear functional
. (f) satisfies

n

e (f) B
W — OQ, as n 0.
Hence, from (2.2), (2.3) and (2.6), we obtain
cn(f) _
(log n)1/% 00, as n — oo.

Since this result is contrary to (3.1) it follows that for this f the Fourier-Sobolev
series diverges almost everywhere on [—1,1]. O

4. Divergent Cesaro means of Legendre-Sobolev expan-
sions

The Cesaro means of order ¢ of the expansion (1.2) is defined by

N 45
AN—n
)
AN

cn(f)Bn(z),

o f(x) =
n=0

where A9 = (k']gé). In [I7, Theorem 3.1.22] (see also [9, Lemma 1.1]) is proved

Lemma 4.1. Suppose that J\}im ol f(z) exists for some x € [~1,1] and § >

—1. Then
len (f)Bn ()| < O(NY), YN > 1.

From Egorov’s theorem and Lemma 4.1 it follows that if the series (1.2) is Cesaro
summable of order § on a set of positive measure in [—1, 1] then there is a subset
E of positive measure where

|n_5cn(f)Bn(x)| <A
uniformly for € E. Hence, from (2.5), we have
n e, (f) (cos(kO + ) + O(n_l)) |< A

uniformly for cosf € E. Using again the Cantor-Lebesgue Theorem we obtain

(4.1) \C’;(f)\ < A, ¥ > 1.
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Theorem 4.1. Let p and § be real numbers such that

4
1<p<—;
sp 3

2
0§5<7—§.
p 2

There is an f € LP([—1,1]) such that there exists the first derivative in 1,
supported in [0,1], whose Cesaro means o3 f(z) is divergent almost everywhere
on [—1,1].

Proof. Suppose that

For ¢ conjugate of p
< 5 q.
From the argument given in [9, Subsection 1.4], (3.2) and (3.3), for the
linear functional ¢, (f) = lf_ll f(@)B,(x)dz, it follows that there is an f €

2
L?([-1,1]), supported on [0, 1], such that
/
C”((Sf)—M)o7 as n — oo.
n
So, from (2.2), (2.3) and (2.6), we obtain
(/) — 00 as n — oo
4 ’ :
n

Combining the above results with (4.1) it follows that for this f, the o3 f(z)
diverges almost everywhere. |

Remark 4.1. Using formulae in [3], which relate the Riesz and Cesaro means
of order § > 0, we conclude that Theorem 4.1 also holds for the Riesz means.
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