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STRONGER ASSOCIATION RULES
FOR POSITIVE ATTRIBUTES1

Gábor Czédli2

Abstract. By a context we mean a binary table with crosses at some
entries, i.e. a relation between two sets. The elements of these sets are
called objects (= row labels) and attributes (= column labels). Each
context determines a pair of Galois closure operators. This gives rise to
formal concept analysis, cf. Ganter and Wille [6], and also to studying
strong association rules in data mining, cf. Agrawal, Imielinski and Swami
[1]; the term “association rule” being kept for the fuzzy version. There
are cases where the Galois closure is too large or, in other words, even the
strong association rules challenge decision making with too many choices.

In [3], some stronger association rules (i.e., a smaller pair of closure
operators) have been introduced. Their mathematical features and possi-
ble further applicability have been studied in [4] and [5]. While [3] makes
it clear that the new operator is useful in (pure) algebra, [4] and [5] point
out that we expect its use in applied fields only when all the attributes
are advantageous or good or useful, shortly, if the attributes are positive.

The goal of this paper is to introduce a more general pair of closure op-
erators, smaller than the Galois one, such that the corresponding stronger
association rules take into account that not all the attributes are positive.

The main result confirms that our definition gives indeed closure op-
erators. A strong emphasis is put on detailing how and why the new
stronger association rules promise future applications although no con-
crete database has been analyzed from this aspect yet.
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The history of science has several examples showing that a proper treatment,
arrangement or visualization of information can be the source of new informa-
tion. Many of these examples witness that the mathematical tool was developed
much before any application of this kind. For the classical periodic system of
chemical elements Mendeleyev resorted to the ancient “mathematical” notion of
binary tables. Formal concept analysis, cf. Wille [9] and Ganter and Wille [6],
uses an old concept that goes back to Évariste Galois.

The mathematical tool we intend to generalize in order to make it more ap-
plicable is quite recent. It was introduced and successfully used in [3]. However,
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the argument for its applicability in [4] and [5] relies on an assumption which
does not always holds. Our goal is to drop this restricting assumption. We will
explain in detail what sort of applications in information processing and deci-
sion making is kept in mind, and we strongly hope that this dream will come
true. However, developing real applications in information theory or in other
sciences will remain a task for specialists in these fields.

Although the terminology of formal concept analysis is frequently used thro-
ughout, as long as no real applications are available at hand, we cannot say that
this work has a citizenship in the realm of formal concept analysis. In what
follows, the mathematics and our motivation will be developed simultaneously.

Following Wille’s terminology, cf. [9] or [6], a triplet

(A(0), A(1), ρ)

is called a context if A(0) and A(1) are nonempty sets and ρ ⊆ A(0) × A(1) is a
binary relation.

It is often, especially in the finite case, convenient to depict our context in the
usual form: a binary table with row labels from A(0), column labels from A(1),
and a cross in the intersection of the x-th row and the y-th column iff (x, y) ∈ ρ.
We will refer to this table as the context table. For example, a context is given
by Table 1. (We should disregard the + signs at this stage.) We think of the
elements of A(0), i.e. the row labels, as objects while the elements of A(1), i.e.
the column labels, are called attributes. Then (x, y) ∈ ρ means that the object
x has the attribute y.

b1 +b2 +b3 +b4

+a1 × ×
+a2 × ×
+a3 × × ×
+a4 ×
+a5 × × ×

Table 1

For example, A(0) may consist of courses offered by a university, chemical
compounds in pharmacy, patients of a psychologist, types of cars, etc. Then the
respective A(1) may consist of certain skills or prerequisites, certain physiological
effects, certain symptoms, some technical attributes (like having an automatic
gearshift), etc. Here we think of finite A(0) and A(1) but our forthcoming
theorem will be valid for the infinite case as well.

From what follows, we fix a context (A(0), A(1), ρ) and let

ρ0 = ρ and ρ1 = ρ−1.

Unless otherwise stated, i will be an arbitrary element of {0, 1}. So whatever
we say including i without specification, it will be understood as prefixed by ∀i.
The set of all subsets of A(i) will be denoted by P (A(i)).
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As usual, a mapping D(i) : P (A(i)) → P (A(i)) is called a closure operator if
it is extensive (i.e., X ⊆ D(i)(X) for all X ∈ P (A(i))), monotone (i.e., X ⊆ Y
implies D(i)(X) ⊆ D(i)(Y )), and idempotent (i.e., D(i)(D(i)(X)) = D(i)(X) for
all X ∈ P (A(i))). If D(i) is a closure operator for i = 0, 1 then D = (D(0),D(1))
is called a pair of closure operators. If E = (E(0), E(1)) is another such pair, then
let D ≤ E mean that D(i)(X) ⊆ E(i)(X) for all i ∈ {0, 1} and all X ∈ P (A(i)).

From the perspective of applied mathematics it is worth noting that closure
operators have been playing an important role in the theory of relational data-
bases and knowledge systems for a long time, cf. e.g., Caspard and Monjardet
[2] for a survey. Nowadays most investigations of this kind belong to formal
concept analysis, cf. Ganter and Wille [6] for an extensive survey. Closure op-
erators are also important in the theory of mining association rules, which goes
back to Agrawal, Imielinski and Swami [1]; Lakhal and Stumme [7] gives a good
account on the present status of this field.

Now, associated with (A(0), A(1), ρ), we define a pair of closure operators.
For X ∈ P (A(i)) let

Xρi = {y ∈ A(1−i) : for all x ∈ X, (x, y) ∈ ρi},

and, again for X ∈ P (A(i)), define

G(i)(X) := (Xρi)ρ1−i =
⋂

y∈Xρi

({y}ρ1−i) .

Then G = (G(0), G(1)) is the well-known pair of Galois closure operators, which
plays the main role in formal concept analysis, cf. Wille [9] and Ganter and
Wille [6]. The visual meaning of

G = G(A(0), A(1), ρ)

is the following. The maximal subsets of ρ of the form U (0) × U (1) with U (i) ⊆
A(i) are called the (formal) concepts, cf. [9] or [6]. Pictorially, they are the
maximal full rectangles U (0) ×U (1) of the context table. (Full means that each
entry is a cross.) For Xi ∈ P (A(i)) take all maximal full rectangles U (0) × U (1)

such that X ⊆ U (i), then G(i)(X) is the intersection of all the U (i)’s.

Now, to develop our motivation further, we think of a (huge) context which
is typical in warehouse basket analysis. Let A(0) be the set of customers’ baskets
(i.e, the set of customers) and let A(1) be the set of items sold in the warehouse.
Data miners want to compute which items are frequently bought together. This
information, expressed by so-called “association rules”, can help the warehouse
in developing appropriate marketing strategies. For example,

{cereal, coffee} → {milk}

is an association rule (in many real warehouses), and this association rule says
that, with a given probability p, costumers buying cereal and coffee also buy
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milk. When the probability is 1 then we speak about strong association rules but
this is only a technical reformulation of the Galois closure. Indeed, for Y ⊆ A(1)

and y ∈ A(1), the strong association rule Y → y is defined by y ∈ G(1)(Y ).
This example shows how we associate from a set of attributes to another

attribute, but it is equally frequent to associate from a set X ⊆ A(0) of objects
to another object x ∈ A(0); then the strong association rule X → x means
x ∈ G(0)(X), i.e. that x has all the common attributes of the members in X.
It is needless to say that this kind of associations is typical for human thinking
and it is crucial in decision making. However, modeling human thinking in the
above way is not perfect, for there are positive objects and attributes, that we
like for some reason. (The real scale could be even larger, including more or
less positive, neutral, or even negative, etc. attributes but now we restrict our
considerations to “positive” and the “not necessarily positive”.)

By a context with positivity domains, or p-context for short, we mean a 5-
tuple (A(0), A(1), B(0), B(1), ρ) where (A(0), A(1), ρ) is a context, B(0) ⊆ A(0) and
B(1) ⊆ A(1). The elements of B(0) resp. B(1) are called positive objects resp.
positive attributes; however, we do not call the rest of objects and attributes
as negative ones. For example, a p-context is given by Table 1, where all the
attributes but b1 and all the objects are positive. (Notice that, in a sense detailed
in [5] but not relevant here, this is the smallest context.) Associated with
(A(0), A(1), B(0), B(1), ρ) we intend to define a new pair C of closure operators
such that C ≤ G, i.e. C should determine stronger association rules than G,
and C should take the positivity domains into account somehow. We could
obtain C(0)(X) via omitting certain objects from G(0)(X) that have too few
positive attributes but this hint is, of course, far from being sufficient, for there
is a criterion: we want that C should be uniquely defined for each p-context
and should properly depend on every component of (A(0), A(1), B(0), B(1), ρ).
Further motivations will be supplied at the end of the paper.

To accomplish our goal we define first a sequence Ci, i = 0, 1, 2, . . . , of
pairs of closure operators associated with (A(0), A(1), B(0), B(1), ρ) such that
G = C0 ≥ C1 ≥ C2 ≥ C3 ≥ · · · , and C will be the meet of this sequence. (Notice
that for any i ∈ N, Ci would also be appropriate for our purposes; however, we
feel that C is better, for it gives stronger association rules.) For X ∈ P (A(i)) let

Xψi := {Y ∈ P (B(1−i)) : there is a surjection ϕ : X → Y with ϕ ⊆ ρi}.

Pictorially, the elements of Xψi are easy to imagine. Let us call a cross in
the table column-positive if its column is positive (i.e., belongs to B(1)). Row-
positive crosses are defined dually. Let i = 0 for example, i.e., let X ⊆ A(0) be a
set of rows. Select a column-positive cross in each row of X, then the collection
of the columns of the selected crosses is an element of Xψ0, and each element
of Xψ0 is obtained this way. Notice that Xψ0 is empty iff there is a row in X
that does not contain any column-positive cross. For example, if X = {a1, a2}
in Table 1, then Xψ0 = {{b2, b3}}, while {a4, a5}ψ0 = ∅.
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Let C0 = G. If Cn is already defined then let

(1) C(i)
n+1(X) := C(i)

n (X) ∩
⋂

Y ∈ Xψi

⋃

y ∈ B(1−i) ∩ C(1−i)
n (Y )

{y}ρ1−i .

Although the ∩ operation in the above formula clearly gives C(i)
n+1 ≤ C(i)

n , as
requested, it is reasonable to digest formula (1) by thinking of it pictorially. For
example, let i = 0 and X ⊆ A(0), and suppose that Cn = (C(0)

n , C(1)
n ) is already

well-understood. Then a row z belongs to C(0)
n+1(X) if and only if z ∈ C(0)

n (X)
and, in addition, for each set Y ∈ Xψ0 of columns there is a positive column
y in C(1)

n (Y ) such that y intersects the row z at a cross. (Notice that Xψ0 has
already been explained pictorially, C(0)

n (X) and C(1)
n (Y ) are already well-known

by assumption, and y need not be unique and it depends on Y .)
Continuing the example X = {a1, a2} at Table 1, G(0)(X) = {a1, . . . , a4}.

Since Y = {b2, b3} ∈ Xψ0 but there is no y ∈ B(1) ∩ G(1)(Y ) = {b2, b3, b4}
with a4 ∈ {y}ρ1 (i.e., with (a4, y) ∈ ρ), formula (1) gives a4 /∈ C(0)

1 (X). After
the trivial and therefore omitted details we can easily see that C = C1 and
C(0)
1 (X) = C(0)

2 (X) = · · · = C(0)(X) = {a1, a2, a3}.
Now (1) defines the pair Cn+1 = (C(0)

n+1, C(1)
n+1) and, finally, let

C = (C(0), C(1)) := (
∞∧

n=0

C(0)
n ,

∞∧
n=0

C(1)
n ),

which means that, for all X ∈ P (A(i)),

C(i)(X) =
∞⋂

n=0

C(i)
n (X).

The main result, in fact the only purely mathematical result, of the present
paper is the following.

Theorem 1. C and Cn, n = 0, 1, . . ., are pairs of closure operators. Further,

C0 ≥ C1 ≥ C2 ≥ · · · ≥ C .

Proof. We prove the theorem via induction on n. It is well-known that C0 = G
is a pair of closure operators. Suppose that Cn is a pair of closure operators.

Let X ⊆ U ∈ P (A(i)) and let u belong to C(i)
n+1(X), i.e. to the right-hand

side of (1). Since C(i)
n (X) ⊆ C(i)

n (U) by the induction hypothesis, it suffices to
show that u belongs to the “big” intersection in

(2) C(i)
n+1(U) = C(i)

n (U) ∩
⋂

V ∈Uψi

⋃

y∈B(1−i)∩C(1−i)
n (V )

{y}ρ1−i .
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Let V ⊆ B(1−i) be an arbitrary member of Uψi by means of a surjection ϕ :
U → V with (x, xϕ) ∈ ρi for all x ∈ U . Then Y := Xϕ|X is clearly in Xψi, and
Y = Xϕ ⊆ Uϕ = V . Since C(1−i)

n (Y ) ⊆ C(1−i)
n (V ) by the induction hypothesis,

u ∈
⋃

y∈B(1−i)∩C(1−i)
n (Y )

{y}ρ1−i ⊆
⋃

y∈B(1−i)∩C(1−i)
n (V )

{y}ρ1−i.

This shows that u ∈ C(i)
n+1(U), whence C(i)

n+1 is monotone.

Now let z ∈ X ∈ P (A(i)) and let Y ∈ Xψi by means of a surjection ϕ :
X → Y with (x, xϕ) ∈ ρi for all x ∈ X. In particular for y := zϕ ∈ B(1−i) we
have (y, z) ∈ ρ1−i, i.e., z ∈ {y}ρ1−i. Since C(1−i)

n is extensive by the induction
hypothesis, y ∈ Y ⊆ C(1−i)

n (Y ) shows that this y actually occurs in the right-
hand side of (1). Therefore, from z ∈ {y}ρ1−i and z ∈ X ⊆ C(i)

n (X) we obtain
x ∈ C(i)

n+1(X), showing that C(i)
n+1 is extensive.

Now, to show that C(i)
n+1 is idempotent, let X ∈ P (A(i)), U = C(i)

n+1(X) and
v ∈ C(i)

n+1(U). We need to show that v ∈ U . Beside the induction hypothesis we
will use without further notice that Cn+1 ≤ Cn, which is evident, and C(i)

n+1 is
monotone and extensive (shown so far). The easy part is as follows:

v ∈ C(i)
n+1(U) = C(i)

n+1(C(i)
n+1(X)) ⊆ C(i)

n+1(C(i)
n (X)) ⊆ C(i)

n (C(i)
n (X)) = C(i)

n (X).

To deal with the other part of the right-hand side of (1), let Y ⊆ B(1−i) be an
arbitrary member of Xψi by means of a surjection ϕ : X → Y with (x, xϕ) ∈ ρi

for all x ∈ X. We know from (1), which determines U , that for each z ∈ U \X

we can choose an element yz ∈ B(1−i) ∩ C(1−i)
n (Y ) with z ∈ {yz}ρ1−i, i.e.

(z, yz) ∈ ρi. We define a map

µ : U → B(1−i) ∩ C(1−i)
n (Y ), z 7→

{
zϕ if z ∈ X

yz if z ∈ U \X .

Let V := Uµ ⊆ B(1−i) ∩ C(1−i)
n (Y ). Clearly, V ∈ Uψi, so V takes part in (2).

Hence
v ∈

⋃

y∈B(1−i)∩C(1−i)
n (V )

{y}ρ1−i .

So v ∈ {y}ρ1−i for a suitable y ∈ B(1−i) ∩ C(1−i)
n (V ). Using the induction

hypothesis we obtain y ∈ C(1−i)
n (V ) ⊆ C(1−i)

n (C(1−i)
n (Y )) = C(1−i)

n (Y ), and of
course y ∈ B(1−i). Since Y ∈ Xψi was arbitrary, this entails that v ∈ U =
C(i)

n+1(X). Hence C(i)
n+1 is idempotent, and so it is a closure operator.

Finally, C(i) is clearly extensive and monotone. For any n ∈ N0 and X ∈
P (A(i)),

C(i)(C(i)(X)) ⊆ C(i)(C(i)
n (X)) ⊆ C(i)

n (C(i)
n (X)) = C(i)

n (X),
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which gives C(i)(C(i)(X)) ⊆ C(i)(X). Therefore C is a pair of closure operators.
2

When (B(0), B(1)) = (A(0), A(1)) then the p-context reduces to the context
(A(0), A(1), ρ) and Theorem 1 implies Lemma 1 in [3]. Hence we can say that
(even this particular case of) our new notion has a proper application in pure
mathematics, cf. [3]. “Proper” means that C was heavily used when proving a
theorem which has nothing to do with the notion of C.

From now on we always assume that (A(0), A(1), B(0), B(1), ρ) is finite. Then
there are only finitely many pairs of operators, whence there is a smallest n with
C = Cn = Cn+1 = Cn+2 = · · · . This raises the natural question how large this
n can be. It is pointed out in [4] that n can be arbitrarily large even in the
particular case (B(0), B(1)) = (A(0), A(1)). Another question is that how often C
is different from G; [4] and [5] make it clear that C 6= G is not a rare phenomenon
even in the particular case (B(0), B(1)) = (A(0), A(1)).

We close the paper by outlining a possible application of C. First of all
let us mention that the importance of looking for the hidden regularities and
rules is not restricted only to huge databases. Indeed, the previously mentioned
Mendeleyev’s example or many concrete small contexts in Ganter and Wille [6]
show that exploring some rules in small databases may also lead to important
results. This is good, for it is not clear at the moment how one could compute
C for large databases; the fixed point method of [5] for large contexts is not
appropriate even in the particular case (B(0), B(1)) = (A(0), A(1)).

Hence the idea of applications will be explained via the small Table 1, the
smallest possible table for this purpose, but this idea is clearly valid for many
larger tables as well. Suppose the objects are something to learn, investigate
or accomplish and the attributes are appropriately chosen. In our concrete
example the objects are juggling tricks3. However, the reader need not know
anything about juggling and one can imagine many other examples where the
objects mean, say, courses offered by a university, musical compositions to learn,
mountain peaks to reach, dishes to cook, dances or languages to learn, dangers
to avoid, places to visit, books to read, etc. Suppose a person P has already
learnt (or accomplished, etc.) a1 and a2 but not the rest of the objects, and
she/he has to decide which single one of the rest she/he wants to learn (or
accomplish, etc.) next. Denoting {a1, a2} by X we can say that P has to
associate an object with X. Suppose that B(0), resp. B(1), denotes the set of
objects, resp. attributes, which P considers positive from his own aspect. For
example, in case of the attributes, “positive” can somehow mean that each of
these attributes are easy to learn, difficult to accomplish, cheap, near, useful,
etc., depending on P ’s attitude. In our concrete example about juggling all the
positive attributes mean that the trick is difficult and therefore, in other words,

3The concrete meaning of objects and that of attributes in Table 1 are available, partially
via video clips, at http://www.math.u-szeged.hu/∼czedli/jtable.html, but our argument
will be clear even without this web site. The interested reader can also resort to Polster [8]
for information on juggling.

http://www.math.u-szeged.hu/~czedli/jtable.html
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each attribute (if holds) makes the trick more attractive.
The first natural idea is to use G and associate an element G(0)(X)\X with

X. However, this does not solve the problem, for G(0)(X) = {a1, . . . , a4} whence
G(0)(X) \X has more than one element. Hence it is quite natural to consider
stronger association rules, i.e. the smaller C, and indeed, C(0)(X) \X = {a3}
has only one element, and P can choose a3. And this is a good choice for P , for
a3 enjoys more positive attributes than a4. Of course the juggling student P
may have the opposite taste and may want to learn something easy, then either
he/she can follow the opposite strategy of choosing from G(0)(X) \ C(0)(X) or
he/she can build a new p-context where “negated attributes” occur.

Of course, “more positive attributes” does not necessarily mean “greater
number of positive attributes”, which we cannot expect at this level of gener-
ality. However, we offer a tool of decision making which, except for stochastic
algorithms, is more promising than relying on coin tossing or horoscopes.
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