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A WORD ON n-INFINITE FORCINGT
Milan Z. Grulovid

Abstract. It is shown: the properties of Robinson’s infinite forcing are
naturally transmitted to the so called n-infinite forcing.
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1. Preliminaries

Throughout the article L is a first order language. The basic logical symbols
will be = (negation), A (conjunction) and 3 (existential quantifier); the others
being defined by the basic ones in the standard way. The choice of the logical
symbols is irrelevant, but we kept the choice made in the case of (n-) finite
forcing (see [2]). For a theory T of the language L, u(T) will be the class of
all its models (as usual, by a theory we assume a consistent deductively closed
set of sentences — thus, T+ ¢ means ¢ € T). By X,-formula we mean any
formula equivalent to a formula in prenex normal form whose prenex consists
of n blocks of quantifiers, the first one being the block of existential quantifiers
(II,,-formulas are defined analogously). The models (of the language L) will
be denote by A, B, ..., while their domains will be A, B,.... For a model A,
Diag,(A) is the set of all ¥,,- , IT,-sentences of the language L(A) (the simple
expansion of the language L obtained by adding a new set of constants which is
in one-to-one correspondence with domain A) which hold in A. In particular, for
n = 0, Diago(A) is not the diagram of A in the sense in which it is used in model
theory, but this difference is of no importance for the text (the same situation
we have when dealing with the generalization of finite forcing). As usual, we
will not distinguish an element a from A and the constant corresponding to
it. If A is a submodel of B and (B,a)sca E Diag,(A), we say that A is
an n-elementary submodel of B (i.e. B is an n-elementary extension of A), in
notation A <,, B. In general, A is n-embedded in B if, for some embedding f of
A into B, f(A) is an n-elementary submodel of B. A 3,1 -chain of models is a
chain of models Apg < A; < ... < A, < ..., a <+, where for each o < 8 (< 7),
A, is an n-elementary submodel of Ag; we use A < B to denote that A is a
submodel of B, therefore < is "equal" to <.

Remark. We are following mainly [7], in fact, in almost all of the given propo-
sitions we use the same proof patterns as in the case of infinite forcing. Thus

I This paper is part of the scientific research project no. 144001, supported by the Ministry
of Science, Republic of Serbia

2University of Novi Sad, Faculty of Science, Department of Mathematics and Informatics,
Trg D. Obradovica 4, 21000 Novi Sad, Serbia, e-mail: grulovic@im.ns.ac.yu



222 M. Z. Grulovié

a routine and tedious job is in question, and in that sense this paper does not
bring anything essentially new. Its aim is primarily to introduce the definitions
and present the basic facts considering n-infinite forcing which are to be used
in the further research of the topic. Through a set of circumstances the paper
appears with a great delay and after publishing some articles which (continued
the examination of n-infinite forcing) announced it in the references there in;
see [3], 1, [5].

2. n-infinite forcing relation

In the sequel we will assume that the considered class K of models of the
language L is closed under unions of ¥, 1-chains. In keeping with the standard
terminology, we will say that the class K is n-inductive.

Definition 2.1. For a model A from K and a sentence ¢ of the language L(A)
the relation: A n-infinitely forces ¢ (with respect to the class K), in notation
A ||=,, @, is defined inductively:

(1) if ¢ is an atomic sentence, then A||=, ¢ iff A E ¢;

(2) if o= d NP, then All=, dANY iff Al|=n ¢ and A=, ¥;

(3) if o = —¢, then A||=, ¢ iff no n-elementary extension of A in K n-
infinitely forces ;

(4) if o = JvY(v), then A=, ¢ iff, for some a € A, A| =, ¥(a).

Lemma 2.2. For a model A of the class K and sentences ¢ and ¢ of the
language L(A) it holds:
(1) the model A cannot n-infinitely force both ¢ and —p;

(2) if B from K is an n-elementary extension of A and A ||=, ¢, then also
B|=n ¢;
B)ifAll=n ¢ or A=, then A||=, ~(-pA—), that is A=, pV;

(4) if A=, —Jv—p(v), then, for any a € A, A | =, -—p(a).

Proof. (1) Directly, by the very definition of n-infinite forcing relation.

(2) Simple inductive argument by the complexity of the sentence .

(3) and (4) are immediate consequences of (1) nad (2) (and definition of
n-infinite forcing). a

Note. In Robinson’s [8] and subsequent papers on infinite forcing as the basic
logical symbol it was taken also disjunction (V) and it was defined: A ||= oV
ifft A||=¢por Al=1. Asa consequence of the fact that in our case disjunction
is defined by conjunction and negation, in item (3) we do not have the inverse
implication. So, for instance, if K is the class of linearly ordered sets in the
language with equality and a binary relation <, and A = (w U {w} (= w™), <),
then A ||= =(=-3v (v < 0) A =3v (v > w)), while neither A || = Jv(v < 0) nor
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A ||=Fv(v > w) (where, of course, v < u stands for v < u A v # u). It holds as
well: A||=--3v (v <0).

Definition 2.3. A model A from K is n-infinitely generic iff for any sentence
@ of the language L(A) either A ||=, ¢ or A=, .

Lemma 2.4. Any model of the class KC is an n-elementary submodel of some
n-infinitely generic model.

Proof. Let {¢vq | a < XA =max{]A]|,|L|,No} be an enumeration of the sentences
of the language L(A). We construct inductively the sequence of models in the
following way: Ag = A. On the assumption that the models A, for all v < g,
have been "chosen", we distinguish the cases: § = a + 1 and 3 is a limit
ordinal. In the first case, if A, ||=n @a Or Ay ||=pn —@a, we put Ag = A,; in
the oposite case there exists some n-elementary extension B of A, in K such
that B =, ¢, and we put: Ag = B. When ( is a limit ordinal, we take
Ag = Ua<5 A, . In any case, A, is in K, for this class is closed under unions
of ¥,,41-chains. Obviously, for any sentence ¢ of the language L(A), the model
Al = Ua<r Ao n-infinitely forces either ¢ or —p. If we construct in the same
way the model A? starting now with the model A! and continuing this process
we will finally obtain the model A“ =], ~, A", which is certainly n-infinitely
generic. - O

Lemma 2.5. (a) A model A of the class K is n-infinitely generic iff for any
sentence ¢ of the language L(A) it holds:

All=ne iff AFg;

(b) A model A is n-infinitely generic iff for any sentence —¢ of the language
L(A) it holds:
All=n—p iff AE -

Proof. (a) is proved by induction of the complexity of the formula ¢; one
implication in (b) follows directly from (a), as for the other, the given condition
enables us to pass with the induction in checking that (a) holds. a

Corollary 2.6. (a) If A and B are n-infinitely generic models of the class K
and if A is an n-elementary submodel of B, then A is an elementary submodel
of B;

(b) every n-infinitely generic model of the class IC is an n-existentially closed
model in IC.

Proof. (a) For a sentence ¢ of L(A) we have: A |E ¢ < A| =, ¢ =
Bl=,¢ < BEo.
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(b) Let A be an n-infinitely generic model of the class £, A <, B € £ and
let ¢ be a X, y1-sentence of the language L(A) which is satisfied in B. If C is
an n-infinitely generic model of IC, which is also an n-elementary extension of
B, then C | ¢ and, because of A < C, it holds as well A = ¢. a

Corollary 2.7. The class L} of all n-infinitely generic models of the class K
is closed under the unions of ¥,11-chains.

Theorem 2.8. The class L} is a unique subclass C of the class K satisfying
the following:

(1) C is n-mutually-consistent or, in other words, n-model-consistent with
K (which means in fact that any model of K is an n-elementary submodel of
some model from C);

(2) C is n-model-complete;
and

(3) C contains any other subclass of K which satisfies the conditions (1) and

(2).

Proof. It has already been proved that L} satisfies the conditions (1) and (2).
Let D be the subclass of IC which also satisfies these conditions and let A € D.
We show that for a sentence —p of the language L(A) it holds: A ||=, -y iff
A E -, that is that A is n-infinitely generic. Suppose A || =, —¢ and let B
be an n-infinitely generic model which is an n-elementary extension of A. Then
B ||=. —¢p, thus B &= —p too. We construct a countable chain of models in the
following way. Let A; be a model from D which is an n-elementary extension of
B, B; an n-infinitely generic model which is an n-elementary extension of A,
and so on. Then C = J,»; Ax = >, Br is n-infinitely generic and A < C,
B < C (since the chains A <, A} <... <A} <, ... and B =<, By <, ... <,
By <, ... are elementary chains). But then C = —p, whence also A = —p.
On the other hand, if A does not n-infinitely force —¢, then some n-elementary
extension B of A n-infinitely forces ¢. We can immediately assume that B is
n-infinitely generic, and, as in the previous case, obtain a model C, which is
an elementary extension of both A and B. Then, because of B |= ¢, it follows
C E ¢ and therefore A | ¢, that is A = —p. a

Corollary 2.9. (a) The class L} is a unique subclass C of K satisfying the
first two conditions from the previuos theorem and

(3)" if a model A from K is an elementary submodel of any model from C,
which is its n-elementary extension, then A € C;

(b) On the condition that K is a generalized elementary class (that is K =
w(Th(K))) the condition (3)" can be replaced by

(3)" if a model A from K is an elementary submodel of some model B from
C which is its n-elementary extension, then A € C.
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Proof. (a) We prove firstly that L% satisfies the third condition. So let A
be an elementary submodel of any n-infinitely generic model which is its n-
elementary extension. Suppose A ||=,, —p, where — is defined in A, and let B
be an n-infinitely generic model, which is an n-elementary extension of A. Then,
A < B E —p, hence A |E —p. If A does not n-infinitely force =, we can find
an n-infinitely generic model which n-infinitely forces ¢ and is an n-elementary
extension of A. Tt follows: A < B = ¢, thus A E ¢, i.e. A £ .

On the other hand, let D be a subclass of K satisfying the conditions of the
corollary. By the theorem, D C L. But the inverse inclusion holds as well. For
let A be n-infinitely generic and let B from D be its elementary extension. we
just constructed a chain A <, B <,, A1 <, By <, ... < Ap < Br <0 -+,
where A; € L}, B, € D, i > 1. Now, C = ;> Ar = Up>; B is an
elementary extension of both A and B, thus A is an elementary submodel of
B, and by (3)" A is in D (as for model B no restriction was made).

(b) By (a), we are to show that if a class D satisfies the conditions (1), (2)
and (3)" and the model A is an elementary submodel of some model B from
D, which is its n-elementary extension, then A is an elementary submodel of
any model from D whose an n-elementary submodel it is. So let A <,, C € D.
It is easy to see that there exists a model D (in X) into which B and C are
n-embeddable. Because of the n-model-consistency we can assume that D is
from D and because of the n-model completness of the class D both B and C
are elementary submodels of D. It follows that A is an elementary submodel of
C. O

Corollary 2.10. (a) Let A be a model of the class K and ¢ some X, - or
I1,,-sentence defined in A. Then it holds (compare with 1.3 in [2]):

AEop iff A=,

(b) If o = Fo(0) is a Bp41-sentence defined in A € K, then from A = ¢ it
follows A ||=,, ——p; on the other hand, if A ||=, =, then some n-extension
of A in IC satisfies .

Proof. (a) Suppose A |= ¢ but that A does not n-infinitely force =—¢. Then for
some n-extension B of A in K, B| =, —¢. But, if C is an n-infinitely generic
model, which is an n-extension of B, it follows C || =,, -, while also C = ¢,
contradictory to It is clear now that A ||=, ——¢ implies A [ .

(b) Suppose A | v¥(a). By (a), Al =, ——(a), whence obviously also
Al =, —3JoyY(0). If A=, -, then any n-infinitely generic n-extension of
A satifies . By the note given after 2.2] the model A itself does not have to
satisfy the sentence ¢. m|

Corollary 2.11. Let A be a model of the class K and let p(vq,...,v5_1) and
Y(v1,...,05—1) be formulas of the language L such that - o(vy,...,v5-1) =
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¥(v1,...,v5—1). Then, for any element a1, ... ,ar—_1 from A it holds: if A|=,
olat,...,ax—1) then A=, =(a1,...,ak-1).

Proof. If we assume that A ||=,, ¢(@) but not A || =,, == (a), we can find an
n-infinitely generic model B which is an n-extension of A and which n-infinitely
forces p(a) and —¢(a). But then B = ¢(a) A —9(a), a contradiction. O

Lemma 2.12. Let K be a generalized elementary class, A and B its members
and ay,...,ax—1, b1,...,bk_1 the elements of A and B, respectively. Then the
following conditions are equivalent:

(1) there is an n-elementary extension, C, of A in KC and the ¥,, 41 -existential
type of bi,...,bp_1 in B (i.e. the set of X,11-formulas o(v1,...,v_1) for
which it holds B |= @[b1,...,bk_1]) is contained in the X, 1-existential type of
aty ... ap—1 in C;

(2) there is a model D in K into which the models A and B are n-embeddable
so that the images of the elements a; and b;, i =1,...,k — 1, coincide.

Proof. Suppose (1) is satisfied. If ADiag,(B) is the set of sentences ob-
tained from Diag,(B) by replacing the constants b1,...,bg_1 by, respectively,
ai,...,ax—1, by asimple compactness argument it follows that Th(K)UDiag, (A)
UADiag, (B) is consistent, and any model of this theory satisfies the second con-
dition. a

Definition 2.13. The modified rank of the formula ¢ of the language L, in
notation m.r.(p), is defined by:

1 if © is either atomic or —
mr.(p) =4 mor.(Y)+mr.(0) if o=y A0
m.r.(y) + 1 if o= FvY(v)

The existential degree of a formula ¢ of the language L, in notation e.d.(¢), is
defined by:

0 if p is atomic or -
ed.(p) =1} ed.(¢Y)+ed(0) if o=y A0
e.d.(Y)+1 if o= FvY(v)

Corollary 2.14. Let A and B be models of the generalized elementary class
K and let the elements ay,...,ax_1 and by, ..., bx_1 of, respectively, A and B,
have the same X, 11-existential type in A, that is B. If p(vy,...,05—1) is a
formula of the language L of modified rank 1, then

A || —n Sa(ah cee 7ak’—1) /Lff B H =n <p(b1, RS bk—l)'
In particular, if 0 is either X,,- or IL,,-formula, then

A”:n _|_\9(a1,...,ak71) fo BH:n _‘ﬁa(bl,...,bkfl).
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Proof. Let I'(vy,...,vk—1) be the X, i1-existential type of the elements
a1,...,ap—1 and by,...,bx_1 in, respectively, A and B. The second part of
the corollary is a direct consequence of 2101 - A || =, ——0(ay,...,ar—1) iff
9(’01, - 7Uk—1) S F(’Ul, c.. ,’Uk_l) iff B || =n —‘—|9(b1, ceey bk—l)-

As for the first part, let us suppose that for a formula ¢ = —, A| =,
—(ay,...,ar_1), but that B does not n-infinitely force ¢ (by, ..., bx—_1). Then,
for some n-extension C of B in IC, C||=, ¥(b1,...,bx_1), and, certainly, ¥, 11-
existential type of by, ...,b,_1 in C contains I'(vy,...,vx—1). ByZI2} A and C
are n-embeddable into some model D from K in such a way that the elements
a; and b;; i =1,...,k—1, have the same images — d;. But then, D n-infinitely

forces both —¢(dy,...,dk—1) and ¥(dy,...,dx—1), a contradiction. |
Lemma 2.15. Let K be a generalized elementary class and o(vy,...,v5-1) a
formula of the language L of modified rank 1. Then there is a set R, of Xp41-
existential types such that for any model A from K and any element ay, ..., a1
from A it holds: Al =, w(a1,...,ak-1) iff the 3, 1-existental type of the
elements ay,...,ar—1 in A is contained in R.

Proof. Just put: R, = {®(v1,...,v5-1) | there exists a model B in K and
its elements b1,...,br—1 such that B n-infinitely forces ¢(b1,...,bx—1) and
®(vy,...,v5—1) is the X, -existential type of by,...,br—1 in B}. a

Theorem 2.16. (Robinson’s reduction theorem). Let K be a generalized el-
ementary class and p(v1,...,05—1) a formula of the language L of existential
degree m. Then there is a set R, of Yni1-existential types (v, ..., vp_1,
Vky - -+ Vk—1+m ) Such that for any model A from K and its elements ay, ..., a5_1
it holds:

A=, plar,...,ax—1) iff, for some elements by, ..., b, from A, the X,11-
existential type of elements a1,...,ax—1,b1,...,by in A is in R,.

Proof. By induction on the modified rank of the formula ¢. The case m.r.(¢) = 1
has been already considered (previous lemma).

Let m.r.(¢) =r > land p(v1,...,06-1) = ¥(v1,...,06—1)AO(v1, ..., Vk_1),
and let s and ¢ be existential degrees of 1) and 6 respectively. By the inductive as-
sumption, there are sets of ¥,, 1 1-existential types Ry = {¥qo(v1,. .., Vk—1,Vk, .. .,
Vp—14s) | @ < Kk} and Ry = {Og(v1,...,06—1,Vk, ..., Vk—14¢) | B < A},
which satisfy the conditions of the theorem for formulas ¥ and 6. Then R, =
{\Ija(U]_’ vy Uk—1, Vky .- avk71+s) U @ﬂ(vl7 ceo s Uk—1,Vktsy -« - 7vk+8+t71> | a <
K, B < A} is the "wanted" type for .

If o = Jup(vr,...,v6-1,0), r = e.d.(¢) and Ry = {Pu(v1,...,v0-1,
Vky Uk+1, - - - » Vktr) | @ < K} the corresponding type for ¢, then we simply take:
R, = Ry. The checking that this type satisfies the condition of the theorem
for ¢ is routine, as in the previous case, and hence it is omitted. O
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Corollary 2.17. (a) Let K be a generalized elementary class, A an n-infinitely

generic model and p(vi,...,v5—1) a formula of the language L. Then, for
the elements ay,...,ax—1 from A, A n-infinitely forces (ay,...,ax_1) iff the
X, 41-existential type of a1,...,ax—1 in A is in R, (where R——, is the type

coresponding to the formula ——¢ from the previous theorem).

(b) Let K be a generalized elementary class, A an n-infinitely generic model
and ay,...,ax—1 some elements from A. Then the complete type of a1, ..., a1

in A is uniquely determined by the X, y1-existential type of these elements in
A.

3. Some relevant classes of models

n-existentially complete models have already been introduced (in our previ-
ous papers). The definition of n-existentially universal model follows, of course,
the definition of an existentially universal model — now existential types are re-
placed by ¥, 1 1-existential types. Finally, we say that a model A is n-pregeneric
in a class C iff whenever A is n-elementary sumodel of n-infinitely generic mod-
els B and C and ¢ is a sentence of the language L(A), then B = ¢ iff C [ .
Let us denote by £¢, A% and Pg, respectively the classes of all n-existentally
complete, n-existentially universal and n-pregeneric models of the class IC. All
these clases are (as well as £ — 2.4 7)) n-inductive and n-model-consistent
with IC; we recall that K is n-inductive. On the analogy of the "standard case"
we have

Lemma 3.1. (a) LE C P N E;

EX DAL D AR N LE #0.

(b) On the additional condition that K is a generalized elementary class it
holds:

PR D& D L 2 AR
and

L is the class of elementary substructures of the members of the class Aj.

Proof. (b) Let A be an n-existentially complete model which is n-elementary
submodel of n-infinitely generic models B and C. Since the class K is generalized
elementary there is a model D in it such that B <,, D and C < D. Now for a
sentence @ of the language L(A) the assumption that, for instance, B = ¢ and
C E —¢ would imply D | =, ¢ A =, a contradiction.

In proving £} 2 AR we use [Z9 (b) and the facts that both classes are
n-inductive and that, for A, B € A%, from A <, B follows A < B. m]

If L is a language with equality and K has finite models, then all these
models are n-infinitely generic (in K) for any n > 1 (obviously, if A is a finite
model and A <; B, then A = B. This fact can be used in showing that in
some cases the class £} is not generalized elementary. We offer one example.
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Lemma 3.2. Let G be the class of groups (defined in the standard language
{-,7',¢e}). The class L is not generalized elementary.

Proof. If P is the set of all prime numbers, C,,, p € P, the cyclic group of order
p and F' a nonprincipal ultrafilter over P, then the ultraproduct HpeP C,/F
is not l-existentially complete in G; for the given group is isomorphic to the
additive group of reals — Re and while we have Re <; Re x Z (where Z is the
additive group of the integers), it does not hold Re <2 Re x Z (for instance
the sentence JaxVy(z # y +y) does not hold in Re). a
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