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SOME RESULTS ON COMPLEX ALGEBRAS OF
SUBALGEBRAS1

Ivica Bošnjak2, Rozália Madarász2

Abstract. In this paper we investigate a property of the algebras of
complexes (or power algebras or globals) which is a natural generalization
of the notion of having all subgroups to be quasinormal in group theory.
We say that an algebra A has the complex algebras of subalgebras if the set
of all non-empty subuniverses of this algebra forms a subuniverse of the
algebra of complexes of A. For example, all conservative and all entropic
algebras have this property. Among other things, we prove that the class
of finite algebras which have the complex algebra of subalgebras is not
closed under finite direct products and it is not globally determined.
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1. Power constructions

The natural generalization of the multiplication of cosets in group theory is
the following ”lifting” of an arbitrary n-ary operation f on a set A to the n-ary
operation f+ on the power set P(A) of all non-empty subsets of A:

Definition 1. Let A be a non-empty set, P(A) the set of all non-empty subsets
of A, and f : An → A. We define f+ : P(A)n → P(A) in the following way:

f+(X1, . . . , Xn) = {f(x1, . . . , xn) | x1 ∈ X1, . . . , xn ∈ Xn}.
If A = 〈A, {f | f ∈ F}〉 is an algebra, the complex algebra (or power
algebra, or global) P(A) is defined as:

P(A) = 〈P(A), {f+ | f ∈ F}〉.
Beside group theory and semigroup theory, power operations are implicitly used
in some other fields. For instance, the set of ideals of a distributive lattice L
again forms a lattice, and meets and joins in the new lattice are precisely the
power operations of meets and joins in L. In the formal language theory the
product of two languages is simply the power operation of concatenation of
words.
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Note that there are some other types of power constructions in universal
algebra. In some approaches, it is convenient to include the empty set to the
universe of the power algebra. Also, the set-theoretic operations of the union,
intersection and complementation could be added to the fundamental operation
of the complex algebra. This is the case in the more general power construction,
i.e. the powering of relational structures, which was introduced by Jónsson and
Tarski in [14]. This construction has proved to be very useful in various areas of
algebraic logic and theory of non-classical logics. Also, there are several different
ways to lift a relation from a base set to its power set. A general definition of
n-ary power relation was given by Whitney ([22]). This type of construction is
widely used in theoretical computer science, in the context of powerdomains.
Some attempts to give a general view on power structures and present common
ideas used by different authors were made in [2] and [4].

2. Complex algebras of subalgebras

We investigate a property of complex (power) algebras which is a natural
generalization of the notion of having all the subgroups of a group to be quasi-
normal. Namely, for a subgroup H of a group G we say that it is quasinormal
in G if H commutes with all the subgroups K of G i.e. HK = KH. Of course,
normal subgroups are always quasinormal, but converse is not true. For exam-
ple, if 3 ≤ p is a prime, then any cyclic group Cpn extended by any cyclic group
Cpm has all subgroups to be quasinormal. For an overview of some old, recent
and new results on quasinormal groups see [21].

It is easy to see that if G is a group, then the set Sub(G) of all subgoups
of G forms a subgroup of the power group P(G) iff all subgroups of G are
quasinormal. In the case of a universal algebra A, the set Sub(A) of all non-
empty subuniverses of A is a subset of the universe of the complex algebra P(A),
but it is not always a subuniverse of P(A).

Definition 2. Let A be an algebra. We say that A has the complex alge-
bra of subalgebras (or briefly, has CaSa) if the set Sub(A) of all non-empty
subuniverses of A forms a subuniverse of the complex algebra P(A); the corre-
sponding subalgebra CSub(A)(with the universe Sub(A) we call the complex
algebra of subalgebras of A. For a variety of algebras V we say that it has
the complex algebra of subalgebras if any A ∈ V has the complex algebra
of subalgebras.

For example, the variety of left-zero (or right-zero) semigroups has CaSa.
More generally, any conservative algebra has CaSa (for an algebra A we say
that it is conservative if for any n-ary fundamental operation f , and for any
a1, a2, . . . , an ∈ A we have f(a1, a2, . . . , an) ∈ {a1, a2, . . . , an}). A very natural
and widely studied variety of algebras having CaSa is the variety of idempotent
entropic algebras (the so called modes).

Definition 3. An algebra A is called entropic if it satisfies for every n-ary
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fundamental operation f , and every m-ary fundamental operation g the identity

g(f(x11, . . . , xn1), . . . , f(x1m, . . . , xnm)) ≈

f(g(x11, . . . , x1m), . . . , g(xn1, . . . , xnm)).

In other words, an algebra A is entropic if all operations of A commute with
each other. Note that a groupoid G is entropic if it satisfies the identity xy ·uv ≈
xu · yv, called also the mediality. It is easy to verify that any entropic algebra
is CaSa. The complex algebras of subalgebras were introduced and studied in
the context of idempotent entropic algebras in [18] (see also [19], [20]).

There are algebras which have the complex algebra of subalgebras, but which
are neither conservative nor entropic. Some of them satisfy the so called gen-
eralized entropic property, introduced and studied in [1].

Definition 4. We say that an algebra A (respectively, a variety V ) satisfies
the generalized entropic property if for every n-ary operation f and m-ary
operation g of A (of V ), there exist m-ary terms t1, . . . , tn such that the identity

g(f(x11, . . . , xn1), . . . , f(x1m, . . . , xnm)) ≈

f(t1(x11, . . . , x1m), . . . , tn(xn1, . . . , xnm))

holds in A (in V ).

For example, a groupoid satisfies the generalized entropic property, if there
are binary terms t and s such that the identity xy · uv = t(x, u)s(y, v) holds.
The entropic law is a special case of the generalized entropic property, where
the terms t1, . . . , tn are equal to g. It is easy to verify that:

Proposition 1. Every algebra satisfying the generalized entropic property has
the complex algebra of subalgebras.

In the case of varieties, more can be proved.

Theorem 1. ([10]) In a variety V of groupoids, every groupoid in V has the
complex algebra of subalgebras iff V satisfies the identity

xy · uv = t(x, u)s(y, v),

for some terms t(x, u) and s(y, v).

A generalization of this result is proved in [1]. Namely:

Theorem 2. ([1]) For a variety V of algebras, every algebra A ∈ V has the
complex algebra of subalgebras iff the variety V satisfies the generalized entropic
property.
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Generally, the generalized entropic property and the entropic law are not equiva-
lent, but there are a lot of varieties where every algebra satisfying the generalized
entropic property is also entropic (see [1]).

On the other hand, there are algebras which have the complex algebra of
subalgebras, and do not satisfy the generalized entropic property. In fact, us-
ing such an example from [1], we can conclude that the property CaSa is not
equationally definable, i.e.

Proposition 2. Let K be the class of all groupoids which have the complex
algebra of subalgebras. Then, there is no set of identities Σ such that K =
Mod(Σ).

Proof. Let G be the following groupoid:
· a b c
a a c c
b c b c
c a b c

It can be verified that G has the complex algebra of subalgebras. On the
other hand, in [1] it is proved that the free algebra FV (x, y, z) of the variety V
generated by G has subgroupoids whose complex multiplication is not a sub-
groupoid of FV (x, y, z). 2

Theorem 3. Let F be any type of algebras. Then the class of all algebras
of the type F which have the complex algebras of subalgebras is closed under
formation of subalgebras and taking homomorphic images.

Proof. Let an algebra A of type F have the complex algebra of subalgebras
and let B be a subalgebra of A. If C1, . . . , Cn are subalgebras of B, then for any
f ∈ Fn we have

(fB)+(C1, . . . , Cn) ⊆ B.

As C1, . . . , Cn are also subalgebras of A, and A has CaSa, we have

(fA)+(C1, . . . , Cn) ∈ Sub(A),

and consequently

(fA)+(C1, . . . , Cn) = (fB)+(C1, . . . , Cn) ∈ Sub(B).

So, the algebra B has CaSa.
Let ϕ : A → B be an epimorphism and C1, . . . , Cn subalgebras of B. We

know that ϕ−1(Ci) = Di, i ∈ {1, . . . , n}, are subalgebras of A. Let us prove that
for any f ∈ Fn,

(fB)+(C1, . . . , Cn) ∈ Sub(B).

Let b1, . . . , bm ∈ (fB)+(C1, . . . , Cn). We have to prove that for any g ∈ Fm,

gB(b1, . . . , bm) ∈ (fB)+(C1, . . . , Cn).
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As b1 ∈ (fB)+(C1, . . . , Cn), there are elements c1j ∈ Cj , j ∈ {1, . . . , n}, such
that b1 = fB(c11, . . . , c1n). Similarly,

b2 = fB(c21, . . . , c2n), . . . , bm = fB(cm1, . . . , cmn),

for some elements cij ∈ Cj , i ∈ {2, . . . , m}, j ∈ {1, . . . , n}. As the mapping
ϕ : A → B is ”onto”, there are elements dij ∈ Dj such that ϕ(dij) = cij , for
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Now we have

fA(d11, . . . , d1n) ∈ (fA)+(D1, . . . , Dn),

fA(d21, . . . , d2n) ∈ (fA)+(D1, . . . , Dn),

. . .

fA(dm1, . . . , dmn) ∈ (fA)+(D1, . . . , Dn).

As A has CaSa, then for any f ∈ Fn we have

(fA)+(D1, . . . , Dn) ∈ Sub(A).

Therefore, there are elements d1 ∈ D1, . . . , dn ∈ Dn such that

gA(fA(d11, . . . , d1n), . . . , fA(dm1, . . . , dmn)) = fA(d1, . . . , dn).

Then we have

gB(b1, . . . , bm) = gB(fB(c11, . . . , c1n), . . . , fB(cm1, . . . , cmn)) =
gB(fB(ϕ(d11), . . . , ϕ(d1n)), . . . , fB(ϕ(dm1), . . . , ϕ(dmn))) =
ϕ(gA(fA(d11, . . . , d1n), . . . , fA(dm1, . . . , dmn))) =
ϕ(fA(d1, . . . , dn)) = fB(ϕ(d1), . . . , ϕ(dn)).

As ϕ(di) = ci ∈ Ci, for i ∈ {1, . . . , n}, we have

gB(b1, . . . , bm) = fB(c1, . . . , cn) ∈ (fB)+(C1, . . . , Cn).

So, B has the complex algebra of subalgebras. 2

Corollary 1. The class K∗ of all groupoids which have the complex algebra
of subalgebras is not closed under direct products.

Proof. Follows from Proposition 2 and Theorem 3. 2

Even the class of finite groupoids from K∗ is not closed under finite direct
products. In order to prove this, we will use a special class of groupoids which
are connected with some kind of directed graphs.
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Definition 5. A tournament is a complete directed graph T = (V,E) (i.e.
a digraph in which every pair of different vertices is connected by exactly one
directed edge). If x, y ∈ V and there is an edge from x to y, we will write x → y.
The corresponding groupoid GT = 〈V, ·〉 is defined in the following way: x·x = x
and for x 6= y

x → y iff x · y = y · x = x.

The groupoids obtained in this way we call groupoids of tournaments (or
simply tournaments).

Note that the variety generated with all groupoids of tournaments is a locally
finite non-finitely based variety, which has been explored by many authors (see
for example [7]). Of course, every groupoid of tournament has the complex
algebra of subalgebras. We can prove the following:

Lemma 1. Let T be a tournament.

(a) The groupoid of a tournament T is entropic iff T is transitive.

(b) Groupoid GT satisfies a generalized entropic property iff it is entropic.

Lemma 2. There are two finite groupoids of tournaments T1 and T2 such that
T1 × T2 has no complex algebra of subalgebras.

Proof. Let T1 be the groupoid of the tournament T1 with vertices {x, y} such
that x → y, and T2 the groupoid of the tournament T2 with vertices {a, b, c, d}
in which

b → a, a → c, c → d, a → d, c → b, b → d.

Let X = {〈x, c〉, 〈y, b〉} and Y = {〈y, d〉, 〈y, a〉}. Then X ∈ Sub(T1 × T2) and
Y ∈ Sub(T1 × T2), but XY is not a subuniverse of (T1 × T2), because XY =
{〈x, c〉, 〈x, a〉, 〈y, b〉} and

〈x, a〉 · 〈y, b〉 = 〈x, b〉 6∈ XY.

So, T1 × T2 has no complex algebra of subalgebras.

Theorem 4. Let F be some type of algebras, such that there are at least one
functional symbol f ∈ F of arity at least two. Then the class of all finite algebras
of the type F which have the complex algebra of subalgebras is not closed under
finite direct products.

Proof. Let T1 = 〈{x, y}, f1〉 and T2 = 〈{x, y}, f2〉 be the groupoids of tourna-
ments from Lemma 2. Denote by f0 the functional symbol from F which has
arity at least 2. Let us construct two algebras A and B of the type F such
that they have the complex algebra of subalgebras, but A× B does not. Alge-
bra A has the universe A = {x, y}, and fundamental operations defined in the
following way:

f0
A(x1, x2, . . . , xn) = f1(x1, x2),



Some results on complex algebras of subalgebras 237

and all the other fundamental operations are the first projection, i.e. for g ∈ Fm,
g 6= f0,

gA(x1, x2, . . . , xm) = x1.

Algebra B has the universe B = {a, b, c, d}, and the fundamental operations
defined by

f0
B(x1, x2, . . . , xn) = f2(x1, x2),

and for g ∈ Fm, g 6= f0,

gB(x1, x2, . . . , xm) = x1.

It is easy to see that both A and B have the complex algebra of subalgebras,
because they are conservative algebras. In order to prove that the algebra A×B
has no complex algebra of subalgebras, we have to find X1, . . . , Xm ∈ Sub(A×B)
such that for some g ∈ Fm it holds

(gA×B)+(X1, . . . Xm) 6∈ Sub(A× B).

Let X = {〈x, c〉, 〈y, b〉} and Y = {〈y, d〉, 〈y, a〉}. It is easy to see that X,Y ∈
Sub(A× B), because

f0
A×B(〈x1, a1〉, 〈x2, a2〉, . . . , 〈xn, an〉) =

〈f0
A(x1, x2, . . . , xn), f0

B(a1, a2, . . . , an)) =

〈f1(x1, x2), f2(a1, a2)〉 = 〈x1, a1〉 · 〈x2, a2〉,
where · is the binary operation of the groupoid T1 ×T2. As we have seen in the
proof of Lemma 2, X ∈ Sub(T1 ×T2), so 〈x1, a1〉 · 〈x2, a2〉 ∈ X, and X is closed
under the operation f0

A×B. As X is also closed under the other fundamental
operations of the algebra A× B, it follows that X ∈ Sub(A×B). Analogously,
Y ∈ Sub(A× B).

Let us prove that (f0
A×B)+(X, Y, Y, . . . , Y ) 6∈ Sub(A× B):

(f0
A×B)+(X, Y, Y, . . . , Y ) =

=
⋃
{f0

A×B(〈x1, a1〉, 〈x2, a2〉, . . . , 〈xn, an〉) | 〈x1, a1〉 ∈ X, 〈x2, a2〉 ∈ Y, . . . ,

. . . 〈xn, an〉 ∈ Y } =

=
⋃
{〈f0

A(x1, x2, . . . , xn), f0
B(a1, a2, . . . , an)〉 | 〈x1, a1〉 ∈ X, 〈x2, a2〉 ∈ Y, . . . ,

. . . 〈xn, an〉 ∈ Y } =
⋃
{〈f1(x1, x2), f2(a1, a2)〉 | 〈x1, a1〉 ∈ X, 〈x2, a2〉 ∈ Y } = {〈x, c〉, 〈x, a〉, 〈y, b〉}.

Let us prove that Z = {〈x, c〉, 〈x, a〉, 〈y, b〉} 6∈ Sub(A× B):

f0
A×B(〈x, a〉, 〈y, b〉, 〈y, b〉, . . . , 〈y, b〉) = 〈f0

A(x, y, y, . . . , y), f0
B(a, b, b, . . . , b)〉 =

= 〈f1(x, y), f2(a, b)〉 = 〈x, b〉 6∈ Z.

Consequently, the algebra A×B does not have the complex algebra of subalge-
bras. 2
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3. The class of finite CaSa algebras is not globally deter-
mined

If K is a class of algebras, and A and B are isomorphic algebras from K,
then P(A) and P(B) are obviously isomorphic. It is natural to ask whether the
converse is true, i.e. is it true that for any A,B from K it holds:

P(A) ∼= P(B) ⇒ A ∼= B ?

If the class K has this property, we say that K is a globally determined
class. The first result in this direction comes from 1967, when T. Tamura and
J. Shafer proved that the class of groups is globally determined. It follows im-
mediately from this result that rings are globally determined. Later, Tamura
proved that some other important classes of semigroups, such as completely
simple semigroups, completely 0-simple semigroups, left (right) zero semigroups
and rectangular bands, are also globally determined. Nevertheless, the class of
all semigroups is not globally determined, which was proved by E. M. Mogil-
janskaja. In particular, involutive semigroups are not globally determined ([8]).
An important result was obtained by Y. Kobayashi ([15]). He proved that semi-
lattices are globally determined, which implies the same result for lattices and
Boolean algebras. It is proved in [3] that the class of groupoids of tournaments is
globally determined. Unary algebras have been also investigated in this context.
A. Drapal ([9]) proved the following theorem:

Theorem 5. ([9]) Finite (partial) monounary algebras are globally determined.
while the class of all monounary algebras is not globally determined.

As monounary algebras have (trivially) complex algebras of subalgebras, we
immediately obtain the following result:

Corollary 2. The class of all algebras which has CaSa is not globally deter-
mined.

To prove a stronger result on finite algebras having complex algebras of
subalgebras we will use a result and construction from [16]. For a group G, by a
G-algebra we mean a permutation representation 〈A,G〉 considered as a unary
algebra.

Proposition 3. Let G be a group. Then any G-algebra 〈A,G〉 satisfies the
generalized entropic property.

Proof. The unary algebra 〈A, G〉 satisfies the generalized entropic property if
for any two permutations f, g ∈ G there exists a term t such that the identity
g(f(x)) ≈ f(t(x)) holds in 〈A,G〉. As G is a group, for the term t we can take
t(x) = f−1(g(f(x))). 2
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Proposition 4. Let G be a group. Then any G-algebra has the complex alge-
bra of subalgebras.

Proof. It follows from Proposition 3 and Theorem 2. 2

In the sequel we suppose that G and A are finite. The set of fixed-points of
g ∈ G or a subgroup H of G in the representation 〈A, G〉 we denote by FixA(g)
and FixA(H), respectively. The permutation character of the representation
〈A,G〉 is the function χ : G → N such that χ(g) = |FixA(g)|. The proof of the
following result from group theory can be found, for example, in [13]:

Proposition 5. Let G be any non-cyclic finite group. Then G has non-
isomorphic representations with the same permutation character.

Proposition 6. ([16]) Let G be a finite group, 〈A,G〉 and 〈B, G〉 two permu-
tation representation of G. If 〈A,G〉 and 〈B, G〉 have the same permutation
character, then they have isomorphic complex algebras.

Theorem 6. The class of all finite algebras having complex algebras of subal-
gebras is not globally determined.

Proof. It follows from Propositions 4, 5 and 6. 2
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