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FUZZY VALUED MEASURE BASED INTEGRAIX
Mila Stojakovid, Zoran Stojakoviéd

Abstract. In this paper we extend the notion of integration in fuzzy
set theory. The main purpose is to introduce and develop the notion of
integral with respect to fuzzy valued measure where the basic space for
fuzzy sets is Banach separable space. Some general properties of that kind
of integral are investigated.
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1. Introduction

Since L. Zadeh published his now classic paper [21] almost thirty years ago,
fuzzy set theory has attention from researches in a wide range of scientific ar-
eas, especially in recent years. Theoretical advances and applications have been
made in many directions. The theory of fuzzy sets, as its name implies, is
a theory of graded concepts, a theory in which everything is a matter of de-
gree. This theory was developed to give techniques for dealing with models for
natural phenomena which do not lend themselves to analysis by classical meth-
ods based on probability theory and bivalent logic. Applications of this theory
can be found in artificial intelligence, computer sciences, expert systems, logic,
operations research, pattern recognition, decision theory, robotics and others.

In classical set theory if A C X', this relation can be described by indicator
(or characteristic) function I4 : X — {0,1}, where Io(z) = 1if x € A and
Ia(z) = 0if z € X\A. One can interprete the function I4 as the degree of
membership of z in X'. There are only two possibilities: 0 or 1. In fuzzy concept
the set A is identified with the membership function w4 : X — [0, 1] where the
interpretation u 4 (z) is the degree to which “z is in A", or x is compatible with
A. Fuzzy set A of X we identify with its membership function ua. The set of
all functions v : X — [0, 1] we denote by F(X) and we say that F(X) is the set
of all fuzzy sets defined on X.

The concept of fuzzy valued measure is a natural generalization of set valued
measure. Fuzzy valued measure has the range in the set of fuzzy sets and it
is additive in the cense of addition defined in the set of fuzzy sets. Contribu-
tions in this field were made, among others, by Puri,Ralescu [11], Ban [2], [11],
Stojakovié¢ [13], [17], [15].
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In this paper, using an additive fuzzy valued measure with values in separable
Banach space, a notion of integral of single valued function with respect to a
fuzzy valued measure is defined and some properties are determined. The study
of integrals where integrand or measure has codomen in set of fuzzy sets is
usually connected with very complicated structures and procedures. That is
the reason why some methods and concepts which simplify the research in that
field are introduced. Most often it is the a-level method where a fuzzy valued
object is decomposed (when it is possible) into a family of set valued or single
valued objects. Also, the notion of support function as usefull tool in treating
weak convergence, makes it possible to simplify some investigations especially
for fuzzy valued measure. Namely, there are some properties of fuzzy valued
measure and integral which have an implicative or equivalent connection with
its support function.

At the end of the paper, some examples which illustrate the theory are given.

2. Preliminaries

First, for the convenience of the reader, we give a list of symbols used in this
paper:

R, R4 set of reals, set of non negative reals,

N set of natural numbers,

(Q, A, p) complete measure space where A is a o-algebra on
and p is a measure on A,

X, 1) real separable Banach space with norm || - ||,

X dual of X (set of bounded linear functionals z* : X — R),

P(X) set of nonempty subsets of X,

P ) (wh) (k) (c) (X) set of nonempty (closed),(weakly compact), (compact),
(convex) subsets of X,

F(X) set of fuzzy sets defined on X with nonempty a-levels,

Fi)wk) (k) (e) (X) subset of F(X) with (closed), (weakly compact),
(compact), (convex) a-levels,

h Hausdorff metric on Py (X),

Loo(Q, X, 1) set of measurable bounded a.e. functions f: Q — X,
Li(Q,X, 1) set of measurable, p-integrable functions f : Q — X,
L1(92, X, 1) set of measurable, p-integrable functions F : Q@ — P(X),
A, X, 1) set of measurable, p-integrable functions X : Q@ — F(X),
Sk set of measurable, integrable selectors of F': Q@ — P(X),
oalx®) support function of a set A C X, oa(z*) = supyc4(z, z*),
clA closure of A, A C X,

coA convex closure of A, A C X,

14 characteristic (indicator) function of A,

Uq a-level of fuzzy set u,

@ in index always denotes a-level of fuzzy set,

A— B, A—B={a—-b,ac Ajbe B}, A,B e P(X),
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Throughout this paper let X be a real separable Banach space, X* be its
dual space and (2, A, 1) be a complete measure space where A is a o-algebra
and p is a measure. Hausdorfl metric h : Py (X) x Ppp(X) — R is defined by

h(A, B) = max{sup inf ||x — y||,sup inf ||z — ,
(4.5) = max{supinf e~y sup ot~ )

and for A C X, |A| = h(A,{0}) = sup,c 4 ||z||. By 04(-) we denote the support
function of a set A C X defined by g4 (z*) = sup,c4(a*, x), 2* € X"

We shall denote by F(X) the set of fuzzy sets u : X — [0, 1] for which the a-
level sets u,, of u, defined by u = {x € X : u(z) > a}, « € (0,1] are nonempty
subset of X for all a € (0,1]. By F(f)wk)(k)(c)(X) we will denote a subset
of F(X) whose a-levels are (closed), (weakly compact), (compact), (convex).
Notice that there is no any supposition about the set ug = cl{z € X : u(z) > 0}

If X :Q — F(X) is a fuzzy valued function then the function X, : Q —
P(X) defined by X, (w) = (X(w))q is a set valued function for every « € (0, 1].
More about fuzzy and set valued functions can be found in [1], [5], [E], [6], []],
1, [12, [T3], [19], [20].

The fuzzy valued measure (see [2], [11], [13], [I7]) is a natural generalization
of the set valued measure (see [3], [B], [8],[9], [19]). Let (€2, .A) be a measurable
space with A a o-algebra of measurable subsets of the set Q. If M : A — F(X)
is a mapping such that for every sequence {A4; };cn of pairwise disjoint elements
of A the next equality is satisfied

M JA) =D M4,
=1 =1
where

<z; M(AZ)> (x) = Sllp{}glg{M(Ai)(xi)} Cr = Zmi(unc.conv.)},

i=1

and M(0) = I;py, then M is a fuzzy valued measure. If for every sequence
{Ai}ien of pairwise disjoint elements of A, (3,2 M(4;)), = >0y Ma(4i),

€ (0,1}, then M, : A — P(X) is a set valued measure. We shall denote
by Si,, the collection of all (vector valued) measure selectors of the set valued
measure M. The variation |M | of the set valued measures M, : A — P(X),
is given by [Mqo|(A) =sup, > 4o [Ma(A)|, where the supremum is taken over
all partition 7 of A into a finite number of pairwise disjoint members of A. A
fuzzy valued measure M : A — F(X) is of bounded variation if |M,|(Q) < oo
uniformly for « € (0,1]. A fuzzy valued measure M is p-continuous if A € A
with (A) = 0 implies M(A) = Ijoy. The set A € Ais an atom of the fuzzy
valued measure M if M(A) # I;oy and for all B C A, M(B) = Ioy. A fuzzy
valued measure M with no atoms is said to be nonatomic.

The integral of a fuzzy valued function X : Q — F(X) (with respect to mea-
sure 1) is a fuzzy set defined by ([, Xdu)(z) = sup{a € (0,1] : z € [, Xodpu},
A € A, where the integral fA Xodp of the measurable set valued function



210 M. Stojakovié, Z. Stojakovié

: Q — P(X) is defined by [, Xodp = {f, fdp : f € Sx.} . The inte-
gral fQ w)dpu(w) is defined in the sense of Bochner. A measurable set valued
function X, : Q — P(X) is integrably bounded if there exists integrable func-
tion h : Q@ — Ry such that [Xo(w)| = sup,ex, () [|7]] < h(w), p—a.e. The
integral of a fuzzy valued function is a natural generalization of the integral
of a set valued function. It has been studied in connection with problems in
probability, statistics, measure theory ([2], [4], [6], [12] [15], [19], [20]).

IM: A— F(X)is a fuzzy valued measure and X : Q@ — F(X) is a
measurable fuzzy valued mapping, then X is said to be a Radon Nikodym
derivative of M with respect to p if M(A) = [, X ) for all A € A
and we write dM = X du. A Banach space X has a Radon leodym property
(RNP) if for each finite measure space (2, A, 1) and each p-continuous X-valued
measure m : A — X of bounded variation, there exists a Bochner integrable
function f : Q@ — X such that m(A) = [, fdu for all A € A.

In a similar way as the integral of the fuzzy valued function with respect
to measure g is introduced, the integral of a measurable function f :  — R
with respect to fuzzy valued measure M : A — P(X) will be defined in the
next section of this paper. For that definition we need the definition of the
related structure in the set valued case. Let (€,.4) be a measurable space, X
be a Banach space and m : A — X be a countable additive measure of bounded
variation such that (Q,.4,m) is a complete measure space. For the function
f: Q — Rintegrable with respect to |m|, the integral of f with respect to m can
be defined. We denote it by fQ w)dm(w). Detailed construction and properties
of this kind of integral can be found in [3], [I0]. If M : A — P(X) is a set valued

measure of bounded variation, then [, f(w)dM (w e ¢ Jo fw)dm(w), m €
Sar}, where Sy is the set of measure selectors of ]W (18-
Now we give some theorems which will be used in the next section.

Theorem 2.1. [T]J Let X be a Banach space and u; € Fi(X). If for every
€ (0,1, 3252, [(ui)al < oo, then

<Z u1> = Z U)oy Jor every a € (0,1],
i=1

[e3

and Y57 u; € Fr(X).

Theorem 2.2. [i6] Let X be a Banach space and w; € Fup(X). If,
Yoo [(wi)al < 00, uniformly for a € (0,1], then

<Zul> = i (Ui)a, for every a € (0,1],

=1
and Zil u; € fwk(X)

Lemma 2.1. [71] Let M be a set and {M,, : a € [0,1]} be a family of subsets
of M such that (1) Mg = M, (2) a < b= M, C M,, (3) a1 < az < -+ <
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ap < -+ —a= N2, M, =M,. Then the function u: M — [0,1] defined by
u(z) = sup{a € [0,1] : @ € M,} has the property that {x € M : u(z) > a} = M,
for every a € [0,1].

3. Integration

Let (2, 4, ) be a complete measure space, M : A — F(X) be a u- contin-
uous fuzzy valued measure such that for every a € (0,1], M, : A — P(X) is a
set valued measure and f : Q — R, a measurable function, f € Lo (Q, Ry, ).
Then for every A € A the mapping Z(A) : X — (0, 1] is defined by

I(A)(z) ¥ supfa € (0,1] : 7 € To(A)},

where
Z.(4) :/ fw)dMy(w) = {/ flw)dm(w), m e SMQ}7 A€ A,
A A
for every a € (0,1]. We shall write

7(4) = /A f(@)dM(w),

and we shall call it - integral with respect to fuzzy valued measure. We can
extend our definition of integration to integrable functions f : €2 — R using the
decomposition f = f* — f=, where f* =1(|f|+ f) >0, f~ = 3(f|- f) >0.
Then [, f(@)dM(w) = [ f*(@)AM@) — [, [~ (@)dM(w).

In the next five theorems we prove some results concerning the basic property
of the integral - the property that the integral Z is a new measure on the
measurable space (£2,.4) on which the basic measure M is defined. From the
definition of the integral 7 it is easy to notice that the "fuzzy" integral Z is
closely related to the "set" integral Z,. That connection will be used often in
the proof of theorems. In the first three theorems the range of the measure
M is a set F(X) of fuzzy sets with compact or compact convex a-levels in a
separable Banach space X , and in the fourth theorem a-levels are (only) closed
but the Banach space X is separable and reflexive. In the last theorem the
Banach space is finite dimensional.

Theorem 3.1. Let X be a real separable Banach space and M : A — Fi.(X)
be a p-continuous fuzzy valued measure of bounded variation. If for every a €
(0, 1] there exists a set Co € Pre(X) such that My (A) C |(My|(A)Cy forall A €
A, then for every f € Loo(QQ, Ry, 1), T : A — Fre(X) is a p-continuous fuzzy
valued measure of bounded variation. If M is nonatomic, then T is nonatomic
to.

ProOF: Since fuzzy valued measure M is of bounded variation, for every
sequence {A;};en of pairwise disjoint elements of A, according Prop.15 [3], we
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have Y .2 [Mq(A4;)] < D52, [Mal(4;) < co. By the compactness of M, (A)
for every a € (0,1] and every A € A, applying Th 2.1, we get that M, : A —
Pre(X) is a set valued measure. Since M : A — F.(X) is a p-continuous fuzzy
valued measure of bounded variation, M, : A — Pg.(X) is a u-continuous set
valued measure of bounded variation. M, satisfies all the conditions of Prop.
4.1 and Cor. 5.3 [5], which implies that there exists a unique integrably bounded
set valued function X, : © — Pg.(X) which is Radon-Nikodym derivative of

M,. Then
A):/AXa(w)du(w)

for all A € A and all a € (0,1], which means that dM, = X,du.

Since f € Loo (4, Ry, pt), Xo : @ = Pre(X) and | f Xo| < |f]|Xal, it follows
that fXqo : Q — Prc(X) defined by (f Xo)(w) = f(w)Xa(w) is a p-integrable,
integrable bounded set valued function.

In order to prove that [, f(w)dM w = Jo [( d w(w), we shall
show that fo(w)d./\/la(w) - fﬂf(w) (w)du(w) and fQ w) Xo(w)dp(w) C
Jo £ a(w)-

If we suppose that z € fQ d./\/l (w), then there exists a measure selec-
tion m, of M, such that x = fﬂ w)dmy (w). Tt means that there exists an

integrable selection h, of X, which is Radon Nikodym derivative of m,, i.e.
dmey = hadp. Then

2= / F(@)ha(@)dpu(w) € / J(@) Xa (@)du(w),
Q Q

that is, [, f(w)dMa(w) S [, f( w)du(w). On the other hand, if
€ [of(w)Xe (w)du( ), then there ex1sts a measurable selection hy, € Sx,
such that © = [, f(w)ha(w)du(w). Since hq is integrably bounded it follows
that

/Aha(w)du(w) =mq(A), A€ A,

that is, ho du = dm,. It is obvious that m, € S, and

o= [ F@ha()du) - /Q F(@)dma (@) € /Q J(@)dMa(w)

Having proved that [, f(w)d = [o f( w)du(w), it remains to
recall that fX, = (fX), and

0) = [ 10)aMa(w) = | F)Xalwhdn(o) = ( / f(w)X(w)du(w)>a-

By Cor. 5.4 [], [, f(w)dMa(w) € Pre(X).

In order to prove that the family {Za(Q)},c(0,1) € Pre(X) defines uniquely
the fuzzy set Z(€2), we use Lemma 2.1. From the relation o > § = M, (Q2) C
M3(2), we get Z,(2) C Zp(Q2). Let us consider the sequence {ay, }nen C (0,1],
o < ag < < ap <o — . Equality N2, M, (A) = Mo (4) , A € A,
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implies N2, Sam,, = Sm, - By Prop.5.2 [9], Sm, = {[gdp : g € Sx,}

for all 3 e {a, al,ag,- -,a; -}, where dMpg = Xpgdu. It is obvious that
Sx, €N, Sx, . . Since sets on the both sides of the last inequality are closed,
if Sx, # N2 1SX then there exists a selection ¢ € N2, Sy, , g ¢ Sx,-
The last assumptlon leads to the conclusion that there exists my = [gdpu,
mg € N219Mm,,, Mg & Sm,,, which contradicts the fact that N7, Sam,,, = Sm,

Knowing that X (w) € Prc(X) for all a € (0,1], and all w € Q, we get X, (w) =
N2 X, (w) for all w € Q. According the statement (IV) page 107 and Cor.5.4
from [5], all integrals [, f(w)Xq(w ), Jo f(w)Xa, (w)dpu(w) could be con-
sidered as a Bochner integrals in a separable real Banach space X in which the
space Prc(X) is embedded as a closed convex cone. Since all X, are uniformly
integrably bounded by | X, ]|, the next implication X,, (w) =3 X, (W) =
Jo J( (w)dp(w) "= [, f( w)dp(w) is true in the space X. Now,
applylng Lennna 2 1 we get that the fannly of sets { [, f(w)dMq(w )}ae(O,l] €

Pre(X) generates one and only one fuzzy set Z(2) : X — [0, 1] defined by

Z(Q)(x) = sup {a €(0,1):z € /Qf(w)d/\/la(w)} )

The preceding arguments are now repeated for any A € A instead of .

In order to prove that Z : A — Fr.(X) is a fuzzy valued measure, we prove
first finite additivity. From Lemma 3 [14] (Z(A4) + Z(B))a = Za(A) + Zo(B) for
every a € (0,1]. Since

z,(4+8)= [ @M = /. @K =
— [ f)Xa@)duw) + [ £0)Xa()duw) = Ta(4) + a(B),
A B

for all A, B € A, we get the finite additivity for Z.

To prove countable additivity of Z we consider first countable additivity of
Za.

If {A,}nen is the sequence of pairwise disjoint elements of A, the equality

Ta (glA") ZI n) +Za ( D A,L>

n=k+1

h <za ([j A,L> ,iIQ(An)> .

) ﬁzl n:; _

—h <Zza<An>+za< U An> > ) A(An)) <
n=1 n=k+1 = n=k+1

n=1
(94
n=k+1

implies

_h<1a< An>, > Ia<An)> < > Ta(An)| <
n=k+1 n=k+1 n=k+1
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’/ e nk+1/f HMal)] <

[ reldmale Z/ ) dIMa](@).

n= k+1A” n=k+1

Since M, is a set valued measure of bounded variation, |M,| is a finite positive
measure absolutely continuous with respect to . Letting n — oo, we get

[ (00) Smn) -
n=1 n=1

<[ U@ldMe Z/ D dIMa]() =5 0.

rekg14n n=k+1
To prove countable additivity of Z we need to establish first that for every
sequence {A, }nen of pairwise disjoint elements of A

ICATRIES 3y IEIERNEE
—Z/ w)|d|[Mal(w Z/ )| d|Mal(w) < oc.

n=k+1

Since Z,(A) are compact for all a € (0,1] and all A € A, the last relation allow
to apply Th. 2.1,

(ZI(AQ) = ZIQ(Ai), for every a € (0,1].

Further, for every z € &,

I(U Ap)(z) = sup {a €(0,1]:x EIQ(U An)} =

n=1

:sup{a €(0,1]:z € iIQ(An)} =

= sup {a €(0,1]:x € (ZZ(AM) } = (ZI(A“)> (z)
n=1 o n=1

which gives the countable additivity of Z.

It is easily seen that 7 is absolutely continuous with respect to M, which
implies that Z is of bounded variation too. For the same reason Z(0) = Io}.
If M is nonatomic then all measure selection m of M, and all the integrals
[ fw ) are nonatomic too. So, 7 is also nonatomic.

So we conclude that Z7: A — fkc( ) is a p-continuous fuzzy valued measure
of bounded variation. a
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Theorem 3.2. Let X be a real separable Banach space with Radon Nikodym
property and M : A — Fi(X) be a p-continuous nonatomic fuzzy valued mea-
sure of bounded variation. If for every a € (0,1] there exists a set C, €
Pre(X) such that My(A) C |My|(A)Cy for all A € A, then for every f €
Loo(QQRy, 1), Z: A— Fre(X) is a p-continuous nonatomic fuzzy valued mea-
sure of bounded variation.

PRrOOF: Since Banach space X has the Radon-Nikodym property, we can
apply Th.1.2 [5] which provides convexity of the set M,(A4). The rest of the
proof is the same as the proof of Th. 3.1.

Theorem 3.3. Let X be a real separable Banach space, M : A — Fi.(X) be a
w-continuous fuzzy valued measure of bounded variation and f € Loo(Q, Ry, p).
If for every « € (0,1] and every A € A, 0 < u(A) < oo, there exists B, C A,
1(By) > 0 and compact set Co, € X such that Mo (Dy)/u(Dy) C Cq for all
D, C B, (Do) > 0, then T : A — Fie(X) is a p-continuous fuzzy valued
measure of bounded variation.

PRrROOF: Since all the conditions of Th.5.2. [5] are satisfied, there exists a
unique Radon Nikodym derivative X, : Q — Pro(X), dM, = X, du. The rest
of the proof is the same as in the Th.3.1. O

Theorem 3.4. Let (Q, A, 1) be a nonatomic measure space, X be a real re-
flexive separable Banach space and f € Loo(,Ry,p). If M : A — Fp(X)
is a p-continuous fuzzy valued measure of bounded variation, then for every
€ Loo(QRy 1), Z: A— Fre(X) is a pu-continuous fuzzy valued measure of
bounded variation. If M is nonatomic, then I is nonatomic to.

Proor: By Th. 2.2, M, : A — P;(X) is a p-continuous fuzzy valued measure
of bounded variation, meaning that M, (A) is a closed bounded set for every
a € (0,1] and for every A € A. Separable reflexive Banach space has the Radon-
Nikodym property, so we can apply Th.1.2 [5] which provides convexity of the
set M (A4). By the consequence of Banach-Saks theorem, since M, (A4) C X
is convex, closure and weak closure of the set M, (A) are equal. Now, since
the Banach space is reflexive if and only if the unit ball is weakly compact, we
can establish that M, (A) is weakly compact. Also, separability of reflexive
space X implies separability of X*. Now, since My : A — Pyge(X), from
Cor. T [9], M, has a unique Radon-Nikodym derivative X, € L(Q, X, pu),
Xa 1 Q — Ppe(X). From convexity of X, (w), closure and weak closure of that
set are equal, implying X, : Q@ — Pyre(X). As M, is a set valued measure
of bounded variation, by Prop. 4.1 [B], X, is integrably bounded set valued
function. Now applying the Corollary of Prop.3.1.[8], we get Zo(A) € Puke(X).

Since f € Loo(Q, Ry, 1), Xo : Q@ — Puke(X) and | f Xo| < |f]| Xal, it follows
that fXq @ Q — Pure(X), defined by (f Xo)(w) = f(w)Xo(w), is a p-integrable,
integrable bounded set valued function.

To prove that the family {Z,(2)}ae(0,1] defines a fuzzy set, we use Lemma
2.1. From the relation a > 8 = M,(2) C Mg(Q), we get Zo(Q) C Zs(Q).
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Further, let {a,,} C (0, 1] be an increasing sequence converging to « € (0, 1], i.e.
0<a;<as<- - <an<- - —a<l. We shel show that Z,, () % Za ().
By definition

D0, (.2 @) = 1 [ )Mo, @), [ Fe)aMa()) =

—h ( [ 5%, @aute, [ f(w)Xa(w)du(w)) .

>From Hormander’s formula and properties of the support function
([ s o), [ X0 @) ) -

el 91, 760X ) @) = O )Xot (@)

sup
llz=]<1

/Q (0 f(w) X () (@") = Uf(W)Xa(W)(I*))d/‘(W)‘ <

< / SUD [0 10y xe () (27) = O )% () (@) dpi(w) | =
Q Jlz* ] <1

=/, h(f (W) Xa, (W), f(w) Xo(w))du(w) = A f@)h(Xa, (W), Xo(w))dp(w).

If 2, € X,, (w) and = € X4 (w), we get

nf s — o] < flan — 2] =

2€X o (w)
sup inf |, —z| < sup lzn — || =
Tn€Xa, (w) T€Xa(w) Tn€Xa, (W), TEX o (w)

= sup inf |z, —z|| < h(Xq, (W) — X4 (w),0),
2n€Xa, (W) 2€EX o (w)

and by the same way

sup inf lzrn — z|| < h(Xa, (w) — Xo(w),0).
TEX o (w) Tn€Xay, (w)

The last two inequalities imply relation
hMXa, (W), Xa(w)) < MXa, (W) — Xa(w)),0) = |[(Xa, (W) — Xa(w)|.

Therefore, we finely conclude

MZa, (), Za () S/Qf(w)h((Xan(w)—Xa(w)aO)du(w) =

- /Q F(@)(Xa, (@) — Xaw)ldu(w).
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Since X, (w) is integrable bounded, there exists ¢(w) €
¢(w) p—a.e. Further, the relation X,(w) C --- C X, (w
p—a.e.,

X, () implies [Xo ()] < 6(w), |Xa, )] < ¢(w),
the next inequality

L(%, R) [ Xay (W) <
) € C Xa,(w) €
for all n € N. Now,

1) (o ) = X @) it /u I, ) = Xa(w)ldn(w) <

/v (1 X ()] + [ X /u )26/(w)dp(w) <

enables the application of Lebesgue’s dominated convergence theorem

nlLH;O h(Ian (Q)vza( = nlLH;o h </ f dMaﬂ / f dM )

fg/Q1mahLﬂwxxmxwxf@»x;ou»mmw>=

n—oo

= [ 1) Jim h(Xo, (). Xalw)du(o).

In the same manner as in the proof of Th.3.1, we can see that X,(w) =
N2, X, (w) for all w € Q. Since Xy(w) € Pure(X), the last equality yields
to n(Xaq, (W), Xa(w)) =0

Now, we can conclude that

lim h(Z,,, () /f ) lim (X, (). Xo(w))du(w) = 0.

To prove that for every A € A, the family {Z,(A)}ae(0,1) defines a fuzzy set,
we repeat the preceding proof for any A € A instead of (2.

So, we have proved that Z(A) € Fyrc(X), for every A € A.

The rest of the proof is the same as in Th. 3.1. a

The next theorem is a special case of the last theorem when X' is finite
dimensional.

Theorem 3.5. Let (2, 4, 1) be a nonatomic measure space, X be a finite di-
mensional Banach space, M : A — Fp(X) be a p-continuous fuzzy valued
measure of bounded variation and f € Loo(Q,Ro, ). Then T : A — Fre(X) is
a p-continuous nonatomic fuzzy valued measure of bounded variation.

PRrROOF: Since for every a € (0,1] and every A € A, M, (A) is closed bounded
set in finite Banach space, the set M, (A) is compact. Applying Th. 2.1, it
is easily seen that M, : A — Pi(X) is a p-continuous fuzzy valued measure
of bounded variation. Now, by the same reasoning as in the proof of Th. 3.4,
we get that My 1 A — Pyupe(X) and T 1 A — Fue(X). Since the dimension
of Banach space X is finite, weak and strong topologies coincide, meaning that
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every weakly compact set is compact. Now, from Th. 2.1 and by the remark
noted above, we conclude that Z : A — Fy.(X) is a p-continuous nonatomic
fuzzy valued measure of bounded variation. a

Next we list some properties of the integral with respect to fuzzy valued
measure. The proofs for the next three Lemmas are simple, so they are omitted.
Let the fuzzy valued measure M be such that all integrals in the related lemma
exist.

Lemma 3.1. If f,g € Loo(Q,R, 1), M is p-continuous fuzzy valued measure
of bounded variation and A € R, then

/ (f + 9)(@)dM(w) = / F(@)dM(w) + / 9()dIM(w)
JQ JQ

JQ

and

/ A (@) dM(w) = A / F(@)dM(w).
Q Q

Lemma 3.2. Let M’ and M" be p-continuous fuzzy valued measures of bo-
unded variation such that M'(A)(z) < M"(A)(z) for all A€ A and allx € X.

(Lme>@”§<Lf®MO(@ for allz € X.

Lemma 3.3. Let (Q, A1) and (2, A2) be two measurable spaces, S : Q — 2 be
an Aj-measurable function and f : Q — R a bounded function. If M : Ay — F
18 a p-continuous fuzzy valued measure of bounded variation, then for every

AEAQ
/ (f~S)d/\/l:/fd(M-S).
S—1(A) A

4. Examples

Example 1 Let (), A, P) be a probability measure space and let M : A —
F¢(R) be the fuzzy valued measure such that for all A € A, M(A)(P(A4)) =1,
M(A)(xz) = 0, for all x ¢ [0, P(A)] . The fuzzy valued measure with that
properties we shall cal fuzzy valued probability.

One simple example of that kind of measure is defined by

—+=, €0, P(A)]
Mmmw={éw x ¢ [0, P(A)

if P(A) # 0, and M(A)(x) = Iy (z) if P(A) = 0.
If X:Q — Risarandom variable, then

ﬂm:AXMmmm
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A € A, is a new fuzzy valued probability and Z(2) is fuzzy expectation of X
with respect to fuzzy valued probability. O

Example 2 This example illustrates some difficulties we could have in defi-
nition and properties of the integral with respect to fuzzy valued measure with
noncompact a-levels, if the Banach space is not reflexive. If X’ is not reflexive,
then the integral defined by Z(A) = [, f(w)dM(w), need not to have closed
a-levels. So, in this case it would be more appropriate to change the basic
definition of Z, putting Z(A) = ¢l [, f(w)dMq(w).

On the other hand, since X is not reflexive, according to [7], there exists two
bounded sets S, T € Py.(X), SNT = (), which can not be separated. It means
(as it was shown in [7]) that the set S — T is not closed set. Now, we defline
the fuzzy valued measure M : A — F;(X) on the Lebesque measure space
([0,2), A, n) by M(A) = p(ANJ0,1))s — u(BNI1,2))t, A€ A, where s and ¢
are fuzzy sets such that for some § € (0,1], sg = S, tg = T. Then, putting
f(z) =1for all z € [0,2),

[0,2) [0,1)

Z5(]0,2)) = cl fdMg =cl ( Sdy — /[1 . Tdﬂ) =cd(S-T)#

£S-T=cdS—dT=c Sdy — cl / Tdu =17Z5(]0,1)) + Zs([1,2)),
[0,1) [1,2)

which leads to the conclusion that Z is not a fuzzy valued measure. O

5. Conclusion

In this paper the definition and the basic properties of the integral with
respect to fuzzy valued measure are given. In all applications which involve
measure, when measurement or data are imprecise, the structure defined in this
paper can be applied.

The directions of further investigation are numerous: specific properties of
integral, application on random case - expectation, conditional expectation,
martingales and similar structures, application in economy.
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