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FUZZY VALUED MEASURE BASED INTEGRAL1
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Abstract. In this paper we extend the notion of integration in fuzzy
set theory. The main purpose is to introduce and develop the notion of
integral with respect to fuzzy valued measure where the basic space for
fuzzy sets is Banach separable space. Some general properties of that kind
of integral are investigated.
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1. Introduction
Since L. Zadeh published his now classic paper [21] almost thirty years ago,

fuzzy set theory has attention from researches in a wide range of scienti�c ar-
eas, especially in recent years. Theoretical advances and applications have been
made in many directions. The theory of fuzzy sets, as its name implies, is
a theory of graded concepts, a theory in which everything is a matter of de-
gree. This theory was developed to give techniques for dealing with models for
natural phenomena which do not lend themselves to analysis by classical meth-
ods based on probability theory and bivalent logic. Applications of this theory
can be found in arti�cial intelligence, computer sciences, expert systems, logic,
operations research, pattern recognition, decision theory, robotics and others.

In classical set theory if A ⊆ X , this relation can be described by indicator
(or characteristic) function IA : X → {0, 1}, where IA(x) = 1 if x ∈ A and
IA(x) = 0 if x ∈ X\A. One can interprete the function IA as the degree of
membership of x in X . There are only two possibilities: 0 or 1. In fuzzy concept
the set A is identi�ed with the membership function uA : X → [0, 1] where the
interpretation uA(x) is the degree to which �x is in A", or x is compatible with
A. Fuzzy set A of X we identify with its membership function uA. The set of
all functions u : X → [0, 1] we denote by F(X ) and we say that F(X ) is the set
of all fuzzy sets de�ned on X .

The concept of fuzzy valued measure is a natural generalization of set valued
measure. Fuzzy valued measure has the range in the set of fuzzy sets and it
is additive in the cense of addition de�ned in the set of fuzzy sets. Contribu-
tions in this �eld were made, among others, by Puri,Ralescu [11], Ban [2], [11],
Stojakovi¢ [13], [17], [15].
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In this paper, using an additive fuzzy valued measure with values in separable
Banach space, a notion of integral of single valued function with respect to a
fuzzy valued measure is de�ned and some properties are determined. The study
of integrals where integrand or measure has codomen in set of fuzzy sets is
usually connected with very complicated structures and procedures. That is
the reason why some methods and concepts which simplify the research in that
�eld are introduced. Most often it is the α-level method where a fuzzy valued
object is decomposed (when it is possible) into a family of set valued or single
valued objects. Also, the notion of support function as usefull tool in treating
weak convergence, makes it possible to simplify some investigations especially
for fuzzy valued measure. Namely, there are some properties of fuzzy valued
measure and integral which have an implicative or equivalent connection with
its support function.

At the end of the paper, some examples which illustrate the theory are given.

2. Preliminaries
First, for the convenience of the reader, we give a list of symbols used in this

paper:

R, R+ set of reals, set of non negative reals,
N set of natural numbers,
(Ω,A, µ) complete measure space where A is a σ-algebra on Ω

and µ is a measure on A,
(X , ‖ · ‖) real separable Banach space with norm ‖ · ‖,
X ∗ dual of X (set of bounded linear functionals x∗ : X → R),
P(X ) set of nonempty subsets of X ,
P(f)(wk)(k)(c)(X ) set of nonempty (closed),(weakly compact), (compact),

(convex) subsets of X ,
F(X ) set of fuzzy sets de�ned on X with nonempty α-levels,
F(f)(wk)(k)(c)(X ) subset of F(X ) with (closed), (weakly compact),

(compact), (convex) α-levels,
h Hausdor� metric on Pf (X ),
L∞(Ω,X , µ) set of measurable bounded a.e. functions f : Ω → X ,
L1(Ω,X , µ) set of measurable, µ-integrable functions f : Ω → X ,
L1(Ω,X , µ) set of measurable, µ-integrable functions F : Ω → P(X ),
Λ(Ω,X , µ) set of measurable, µ-integrable functions X : Ω → F(X ),
SF set of measurable, integrable selectors of F : Ω → P(X ),
σA(x∗) support function of a set A ⊆ X , σA(x∗) = supx∈A(x, x∗),
clA closure of A, A ⊆ X ,
c̄oA convex closure of A, A ⊆ X ,
IA characteristic (indicator) function of A,
uα α-level of fuzzy set u,
α in index always denotes α-level of fuzzy set,
A−B, A−B = {a− b, a ∈ A, b ∈ B}, A,B ∈ P(X ),
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Throughout this paper let X be a real separable Banach space, X ∗ be its
dual space and (Ω,A, µ) be a complete measure space where A is a σ-algebra
and µ is a measure. Hausdor� metric h : Pfb(X )×Pfb(X ) → R is de�ned by

h(A,B) = max{sup
y∈B

inf
x∈A

‖x− y‖, sup
x∈A

inf
y∈B

‖x− y‖},

and for A ⊂ X , |A| = h(A, {0}) = supx∈A ‖x‖. By σA(·) we denote the support
function of a set A ⊂ X de�ned by σA(x∗) = supx∈A(x∗, x), x∗ ∈ X ∗.

We shall denote by F(X ) the set of fuzzy sets u : X → [0, 1] for which the α-
level sets uα of u, de�ned by uα = {x ∈ X : u(x) ≥ α}, α ∈ (0, 1] are nonempty
subset of X for all α ∈ (0, 1]. By F(f)(wk)(k)(c)(X ) we will denote a subset
of F(X ) whose α-levels are (closed), (weakly compact), (compact), (convex).
Notice that there is no any supposition about the set u0 = cl{x ∈ X : u(x) > 0}

If X : Ω → F(X ) is a fuzzy valued function then the function Xα : Ω →
P(X ) de�ned by Xα(ω) = (X(ω))α is a set valued function for every α ∈ (0, 1].
More about fuzzy and set valued functions can be found in [1], [5], [4], [6], [8],
[9], [12], [15], [19], [20].

The fuzzy valued measure (see [2], [11], [13], [17]) is a natural generalization
of the set valued measure (see [3], [5], [8],[9], [19]). Let (Ω,A) be a measurable
space with A a σ-algebra of measurable subsets of the set Ω. If M : A → F(X )
is a mapping such that for every sequence {Ai}i∈N of pairwise disjoint elements
of A the next equality is satis�ed

M(
∞⋃

i=1

Ai) =
∞∑

i=1

M(Ai),

where
( ∞∑

i=1

M(Ai)

)
(x) = sup{inf

i∈N
{M(Ai)(xi)} : x =

∞∑

i=1

xi(unc.conv.)},

and M(∅) = I{0}, then M is a fuzzy valued measure. If for every sequence
{Ai}i∈N of pairwise disjoint elements of A, (

∑∞
i=1M(Ai))α =

∑∞
i=1Mα(Ai),

α ∈ (0, 1], then Mα : A → P(X ) is a set valued measure. We shall denote
by SMα the collection of all (vector valued) measure selectors of the set valued
measure Mα. The variation |Mα| of the set valued measures Mα : A → P(X ),
is given by |Mα|(A) = supπ

∑
A∈π |Mα(A)|, where the supremum is taken over

all partition π of A into a �nite number of pairwise disjoint members of A. A
fuzzy valued measure M : A → F(X ) is of bounded variation if |Mα|(Ω) < ∞
uniformly for α ∈ (0, 1]. A fuzzy valued measure M is µ-continuous if A ∈ A
with µ(A) = 0 implies M(A) = I{0}. The set A ∈ A is an atom of the fuzzy
valued measure M if M(A) 6= I{0} and for all B ⊂ A, M(B) = I{0}. A fuzzy
valued measure M with no atoms is said to be nonatomic.

The integral of a fuzzy valued function X : Ω → F(X ) (with respect to mea-
sure µ) is a fuzzy set de�ned by (

∫
A

Xdµ)(x) = sup{α ∈ (0, 1] : x ∈ ∫
A

Xαdµ},
A ∈ A, where the integral

∫
A

Xαdµ of the measurable set valued function
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Xα : Ω → P(X ) is de�ned by
∫

A
Xαdµ = {∫

A
fdµ : f ∈ SXα

} . The inte-
gral

∫
Ω

f(ω)dµ(ω) is de�ned in the sense of Bochner. A measurable set valued
function Xα : Ω → P(X ) is integrably bounded if there exists integrable func-
tion h : Ω → R+ such that |Xα(ω)| = supx∈Xα(ω) ‖x‖ ≤ h(ω), µ − a.e. The
integral of a fuzzy valued function is a natural generalization of the integral
of a set valued function. It has been studied in connection with problems in
probability, statistics, measure theory ([2], [4], [6], [12] [15], [19], [20]).

If M : A → F(X ) is a fuzzy valued measure and X : Ω → F(X ) is a
measurable fuzzy valued mapping, then X is said to be a Radon Nikodým
derivative of M with respect to µ if M(A) =

∫
A

X(ω)dµ(ω) for all A ∈ A
and we write dM = X dµ. A Banach space X has a Radon Nikodým property
(RNP) if for each �nite measure space (Ω,A, µ) and each µ-continuous X -valued
measure m : A → X of bounded variation, there exists a Bochner integrable
function f : Ω → X such that m(A) =

∫
A

fdµ for all A ∈ A.
In a similar way as the integral of the fuzzy valued function with respect

to measure µ is introduced, the integral of a measurable function f : Ω → R
with respect to fuzzy valued measure M : A → P(X ) will be de�ned in the
next section of this paper. For that de�nition we need the de�nition of the
related structure in the set valued case. Let (Ω,A) be a measurable space, X
be a Banach space and m : A → X be a countable additive measure of bounded
variation such that (Ω,A, m) is a complete measure space. For the function
f : Ω → R integrable with respect to |m|, the integral of f with respect to m can
be de�ned. We denote it by

∫
Ω

f(ω)dm(ω). Detailed construction and properties
of this kind of integral can be found in [3], [10]. If M : A → P(X ) is a set valued
measure of bounded variation, then

∫
Ω

f(ω)dM(ω) def= {∫
Ω

f(ω)dm(ω), m ∈
SM}, where SM is the set of measure selectors of M ([8]).

Now we give some theorems which will be used in the next section.

Theorem 2.1. [14] Let X be a Banach space and ui ∈ Fk(X ). If for every
α ∈ (0, 1],

∑∞
i=1 |(ui)α| < ∞, then

( ∞∑

i=1

ui

)

α

=
∞∑

i=1

(ui)α, for every α ∈ (0, 1],

and
∑∞

i=1 ui ∈ Fk(X ).

Theorem 2.2. [16] Let X be a Banach space and ui ∈ Fwk(X ). If,∑∞
i=1 |(ui)α| < ∞, uniformly for α ∈ (0, 1], then

( ∞∑

i=1

ui

)

α

=
∞∑

i=1

(ui)α, for every α ∈ (0, 1],

and
∑∞

i=1 ui ∈ Fwk(X ).

Lemma 2.1. [11] Let M be a set and {Mα : α ∈ [0, 1]} be a family of subsets
of M such that (1) M0 = M , (2) a < b ⇒ Mb ⊆ Ma, (3) a1 < a2 < · · · <
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an < · · · → a ⇒ ∩∞i=1Mai
= Ma. Then the function u : M → [0, 1] de�ned by

u(x) = sup{a ∈ [0, 1] : x ∈ Ma} has the property that {x ∈ M : u(x) ≥ a} = Ma

for every a ∈ [0, 1].

3. Integration
Let (Ω,A, µ) be a complete measure space, M : A → F(X ) be a µ- contin-

uous fuzzy valued measure such that for every α ∈ (0, 1], Mα : A → P(X ) is a
set valued measure and f : Ω → R+ a measurable function, f ∈ L∞(Ω,R+, µ).
Then for every A ∈ A the mapping I(A) : X → (0, 1] is de�ned by

I(A)(x) def= sup{α ∈ (0, 1] : x ∈ Iα(A)},

where

Iα(A) =
∫

A

f(ω)dMα(ω) =
{∫

A

f(ω)dm(ω), m ∈ SMα

}
, A ∈ A,

for every α ∈ (0, 1]. We shall write

I(A) =
∫

A

f(ω)dM(ω),

and we shall call it - integral with respect to fuzzy valued measure. We can
extend our de�nition of integration to integrable functions f : Ω → R using the
decomposition f = f+ − f−, where f+ = 1

2 (|f |+ f) ≥ 0, f− = 1
2 (|f | − f) ≥ 0.

Then
∫

A
f(ω)dM(ω) =

∫
A

f+(ω)dM(ω)− ∫
A

f−(ω)dM(ω).
In the next �ve theorems we prove some results concerning the basic property

of the integral - the property that the integral I is a new measure on the
measurable space (Ω,A) on which the basic measure M is de�ned. From the
de�nition of the integral I it is easy to notice that the "fuzzy" integral I is
closely related to the "set" integral Iα. That connection will be used often in
the proof of theorems. In the �rst three theorems the range of the measure
M is a set F(X ) of fuzzy sets with compact or compact convex α-levels in a
separable Banach space X , and in the fourth theorem α-levels are (only) closed
but the Banach space X is separable and re�exive. In the last theorem the
Banach space is �nite dimensional.

Theorem 3.1. Let X be a real separable Banach space and M : A → Fkc(X )
be a µ-continuous fuzzy valued measure of bounded variation. If for every α ∈
(0, 1] there exists a set Cα ∈ Pkc(X ) such thatMα(A) ⊂ |Mα|(A)Cα for all A ∈
A, then for every f ∈ L∞(Ω,R+, µ), I : A → Fkc(X ) is a µ-continuous fuzzy
valued measure of bounded variation. If M is nonatomic, then I is nonatomic
to.

Proof: Since fuzzy valued measure M is of bounded variation, for every
sequence {Ai}i∈N of pairwise disjoint elements of A, according Prop.15 [3], we
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have
∑∞

i=1 |Mα(Ai)| ≤
∑∞

i=1 |Mα|(Ai) < ∞. By the compactness of Mα(A)
for every α ∈ (0, 1] and every A ∈ A, applying Th 2.1, we get that Mα : A →
Pkc(X ) is a set valued measure. SinceM : A → Fkc(X ) is a µ-continuous fuzzy
valued measure of bounded variation, Mα : A → Pkc(X ) is a µ-continuous set
valued measure of bounded variation. Mα satis�es all the conditions of Prop.
4.1 and Cor. 5.3 [5], which implies that there exists a unique integrably bounded
set valued function Xα : Ω → Pkc(X ) which is Radon-Nikodým derivative of
Mα. Then

Mα(A) =
∫

A

Xα(ω)dµ(ω)

for all A ∈ A and all α ∈ (0, 1], which means that dMα = Xαdµ.
Since f ∈ L∞(Ω,R+, µ), Xα : Ω → Pkc(X ) and |f Xα| ≤ |f ||Xα|, it follows

that fXα : Ω → Pkc(X ) de�ned by (f Xα)(ω) = f(ω)Xα(ω) is a µ-integrable,
integrable bounded set valued function.

In order to prove that
∫
Ω

f(ω)dMα(ω) =
∫
Ω

f(ω)Xα(ω)dµ(ω), we shall
show that

∫
Ω

f(ω)dMα(ω) ⊆ ∫
Ω

f(ω)Xα(ω)dµ(ω) and
∫
Ω

f(ω)Xα(ω)dµ(ω) ⊆∫
Ω

f(ω)dMα(ω).
If we suppose that x ∈ ∫

Ω
f(ω)dMα(ω), then there exists a measure selec-

tion mα of Mα such that x =
∫
Ω

f(ω)dmα(ω). It means that there exists an
integrable selection hα of Xα which is Radon Nikodým derivative of mα, i.e.
dmα = hαdµ. Then

x =
∫

Ω

f(ω)hα(ω)dµ(ω) ∈
∫

Ω

f(ω)Xα(ω)dµ(ω),

that is,
∫
Ω

f(ω)dMα(ω) ⊆ ∫
Ω

f(ω)Xα(ω)dµ(ω). On the other hand, if
x ∈ ∫

Ω
f(ω)Xα(ω)dµ(ω), then there exists a measurable selection hα ∈ SXα

such that x =
∫
Ω

f(ω)hα(ω)dµ(ω). Since hα is integrably bounded it follows
that ∫

A

hα(ω)dµ(ω) = mα(A), A ∈ A,

that is, hα dµ = dmα. It is obvious that mα ∈ SMα and

x =
∫

Ω

f(ω)hα(ω)dµ(ω) =
∫

Ω

f(ω)dmα(ω) ∈
∫

Ω

f(ω)dMα(ω).

Having proved that
∫
Ω

f(ω)dMα(ω) =
∫
Ω

f(ω)Xα(ω)dµ(ω), it remains to
recall that fXα = (fX)α and

Iα(Ω) =
∫

Ω

f(ω)dMα(ω) =
∫

Ω

f(ω)Xα(ω)dµ(ω) =
(∫

Ω

f(ω)X(ω)dµ(ω)
)

α

.

By Cor. 5.4 [5],
∫
Ω

f(ω)dMα(ω) ∈ Pkc(X ).
In order to prove that the family {Iα(Ω)}α∈(0,1] ∈ Pkc(X ) de�nes uniquely

the fuzzy set I(Ω), we use Lemma 2.1. From the relation α ≥ β ⇒Mα(Ω) ⊆
Mβ(Ω), we get Iα(Ω) ⊆ Iβ(Ω). Let us consider the sequence {αn}n∈N ⊂ (0, 1],
α1 < α2 < · · · < αn < · · · → α. Equality ∩∞i=1Mαi(A) = Mα(A) , A ∈ A,
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implies ∩∞i=1SMαi
= SMα

. By Prop.5.2 [9], SMβ
= {∫ g dµ : g ∈ SXβ

}
for all β ∈ {α, α1, α2, · · · , αi · · · }, where dMβ = Xβdµ. It is obvious that
SXα ⊆ ∩∞i=1SXαi

. Since sets on the both sides of the last inequality are closed,
if SXα

6= ∩∞i=1SXαi
, then there exists a selection g ∈ ∩∞i=1SXαi

, g /∈ SXα
.

The last assumption leads to the conclusion that there exists mg =
∫

g dµ,
mg ∈ ∩∞i=1SMαi

, mg /∈ SMα
, which contradicts the fact that ∩∞i=1SMαi

= SMα
.

Knowing that Xα(ω) ∈ Pkc(X ) for all α ∈ (0, 1], and all ω ∈ Ω, we get Xα(ω) =
∩∞i=1Xαi

(ω) for all ω ∈ Ω. According the statement (IV), page 107 and Cor.5.4
from [5], all integrals

∫
Ω

f(ω)Xα(ω)dµ(ω),
∫
Ω

f(ω)Xαn(ω)dµ(ω) could be con-
sidered as a Bochner integrals in a separable real Banach space X̂ in which the
space Pkc(X ) is embedded as a closed convex cone. Since all Xαn

are uniformly
integrably bounded by |Xα1 |, the next implication Xαn

(ω) n→∞−→ Xα(ω) ⇒∫
Ω

f(ω)Xαn
(ω)dµ(ω) n→∞−→ ∫

Ω
f(ω)Xα(ω)dµ(ω) is true in the space X̂ . Now,

applying Lemma 2.1, we get that the family of sets
{∫

Ω
f(ω)dMα(ω)

}
α∈(0,1]

∈
Pkc(X ) generates one and only one fuzzy set I(Ω) : X → [0, 1] de�ned by

I(Ω)(x) = sup
{

α ∈ (0, 1] : x ∈
∫

Ω

f(ω)dMα(ω)
}

.

The preceding arguments are now repeated for any A ∈ A instead of Ω.
In order to prove that I : A → Fkc(X ) is a fuzzy valued measure, we prove

�rst �nite additivity. From Lemma 3 [14] (I(A) + I(B))α = Iα(A) + Iα(B) for
every α ∈ (0, 1]. Since

Iα(A + B) =
∫

A+B

f(ω)dMα(ω) =
∫

A+B

f(ω)Xα(ω)dµ(ω) =

=
∫

A

f(ω)Xα(ω)dµ(ω) +
∫

B

f(ω)Xα(ω)dµ(ω) = Iα(A) + Iα(B),

for all A,B ∈ A, we get the �nite additivity for I.
To prove countable additivity of I we consider �rst countable additivity of

Iα.
If {An}n∈N is the sequence of pairwise disjoint elements of A, the equality

Iα

( ∞⋃
n=1

An

)
=

k∑
n=1

Iα(An) + Iα

( ∞⋃

n=k+1

An

)

implies

h

(
Iα

( ∞⋃
n=1

An

)
,

∞∑
n=1

Iα(An)

)
=

= h

(
k∑

n=1

Iα(An) + Iα

( ∞⋃

n=k+1

An

)
,

k∑
n=1

Iα(An) +
∞∑

n=k+1

Iα(An)

)
≤

≤ h

(
Iα

( ∞⋃

n=k+1

An

)
,

∞∑

n=k+1

Iα(An)

)
≤

∣∣∣∣∣Iα

( ∞⋃

n=k+1

An

)∣∣∣∣∣ +

∣∣∣∣∣
∞∑

n=k+1

Iα(An)

∣∣∣∣∣ ≤
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∣∣∣∣∣
∫

∪∞n=k+1An

f(ω)dMα(ω)

∣∣∣∣∣ +
∞∑

n=k+1

∣∣∣∣
∫

An

f(ω)dMα(ω)
∣∣∣∣ ≤

∫

∪∞n=k+1An

|f(ω)| d |Mα|(ω) +
∞∑

n=k+1

∫

An

|f(ω)| d |Mα|(ω).

SinceMα is a set valued measure of bounded variation, |Mα| is a �nite positive
measure absolutely continuous with respect to µ. Letting n →∞, we get

h

(
Iα

( ∞⋃
n=1

An

)
,

∞∑
n=1

Iα(An)

)
≤

≤
∫

∪∞n=k+1An

|f(ω)| d |Mα|(ω) +
∞∑

n=k+1

∫

An

|f(ω)| d |Mα|(ω) k→∞−→ 0.

To prove countable additivity of I we need to establish �rst that for every
sequence {An}n∈N of pairwise disjoint elements of A

∞∑
n=1

|Iα(An)| ≤
∞∑

n=1

∫

An

|f(ω)| d |Mα|(ω) =

=
k∑

n=1

∫

An

|f(ω)| d |Mα|(ω) +
∞∑

n=k+1

∫

An

|f(ω)| d |Mα|(ω) < ∞.

Since Iα(A) are compact for all α ∈ (0, 1] and all A ∈ A, the last relation allow
to apply Th. 2.1,

( ∞∑

i=1

I(Ai)

)

α

=
∞∑

i=1

Iα(Ai), for every α ∈ (0, 1].

Further, for every x ∈ X ,

I(
∞⋃

n=1

An)(x) = sup

{
α ∈ (0, 1] : x ∈ Iα(

∞⋃
n=1

An)

}
=

= sup

{
α ∈ (0, 1] : x ∈

∞∑
n=1

Iα(An)

}
=

= sup

{
α ∈ (0, 1] : x ∈

( ∞∑
n=1

I(An)

)

α

}
=

( ∞∑
n=1

I(An)

)
(x)

which gives the countable additivity of I.
It is easily seen that I is absolutely continuous with respect to M, which

implies that I is of bounded variation too. For the same reason I(∅) = I{0}.
If M is nonatomic, then all measure selection m of Mα and all the integrals∫

f(ω)dm(ω) are nonatomic too. So, I is also nonatomic.
So, we conclude that I : A → Fkc(X ) is a µ-continuous fuzzy valued measure

of bounded variation. 2
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Theorem 3.2. Let X be a real separable Banach space with Radon Nikodým
property and M : A → Fk(X ) be a µ-continuous nonatomic fuzzy valued mea-
sure of bounded variation. If for every α ∈ (0, 1] there exists a set Cα ∈
Pkc(X ) such that Mα(A) ⊂ |Mα|(A)Cα for all A ∈ A, then for every f ∈
L∞(Ω,R+, µ), I : A → Fkc(X ) is a µ-continuous nonatomic fuzzy valued mea-
sure of bounded variation.

Proof: Since Banach space X has the Radon-Nikodým property, we can
apply Th.1.2 [5] which provides convexity of the set Mα(A). The rest of the
proof is the same as the proof of Th. 3.1.

Theorem 3.3. Let X be a real separable Banach space, M : A → Fkc(X ) be a
µ-continuous fuzzy valued measure of bounded variation and f ∈ L∞(Ω,R+, µ).
If for every α ∈ (0, 1] and every A ∈ A, 0 < µ(A) < ∞, there exists Bα ⊂ A,
µ(Bα) > 0 and compact set Cα ∈ X such that Mα(Dα)/µ(Dα) ⊂ Cα for all
Dα ⊂ Bα, µ(Dα) > 0, then I : A → Fkc(X ) is a µ-continuous fuzzy valued
measure of bounded variation.

Proof: Since all the conditions of Th.5.2. [5] are satis�ed, there exists a
unique Radon Nikodým derivative Xα : Ω → Pkc(X ), dMα = Xα dµ. The rest
of the proof is the same as in the Th.3.1. 2

Theorem 3.4. Let (Ω,A, µ) be a nonatomic measure space, X be a real re-
�exive separable Banach space and f ∈ L∞(Ω,R+, µ). If M : A → Ff (X )
is a µ-continuous fuzzy valued measure of bounded variation, then for every
f ∈ L∞(Ω,R+, µ), I : A → Fkc(X ) is a µ-continuous fuzzy valued measure of
bounded variation. If M is nonatomic, then I is nonatomic to.

Proof: By Th. 2.2, Mα : A → Pf (X ) is a µ-continuous fuzzy valued measure
of bounded variation, meaning that Mα(A) is a closed bounded set for every
α ∈ (0, 1] and for every A ∈ A. Separable re�exive Banach space has the Radon-
Nikodým property, so we can apply Th.1.2 [5] which provides convexity of the
set Mα(A). By the consequence of Banach-Saks theorem, since Mα(A) ⊂ X
is convex, closure and weak closure of the set Mα(A) are equal. Now, since
the Banach space is re�exive if and only if the unit ball is weakly compact, we
can establish that Mα(A) is weakly compact. Also, separability of re�exive
space X implies separability of X ∗. Now, since Mα : A → Pwkc(X ), from
Cor. I [9], Mα has a unique Radon-Nikodym derivative Xα ∈ L(Ω,X , µ),
Xα : Ω → Pfc(X ). From convexity of Xα(ω), closure and weak closure of that
set are equal, implying Xα : Ω → Pwkc(X ). As Mα is a set valued measure
of bounded variation, by Prop. 4.1 [5], Xα is integrably bounded set valued
function. Now applying the Corollary of Prop.3.1.[8], we get Iα(A) ∈ Pwkc(X ).

Since f ∈ L∞(Ω,R+, µ), Xα : Ω → Pwkc(X ) and |f Xα| ≤ |f ||Xα|, it follows
that fXα : Ω → Pwkc(X ), de�ned by (f Xα)(ω) = f(ω)Xα(ω), is a µ-integrable,
integrable bounded set valued function.

To prove that the family {Iα(Ω)}α∈(0,1] de�nes a fuzzy set, we use Lemma
2.1. From the relation α ≥ β ⇒ Mα(Ω) ⊆ Mβ(Ω), we get Iα(Ω) ⊆ Iβ(Ω).
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Further, let {αn} ⊂ (0, 1] be an increasing sequence converging to α ∈ (0, 1], i.e.
0 < α1 < α2 < · · · < αn < · · · → α ≤ 1. We shell show that Iαn

(Ω) h→ Iα(Ω).
By de�nition

h(Iαn(Ω), Iα(Ω)) = h

(∫

Ω

f(ω)dMαn(ω),
∫

Ω

f(ω)dMα(ω)
)

=

= h

(∫

Ω

f(ω)Xαn
(ω)dµ(ω),

∫

Ω

f(ω)Xα(ω)dµ(ω)
)

.

>From H..ormander's formula and properties of the support function

h

(∫

Ω

f(ω)Xαn
(ω)dµ(ω),

∫

Ω

f(ω)Xα(ω)dµ(ω)
)

=

= sup
‖x∗‖≤1

∣∣∣σ∫
Ω f(ω)Xαn (ω)dµ(ω)(x

∗)− σ∫
Ω f(ω)Xα(ω)dµ(ω)(x

∗)
∣∣∣ =

= sup
‖x∗‖≤1

∣∣∣∣
∫

Ω

(σf(ω)Xαn (ω)(x∗)− σf(ω)Xα(ω)(x∗))dµ(ω)
∣∣∣∣ ≤

≤
∫

Ω

sup
‖x∗‖≤1

∣∣(σf(ω)Xαn (ω)(x∗)− σf(ω)Xα(ω)(x∗))dµ(ω)
∣∣ =

=
∫

Ω

h(f(ω)Xαn(ω), f(ω)Xα(ω))dµ(ω) =
∫

Ω

f(ω)h(Xαn(ω), Xα(ω))dµ(ω).

If xn ∈ Xαn(ω) and x ∈ Xα(ω), we get

inf
x∈Xα(ω)

‖xn − x‖ ≤ ‖xn − x‖ ⇒

sup
xn∈Xαn (ω)

inf
x∈Xα(ω)

‖xn − x‖ ≤ sup
xn∈Xαn (ω), x∈Xα(ω)

‖xn − x‖ ⇒

⇒ sup
xn∈Xαn (ω)

inf
x∈Xα(ω)

‖xn − x‖ ≤ h(Xαn(ω)−Xα(ω), 0),

and by the same way

sup
x∈Xα(ω)

inf
xn∈Xαn (ω)

‖xn − x‖ ≤ h(Xαn(ω)−Xα(ω), 0).

The last two inequalities imply relation

h(Xαn(ω), Xα(ω)) ≤ h(Xαn(ω)−Xα(ω)), 0) = |(Xαn(ω)−Xα(ω)|.
Therefore, we �nely conclude

h(Iαn(Ω), Iα(Ω)) ≤
∫

Ω

f(ω)h((Xαn(ω)−Xα(ω), 0)dµ(ω) =

=
∫

Ω

f(ω)|(Xαn(ω)−Xα(ω))|dµ(ω).
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Since Xα1(ω) is integrable bounded, there exists φ(ω) ∈ L(Ω,R), |Xα1(ω)| <
φ(ω) µ−a.e. Further, the relation Xα(ω) ⊆ · · · ⊆ Xαn(ω) ⊆ · · · ⊆ Xα2(ω) ⊆
Xα1(ω) implies |Xα(ω)| < φ(ω), |Xαn(ω)| < φ(ω), µ−a.e., for all n ∈ N. Now,
the next inequality

∫

Ω

|f(ω)(Xαn
(ω)−Xα(ω))|dµ(ω) =

∫

Ω

|f(ω)||Xαn
(ω)−Xα(ω)|dµ(ω) ≤

≤
∫

Ω

|f(ω)|(|Xαn(ω)|+ |Xα(ω)|)dµ(ω) ≤
∫

Ω

|f(ω)|2φ(ω)dµ(ω) < ∞,

enables the application of Lebesgue's dominated convergence theorem

lim
n→∞

h(Iαn
(Ω), Iα(Ω)) = lim

n→∞
h

(∫

Ω

f(ω)dMαn
(ω),

∫

Ω

f(ω)dMα(ω)
)
≤

≤
∫

Ω

lim
n→∞

h(f(ω)Xαn(ω), f(ω)Xα(ω))dµ(ω) =

=
∫

Ω

f(ω) lim
n→∞

h(Xαn(ω), Xα(ω))dµ(ω).

In the same manner as in the proof of Th.3.1, we can see that Xα(ω) =
∩∞i=1Xαi(ω) for all ω ∈ Ω. Since Xα(ω) ∈ Pwkc(X ), the last equality yields
to h(Xαn(ω), Xα(ω)) n→∞−→ 0

Now, we can conclude that

lim
n→∞

h(Iαn(Ω), Iα(Ω)) =
∫

Ω

f(ω) lim
n→∞

h(Xαn(ω), Xα(ω))dµ(ω) = 0.

To prove that for every A ∈ A, the family {Iα(A)}α∈(0,1] de�nes a fuzzy set,
we repeat the preceding proof for any A ∈ A instead of Ω.

So, we have proved that I(A) ∈ Fwkc(X ), for every A ∈ A.
The rest of the proof is the same as in Th. 3.1. 2

The next theorem is a special case of the last theorem when X is �nite
dimensional.

Theorem 3.5. Let (Ω,A, µ) be a nonatomic measure space, X be a �nite di-
mensional Banach space, M : A → Ff (X ) be a µ-continuous fuzzy valued
measure of bounded variation and f ∈ L∞(Ω,R+, µ). Then I : A → Fkc(X ) is
a µ-continuous nonatomic fuzzy valued measure of bounded variation.

Proof: Since for every α ∈ (0, 1] and every A ∈ A, Mα(A) is closed bounded
set in �nite Banach space, the set Mα(A) is compact. Applying Th. 2.1, it
is easily seen that Mα : A → Pk(X ) is a µ-continuous fuzzy valued measure
of bounded variation. Now, by the same reasoning as in the proof of Th. 3.4,
we get that Mα : A → Pwkc(X ) and I : A → Fwkc(X ). Since the dimension
of Banach space X is �nite, weak and strong topologies coincide, meaning that
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every weakly compact set is compact. Now, from Th. 2.1 and by the remark
noted above, we conclude that I : A → Fkc(X ) is a µ-continuous nonatomic
fuzzy valued measure of bounded variation. 2

Next we list some properties of the integral with respect to fuzzy valued
measure. The proofs for the next three Lemmas are simple, so they are omitted.
Let the fuzzy valued measureM be such that all integrals in the related lemma
exist.

Lemma 3.1. If f, g ∈ L∞(Ω,R, µ), M is µ-continuous fuzzy valued measure
of bounded variation and λ ∈ R, then

∫

Ω

(f + g)(ω)dM(ω) =
∫

Ω

f(ω)dM(ω) +
∫

Ω

g(ω)dM(ω)

and ∫

Ω

λf(ω)dM(ω) = λ

∫

Ω

f(ω)dM(ω).

Lemma 3.2. Let M′ and M′′ be µ-continuous fuzzy valued measures of bo-
unded variation such that M′(A)(x) ≤M′′(A)(x) for all A ∈ A and all x ∈ X .
Then (∫

Ω

fdM′
)

(x) ≤
(∫

Ω

fdM′′
)

(x) for all x ∈ X .

Lemma 3.3. Let (Ω,A1) and (Ω,A2) be two measurable spaces, S : Ω → Ω be
an A1-measurable function and f : Ω → R a bounded function. If M : A2 → F
is a µ-continuous fuzzy valued measure of bounded variation, then for every
A ∈ A2 ∫

S−1(A)

(f · S)dM =
∫

A

fd(M · S).

4. Examples
Example 1 Let (Ω,A, P ) be a probability measure space and let M : A →

Ff (R) be the fuzzy valued measure such that for all A ∈ A, M(A)(P (A)) = 1,
M(A)(x) = 0, for all x /∈ [0, P (A)] . The fuzzy valued measure with that
properties we shall cal fuzzy valued probability.

One simple example of that kind of measure is de�ned by

M(A)(x) =
{ x

P (A) , x ∈ [0, P (A)]
0, x /∈ [0, P (A)]

if P (A) 6= 0, and M(A)(x) = I{0}(x) if P (A) = 0.
If X : Ω → R is a random variable, then

I(A) =
∫

A

X(ω)dM(ω),
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A ∈ A, is a new fuzzy valued probability and I(Ω) is fuzzy expectation of X
with respect to fuzzy valued probability. 2

Example 2 This example illustrates some di�culties we could have in de�-
nition and properties of the integral with respect to fuzzy valued measure with
noncompact α-levels, if the Banach space is not re�exive. If X is not re�exive,
then the integral de�ned by I(A) =

∫
A

f(ω)dM(ω), need not to have closed
α-levels. So, in this case it would be more appropriate to change the basic
de�nition of Iα putting Iα(A) = cl

∫
A

f(ω)dMα(ω).
On the other hand, since X is not re�exive, according to [7], there exists two

bounded sets S, T ∈ Pfc(X ), S ∩ T = ∅, which can not be separated. It means
(as it was shown in [7]) that the set S − T is not closed set. Now, we de�ne
the fuzzy valued measure M : A → Ff (X ) on the Lebesque measure space
([0, 2),A, µ) by M(A) = µ(A ∩ [0, 1))s − µ(B ∩ [1, 2))t, A ∈ A, where s and t
are fuzzy sets such that for some β ∈ (0, 1], sβ = S, tβ = T . Then, putting
f(x) = 1 for all x ∈ [0, 2),

Iβ([0, 2)) = cl

∫

[0,2)

fdMβ = cl

(∫

[0,1)

Sdµ−
∫

[1,2)

Tdµ

)
= cl(S − T ) 6=

6= S − T = cl S − cl T = cl

∫

[0,1)

Sdµ− cl

∫

[1,2)

Tdµ = Iβ([0, 1)) + Iβ([1, 2)),

which leads to the conclusion that I is not a fuzzy valued measure. 2

5. Conclusion
In this paper the de�nition and the basic properties of the integral with

respect to fuzzy valued measure are given. In all applications which involve
measure, when measurement or data are imprecise, the structure de�ned in this
paper can be applied.

The directions of further investigation are numerous: speci�c properties of
integral, application on random case - expectation, conditional expectation,
martingales and similar structures, application in economy.

References
[1] Aumann, R. I., Integrals of set valued functions. J. Math. Anal. Appl. 12 (1965),

1�22.
[2] Ban, J., Radon Nikodym theorem and conditional expectation for fuzzy valued

measures and variables. Fuzzy Sets and Systems 34 (1990), 383�392.
[3] Dinculeanu, N., Vector measures. New York: Pergamon 1967.
[4] Dozzi, M. , Merzbach, E., Schmidt, V., Limit theorems for sums of random fuzzy

sets. J. Math. Anal. Appl. 259(2) (2001), 554-565.
[5] Hiai, F., Radon Nikodým theorem for set valued measure. J. Multivariate Anal.

8 (1978), 96�118.



220 M. Stojakovi¢, Z. Stojakovi¢

[6] Kaleva, O., The calculus of fuzzy valued functions. Appl. Math. Lett. 3(2) (1990),
55�59.

[7] Klee, V. L., Convex sets in linear spaces II. Duke Math. J. 18 (1951), 875-883.
[8] Papageorgiou, N., On the theory of Banach space valued multifunctions, 1. Inte-

gration and conditional expectation. J. Multiv. Anal. 17 (1985), 185�206.
[9] Papageorgiou, N., On the theory of Banach space valued multifunctions, 2. Set

valued martingales and set valued measure. J. Multiv. Anal. 17 (1985), 207�227.
[10] Rodriguez, J., On integration of vector functions with respect to vector measure.

Czechoslovak Math. J. 56(131) (2006), 805-825.
[11] Puri, M. L., Ralescu, D. A., Convergence theorem for fuzzy martingale. J. Math.

Anal. Appl. 160 (1991), 107�122.
[12] Stojakovi¢, M., Fuzzy random variable, expectation, martingales. J. Math. Anal.

Appl. 184(3) (1994), 594�606.
[13] Stojakovi¢, M., Fuzzy valued measure. Fuzzy Sets and Systems 65 (1994), 95�104.
[14] Stojakovi¢, M., Stojakovi¢, Z., Addition and series of fuzzy sets. Fuzzy sets and

systems 83 (1996), 341-346.
[15] Stojakovi¢, M., Stojakovi¢, Z., Integral with respect to fuzzy measure in �nite

dimensional Banach space. Novi Sad J. Math. Vol. 37 No.1 (2007), 163-170.
[16] Stojakovi¢, M., Stojakovi¢, Z., Support functions for fuzzy set. Proc. R. Soc.

Lond. Ser. A 452 (1996), 421-438
[17] Stojakovi¢, M., Decomposition and representation of fuzzy valued measure. Fuzzy

Sets and Systems 112 (2000), 251-256.
[18] Teran, P., An embedding theorem for convex fuzzy sets. Fuzzy Sets and Systems

135 (2005), 391-399.
[19] Uhl, J. J., Diestel, J., Vector Measures. Math. Surveys Vol. 15, Providence R.I.:

Amer. Math. Soc. 1977.
[20] Wang, Z., Klir, G., Wang, W., Fuzzy measure de�ned by fuzzy integral and their

absolute continuity. J. Math. Anal. Appl. 203(1) (1996), 150-165.
[21] Zadeh, L. A., Fuzzy sets. Inform. and Control 8 (1965), 338�353.

Received by the editors October 18, 2007


	Introduction
	Preliminaries
	Integration
	Examples
	Conclusion

