
Novi Sad J. Math.
Vol. 37, No. 2, 2007, 181-192

FACULTY INFORMATION SYSTEM BASED ON
OPEN SOURCE TECHNOLOGIES

Sr�an �krbi¢1, �arko Bodro²ki1, Biljana Pupovac1, Milo² Rackovi¢1

Abstract. In this paper we present the use of open source tools and
technologies in information system development process at the Faculty of
Sciences in Novi Sad. We describe speci�c conditions in which this infor-
mation system is being developed, and present its architecture in detail.
In addition, we give an overview and present the way in which we used the
most important technology in the implementation of this system - EJB
3.0 and describe speci�c open source tools used in the implementation
processes. Finally, we present our conclusions and generalize them to all
information systems developed in similar environments.
AMS Mathematics Subject Classi�cation (2000): 68N01
Key words and phrases: information system architecture, EJB3, web ser-
vices, Java

1. Introduction
The Faculty of Sciences, one of the largest faculties of the University of

Novi Sad employs over 400 sta� and has substantial IT requirements. More-
over, exchange of data in electronic form with other faculties, the Rectorate and
Ministry o�ces has become a must. The IT environment at the Faculty has het-
erogeneous application platforms and associated servers, mainly implemented in
obsolete technologies. To address the IT needs, the Faculty is developing and
deploying an open source information system.

There are many reasons why open source platform has been chosen. Free and
open source software has been used to create many of today's most innovative
products and solutions [3]. Nevertheless, an element of risk in deploying open
source based solutions has been perceived. Open source systems lack the comfort
zone that a commercially acquired solution provides; rather, support comes from
bulletin boards and the like.

However, open source software has been widely used for a long time in aca-
demic institutions. The Faculty of Sciences in Novi Sad is no exception. As a
consequence, IT sta� and researchers have valuable experience in open source
software usage and maintenance. In this way, the usage of this type of software
comes with drastically lower cost than usual. Also, because open source software
is more or less free, there is often the misperception that service and support

1University of Novi Sad, Faculty of Science, Department of Mathematics and Informatics,
Trg D. Obradovi¢a 4, 21000 Novi Sad, Serbia,
e-mail: {shkrba, bodroskiz, biljanap, rackovic}@uns.ns.ac.yu



182 S. �krbi¢, �. Bodro²ki, B. Pupovac, M. Rackovi¢

should also be correspondingly priced, which is a di�cult mindset to break. Al-
though the open source phenomenon is sometimes characterized as a threat for
the software development industry, small to medium-sized enterprises anywhere
in the world leverage the innovative open source model as an infrastructure on
which to create new business opportunities [6]. Being the most complete and
most popular open source development technology, Java platform is used.

In this paper we give details about the architecture of the information system
and describe speci�c technologies and products used in software development
and production. In the following section we describe conditions in which this
information system is being developed. In addition, we explain architecture of
the system devised to allow successful development in this environment. The
third section describes technologies used to implement the system according to
constraints and goals set by its architecture. In addition, it contains a brief
retrospect about lessons learned in this new �eld. The fourth section introduces
speci�c tools used to develop and deploy components of the information system
together with the discussion and reasons why these products are used. The �nal
section is the conclusion.

2. Architecture of the Information System
The Faculty of Sciences, being an institution that, among others, educates

computer scientists and practitioners, has enough human resources to develop
the information system on its own. However, the structure of IT experts is
heterogeneous. They are divided in independent teams that streamline research
and practice according to their interests. That is why it was decided that every
team will develop one large segment of the system. These segments do most
of their work on their own, but communication between them is necessary and
vital for implementation of integrative requirements.

In order to divide e�ort to individual teams, the information system is seg-
mented in ten segments:

• student service,

• accounting,

• human resources,

• library information system,

• teaching and e-learning,

• �xed assets,

• research project management,

• document management,

• business intelligence.



Faculty Information System Based On Open Source Technologies 183

First four of these segments are currently under development. Three types of
clients that the system should serve are foreseen. The �rst type consists of
Swing applications developed to be used by sta� at the Faculty. Clients that
access the system using web browser fall into the second type. Third type is
related to external SOAP clients - other information systems, especially the one
in the Rectorate, that connect to the system using web services.

Implementation of one more segment of the system is foreseen as one of
the last tasks. It is a web portal, a component that integrates all web related
services o�ered by other segments in one easy searchable web site.

Described environment has had critical impact on the information system's
architecture. Being a modern information system, it is based on the multi-tier
architecture that allows all three types of clients to be served. Communication
between individual segments is being implemented using secure web services.

A Graphical representation of the information system's architecture is given
in Figure 1. For the sake of simplicity, this �gure shows only three segments
of the information system � student service, accounting and human resources.
Other segments are connected to the whole using the same principle.

Every segment is a three-tier application for itself. It consists of database
management system, application server, and a set of client GUI applications.
This construction is well known, although the one with web clients is more
popular. In this case, GUI clients are needed because of the complexity of the
processes conducted by the Faculty services and overall performance.

The application server in every segment of the system is divided in two layers.
The �rst one is business logic of a particular information system's segment,
while the other is a web container. GUI clients communicate directly with the
corresponding business logic layer, while external clients � web browsers and
SOAP clients, communicate with the web container.

It is also worth to noting that individual segments also communicate with
each other using web services. This communication di�ers from the communica-
tion with SOAP clients in two ways. First of all, this is communication between
business logic layers, and not between a SOAP client and web container. In
addition, business logic layers of other segments of the system are allowed to
access a much larger set of services than external clients.

Moreover, modern web 2.0 applications running in web containers are set as
a requirement. Web clients communicate with web container using JavaScript,
asynchronous calls and XML as a medium for data transport.

Two problems arise in an attempt to implement described architecture using
open source technologies. Are there open source tools capable to implement
this architecture? If there are such tools, it is a question how do they perform
compared to their commercial counterparts?

After researching many possibilities, we come to a conclusion that there are
open source tools that allow e�cient implementation. The second question is
more di�cult to answer. In an attempt to do so, we will present speci�c tools,
servers and operating systems used in our implementation. In the following
sections we describe implementation of this architecture and technologies used
in that process.



184 S. �krbi¢, �. Bodro²ki, B. Pupovac, M. Rackovi¢

Figure 1: Architecture of the Information System.

3. Implementation
The main technology we use is the Enterprise JavaBeans 3.0 (EJB 3.0) [5]

implemented by the JBoss 4 application server. This technology covers most
important tasks required by the system architecture. EJB components map
database schema and allow business logic to be implemented. Moreover, support
for web services is a part of the EJB 3.0 speci�cation. JBoss application server
[10] supports EJB components and o�ers a web container capable of serving JSP
(Java Server Pages) and JSF (Java Server Faces) pages. The EJB technology
and JBoss application server and their capabilities are described in more detail
in the following two sections.

A good way to introduce a technology is to give a de�nition of its inven-
tor. Sun Microsystems' de�nition of the Enterprise JavaBeans architecture is
as follows:

The Enterprise JavaBeans architecture is a component architecture for the
development and deployment of component-based distributed business appli-
cations. Applications written using the Enterprise JavaBeans architecture are
scalable, transactional, and multi-user secure. These applications may be writ-
ten once, and then deployed on any server platform that supports the Enterprise
JavaBeans speci�cation [5].

This long and a bit confusing de�nition means that EJB is a server-side



Faculty Information System Based On Open Source Technologies 185

component that can be deployed in a distributed multi-tiered environment. If
we look at the most common enterprise applications with traditional four-tier
layered architecture, we can place EJB in the middle of this architecture as a
business and persistence tier. In that case, the EJB client may be a servlet, a
JSP, a standalone Java application, an applet, SOAP-based web service client,
or even another EJB.

The main idea of the EJB concept is to easily make distributed application
without the need to write complex distributed component framework. In this
rapid development the EJB must take care about writing scalable, reliable, and
secure applications. From a developer's point of view an EJB is a piece of
Java code that executes in a specialized runtime environment called the EJB
container that provides a set of component services. The persistence services
are provided by a specialized framework called the Persistence Provider [13].
The EJB 3.0 concept will be introduced in two perspectives: as a component
and as a framework.

EJBs are server-side components which are used to build parts of the appli-
cation like the business logic or persistent code. All other functionality behind
that code is invisibly managed by the Java persistence API (JPI).

There are three types of EJB components: session beans, message driven
beans, and entity beans. Session beans and message driven beans are used to
implement business logic in an EJB application, while entity beans are used
for persistence. To understand relations between beans, EJB container and
Persistence Provider it is necessary to explain EJB components in more detail.

Session beans model business processes, and their primary purpose is to
perform actions. Session beans are further divided in two categories � stateful
session bean and stateless session bean. A stateful session bean automatically
saves bean state between client invocations without having to write any addi-
tional code. In contrast, stateless session beans do not maintain any state and
model application services that can be completed in a single client invocation
[12].

Message driven beans (MDB), like session beans, perform action but the
di�erence is that MDB can be called only by sending a message to those beans.
It means that there is no direct access to a method in a message-driven bean.

Entity beans model business data. To make a comparison between session
beans and entity beans, the simplest way is to present session bean like a verb
and entity bean like a noun. In object-oriented world, entity is an object that can
cache database information that represents a persistent content. The de�nition
of entity is older than Java and it still holds true: �An entity is essentially a noun,
or a grouping of states associated together as a single unit. It may participate
in relationships to any number of other entities in a number of standard ways.�
[2].

The major di�erence between entity beans 2.x and 3.0 is in the word �bean�.
It means that entity bean 3.0 is not managed by container like older version.
Instead of that, entity beans are managed by Persistence Provider through the
Entity Manager interface [5].

To interact with entity beans, Java Persistence provides a new service called



186 S. �krbi¢, �. Bodro²ki, B. Pupovac, M. Rackovi¢

the Entity Manager. All access to an entity bean goes through this service.
It provides a query API and life cycle methods for entity beans. Unlike older
versions of the EJB speci�cation, in Java Persistence, entity beans and the
Entity Manager do not require an application server to be used. Java Persistence
can be used in unit tests and standalone Java applications like any other Java
library. This arrangement of components is represented in Figure 2.

Session bean and message driven bean run in a di�erent environment than
entity beans, and they are completely managed by EJB container. It acts as
an intermediary between the bean and the EJB server. The EJB container
interacts with EJB objects and provides services such as security, transactions,
concurrency, and naming at runtime [1].

In the second section of this paper a preview of technology was made and a
brief look at component organization is given. In this section we explain some of
the bene�ts of the new concepts in EJB 3.0 relevant to the information system.

Figure 2: Overall organization of the EJB 3.0 API.

In order to explain the bene�ts we take a closer look at some major problems
with the older version of EJB:

• the need to directly use Java Naming Directory Interface (JNDI),
• verbose XML deployment descriptors,
• a heavyweight programming model.

Techniques introduced in EJB 3.0 eliminate these sources of complexity. They
are as follows: metadata annotations, minimal deployment descriptors and de-
pendency injections.



Faculty Information System Based On Open Source Technologies 187

Annotations are custom Java modi�ers that can be used by anything han-
dling Java source or byte code, and it allows entering additional attributes
(information) to a Java class, interface, method or a variable. With this func-
tionality, Java code is still POJO which makes programming model much sim-
pler, and eliminates the need for writing detailed deployment descriptors. Still,
it is possible to mix annotation with deployment descriptor by overriding an
annotation.

These techniques solve the problems with deployment descriptors and dras-
tically reduce weight of the programming model. One more technique has the
same e�ect on complexity of code but, more importantly, it introduces a way to
cope with the JNDI problem. This technique is called dependency injection. It
is some kind of a reverse JNDI lookup. In the previous model of JNDI usage,
the bean explicitly retrieves resources and components it needs. As a result,
component and resource names are hard-coded in the bean. On the other hand,
with dependency injection the container reads target bean con�guration, �gures
out what beans and resources the target bean needs and injects them into the
bean at runtime [12].

Apart from services and techniques which solve major problems in older
versions of EJB, an important role in the development with EJB 3.0 has teh Java
Persistence Query Language (JPQL). JPQL is based on EJB Query Language
(EJBQL) and was �rst introduced in EJB 2.0. It is a portable query language
designed to combine the syntax and simple query semantics of SQL with the
expressiveness of an object-oriented expression language. This is a language
for querying entity beans and representing queries in terms of entity beans and
their relationships [9].

After the implementation of EJBs as a middle tier of architecture a logical
step was to use JAX-WS 2.0 (The Java API for XML-Based Web Services) for
web service client development. This speci�cation is a Java EE 5 extension of
the Java API for XML-RPC, and the goal of this technology is to simplify the
development of web service applications. Both a Java web service and an EJB
web service support dependency injections and lifecycle methods, but there are
a few more reasons why we decided to use the EJB web service:

• bene�ts of declarative transaction and security which is automatically
available from EJB 3 components,

• web services that use EJB 3 can easily expose business application using
additional protocol by adding a remote interface,

• simpli�ed development process by dynamical processing the EJB annota-
tion during deployment.

Let us consider the StudentDataWebService o�ered by the student service seg-
ment. For a given student book number it returns various data about student.
For example, library information subsystem, as one of the segments of the in-
tegral information system can use this web service to obtain basic data about



188 S. �krbi¢, �. Bodro²ki, B. Pupovac, M. Rackovi¢

a particular student. At the same time, the middle tier of the accounting sub-
system can use the same web service to obtain call the to number for a given
student. In addition, external SOAP clients can use this web service to obtain
necessary information. In this way, no information is stored twice or more times
in two or more segments. If a segment needs to obtain data from the other parts
of the system, it uses web services.

If data is exchanged in this manner, security of the system has to be care-
fully addressed. Even from this aspect, the EJB 3 technology o�ers a solution.
Security and access privileges are added to every EJB method, including web
services. The EJB container reads these privileges and controls access. It is
integrated with the LDAP server with data about all network users maintained
at the Faculty of Sciences, so the existing users and groups can use the already
assigned credentials.

4. Selection of tools
For the purpose of data storage, the MaxDB version 7.6 DBMS has been

chosen. The MaxDB is an ANSI SQL-92 compliant relational database man-
agement system.

Upon selecting of DBMS, the following characteristics (also emphasized by
MaxDB manufacturers themselves), have been considered [11]: easy con�gura-
tion and low administration, elaborate backup and restore capabilities, contin-
uous operation, no scheduled downtimes required, designed for large number of
users and high workloads, scales to database sizes in terabytes, etc.

Beside mentioned reasons, this DBMS is chosen because it features the �Or-
acle mode� that allows communication with the database using Oracle variation
of the SQL language. Previous prototype version of the student service informa-
tion subsystem used Oracle DBMS, which had to be replaced when transition to
open source platform begun. On the other side, the EJB components running
inside the application server are the only components that communicate with
databases, and they are independent of speci�c DBMS. This directly means that
this information system can use any DBMS.

The Eclipse is a universal tool platform [4]. Its main characteristic is that
it is based on plug-ins that implement di�erent functionalities. Existing tools
in the Eclipse can be extended by adding new plug-ins. The Eclipse includes
the basic platform plus two major tools: Java Development Tools (JDT) and
Plug-in Developer Environment (PDE).

The functionalities implemented as plug-ins provide possibilities for a com-
plete development of the information system using Eclipse. One of the plug-ins
that is used during the development is a WTP plug-in. This plug-in is a result
of the Eclipse Web Tools Platform Project and it provides APIs for the develop-
ment of J2EE and Web applications. The subproject of the Web Tools Platform
Project is the Dali JPA Tools Project. As a result of this project, a Dali plug-in
is implemented. This plug-in provides support for object-relational mappings
for the EJB 3.0 entity beans via the creation and automated initial mapping
wizards and programming assistance such as dynamic problem identi�cation.



Faculty Information System Based On Open Source Technologies 189

After careful consideration of other open source alternatives, JBoss AS 4 is
chosen as an application server. It is an open source J2EE-based application
server implemented in Java. Accordingly, it is usable on any operating system
that Java supports.

At the center of the JBoss is a JMX (Java Management Extensions) mi-
crokernel that manages the managed beans (MBeans) that control the various
services in the server [7]. Each of the J2EE services that run inside JBoss is an
MBean. Services such as Log4j, Tomcat, and Hibernate are all MBeans.

Beside the mentioned, JBoss supports a variety of J2EE services:

• Enterprise JavaBeans 3.0,

• Java Persistence,

• Java Message Service (JMS),

• Java Transaction Service/Java Transaction API (JTS/JTA),

• Servlets and Java Server Pages (JSP),

• Java Naming and Directory Interface (JNDI).

Owing to the fact that JBoss provides support for EJB 3.0 and that it is the
leading application server in the open source application servers domain, we
chose it for the deployment of information system's components.

JBoss also provides support for Web application deployment via Tomcat
JSP engine included as a service in JBoss. This service supports Servlet 2.4
and JSP 2.0 speci�cation. Since Tomcat is integrated in JBoss, it is possible
to develop and deploy applications that combine J2EE and Web technologies.
The implementation of the student service information subsystem is actually
performed by combining the J2EE and Web technologies, which has been an
additional reason for choosing JBoss as an application server.

Additionally, JBoss has a clustering support. Clustering provides possibili-
ties to run the application on several parallel servers, the so-called cluster nodes.
In JBoss, the nodes are JBoss instances and a cluster is a set of nodes. Clustering
is important for a stable work of enterprise applications. Moreover, performance
improving can always be done by adding more cluster nodes, which adds to the
scalability of the system.

Choosing Eclipse which has been used in the implementation of the entire in-
formation system, and JBoss application server that supports J2EE application
has also proven to be suitable because of the simpli�ed application deployment
process. Eclipse provides support for automatic generation of ear �les that
contain all speci�ed modules listed in a suitable con�guration �le.

Services that run inside JBoss, which provide deployment of th applications
developed by combining several various technologies, EJB 3.0 support, clus-
tering support and easy deployment, as well as JBoss proven stability, have
completely satis�ed the needs of the information system.



190 S. �krbi¢, �. Bodro²ki, B. Pupovac, M. Rackovi¢

For implementing GUI clients we use the most logical solution regarding
previous choices � Java and Swing platform. Using any other Java technology
for GUI development, like SWT (Standard Widget Toolkit), would not have
made any di�erence. As we mentioned earlier, the web applications o�ered
by the system are required to use asynchronous calls, JavaScript and XML.
This type of web applications is called AJAX (Asynchronous JavaScript And
XML). In order to implement these functions in the most e�cient way, we use
GWT (Google Web Toolkit) [8]. GWT is an open source, Java-based framework
for creating Java-based AJAX web applications. This tool makes writing web
applications similar to Swing applications. Moreover, Eclipse plug-in Cypal
Studio for GWT simpli�es development of these applications even further. In
this way, the developer is only concerned with Java code, and does not have to
develop or maintain a mixture of HTML, JavaScript and Java code.

5. Conclusion

We present a robust and �exible architecture of a modern faculty information
system tailored to satisfy primarily IT needs of the Faculty of Sciences in Novi
Sad, although it �ts well to any other faculty at the University of Novi Sad.
This model includes the usage of most up-to-date patterns and mechanisms,
such as multi-tiered model, web services and AJAX. The latter suggests that it
supports and maintains communication with inner as well as remote clients.

The architecture of the information system allows independent development
of speci�c segments in heterogeneous technologies. The segments are then in-
tegrated in an enterprise system using web services. Although it was planned
to use only open source technologies, it is possible to implement some segments
using other platforms that support web services integration.

A successful attempt was made to implement such an architecture using only
open source software. As a result, speci�c technologies and software tools used
are listed and described. The idea was to give an insight into what open source
tools and technologies exist today, and how useful are they in the process of
building an enterprise IT project. On the other side, the same architecture is
well usable and implementable using other commercial technologies and tools.

Experience gained in the information system planning and development pro-
cess leads to a conclusion that these tools are more than su�cient to build large
systems. Newest technologies and speci�cations, such as EJB 3.0, contribute
to this statement even further, and drastically simplify the development and
deployment process. It is also worth of noting that open source software, such
as the JBoss application server and Eclipse, is not only comparable to commer-
cial products, it is superior to them in many aspects. To support that fact, we
will mention that the �rst and, up-to-date, the only implementation of EJB 3.0
speci�cation comes from JBoss, making this application server a technological
leader in this area.



Faculty Information System Based On Open Source Technologies 191

Acknowledgement
This paper is part of the scienti�c research project �Abstract Models and

Applications in Computer Science� no. 144017A, supported by the Ministry of
Science, Republic of Serbia.

References
[1] Burke, B., Monson-Haefoel, R. Enterprise JavaBeans, 3.0. Sebastopol, CA:

O'Reilly 2006.
[2] Chen, P., The Entity-Relationship Model - Toward a Uni�ed View of Data. ACM

Tensactions on Database Systems 1 br. 1 (1976), 9-36.
[3] Christof, E., Open Source Drives Innovation. IEEE Software 24 no. 3 (2007),

105-109.
[4] Daum, B., Professional Eclipse 3 for Java Developers. Chichester: John Wiley &

Sons, 2005.
[5] DeMichiel, L., Keith, M., JSR 220: Enterprise JavaBeans, Version 3.0. Sun Mi-

crosystems. Santa Clara, CA, 2006.
[6] Fitzgerald, B., Kenny, T., Developing an Information Systems Infrastructure with

Open Source Software. IEEE Software 21 br. 1 (2004), 50-55.
[7] Gri�th, S., Richards, N., JBoss: A Developer's Notebook. Sebastopol, CA:

O'Reilly 2005.
[8] Hanson, R., Tacy, A., GWT in Action. Greenwich, CT: Manning 2007.
[9] Keith, M., Schincariol, M., Pro EJB 3: Java Persistence API. Berkeley, CA:

Apress 2006.
[10] Marrs, T., Davis, S., JBoss at Work: A Practical Guide. Sebastopol, CA: O'Reilly

2005.
[11] MaxDB. 2007. http://mysql.com/products/maxdb/ (last accessed July 21.2007).
[12] Panda, D., Rahman, R., Lane, D. EJB 3 in Action. Greenwich, CT: Manning

2007.
[13] Sriganesh, R. P., Brose, G., Silverman, M. Mastering Enterprise JavaBeans 3.0.

Indianapolis, IN: Wiley Publishing 2006.

Received by the editors July 30, 2007

http://mysql.com/products/maxdb/

	Introduction
	Architecture of the Information System
	Implementation
	Selection of tools
	Conclusion

