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Abstract. Several of the results of J. Ušan concerning n-ary quasigroups
are presented. One open problem is posed.

The article is intended for nonspecialists interested in various aspects
of J. Ušan’s work in algebra. No completeness is implied.
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1. Introduction

Janez Ušan (1931-2006) was a prolific writer. A casual glance through his
papers revels a multitude of topics: Quasigroups – binary, n-ary and infinitary,
functional equations, topological n-groups, partial quasigroups, latin rectangles
and other combinatorial structures, error correcting codes, geometric nets and
their various generalizations, (m,n)-algebras of various kinds, lattices and their
generalizations – both binary and n-ary, n-ary relations including generalized
equivalences and order relations, generalized implication algebras, etc. Many
papers were coauthored by other mathematicians, witnessing to his cooperative
and friendly spirit. Most of all, it shows his boundless curiosity and unsatiable
urge to do mathematics.

I have chosen to present here several of his results in the field of n-ary
quasigroups. For the rest, I am out of my depth.

2. Quasigroups

One way to define a quasigroup is that it is a groupoid (S; ·) in which for any
a, b ∈ S there are unique solutions x, y to the equations a · x = b , y · a = b. For
more, consult standard references: V. D. Belousov [3], H. O. Pflugfelder [13],
O. Chein, H. O. Pflugfelder, J. D. H. Smith [6].

A loop is a quasigroup with unit (e) such that

(1) ex = xe = x .
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Groups are associative quasigroups, i.e. they satisfy:

(A) xy · z = x · yz

and they necessarily contain a unit.
As usual, whenever unambiguous, the terms like x ·y and f(x) are shortened

to xy and fx respectively. For sequences we use the Čupona notation: xj
i (i, j

positive integers) is xi if i = j; is a sequence xi, . . . , xj if i < j and is an empty
sequence if i > j. The symbol x∞i represents an infinite sequence xi, xi+1, . . . .

Most of the notions defined for binary quasigroups can be easily generalized
to n–ary operations which are called n–quasigroups. An n-quasigroup is an
n-groupoid (S; A) (A : Sn −→ S, n > 0) in which for every n-sequence an

1 of
elements from S, every a ∈ S and every i (1 ≤ i ≤ n), there is a unique solution
x of the equation A(ai−1

1 , x, an
i+1) = a. For example, 1–quasigroups are just

bijections.
For n > 2, an n–quasigroup have r–inverse operations (r = 1, ..., n) instead

of left and right division. However, not all generalizations are so straightforward.
For example, n–groups, defined as associative n–quasigroups, need not have a
unit. Also, there are several ’dual’ operations (for n > 2) and therefore ’dual’
of a ’dual’ need not be the original operation. Many similar examples suggest
that care should be taken when generalizing results to the n–ary case.

3. Generalized associativity on n-ary quasigroups

Most of the early papers of J. Ušan were in the field of quasigroup functional
equations. This particular subject arose in early fifties of the previous century,
but the cornerstone result which gave rise to vigorous research and an inflow of
young mathematicians was published in 1960 in [1]. It is known as The Four
Quasigroups Theorem.

Theorem 1. (J. Aczél, V. D. Belousov, M. Hosszú [1]) If four quasigroup op-
erations A,B,C, D (defined on the same nonempty set S) satisfy the generalized
associativity equation:

(GA) A(x,B(y, z)) = C(D(x, y), z)

then they are all isotopic to the same group. The general solution of the equation
(GA) is given by:





A(x, y) = A1x ·A2y,

B(x, y) = A2
−1(A2B1x ·A2B2y),

C(x, y) = C1x · C2y,

D(x, y) = C1
−1(C1D1x · C1D2y)

where · is an arbitrary group operation on S and A1, A2, B1, B2, C1, C2, D1, D2

are arbitrary permutations of S, such that A1 = C1D1 ,A2B1 = C1D2 ,A2B2 =
C2. The group · is unique up to automorphism and the permutations up to
translation by constants.
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The Four Quasigroups Theorem was brought to attention of Yugoslav math-
ematicians by S. B. Prešić who published it (along with a more elegant proof)
in an exercise book [15]. Two young beginners at the time, J. Ušan and S.
Milić, took the opportunity and started working towards their PhD’s. Their
theses were defended in 1971 ([19] and [12] respectively), and they both became
established experts in the field.

Ušan’s first important paper was on the ternary analogue of The Four Qua-
sigroups Theorem [17]. Soon (see [18] and [22]), the n–ary case was solved too.
Namely, J. Ušan proved the following:

Theorem 2. If n–ary (n ≥ 2) quasigroups Ai, Bi(i = 1, ..., n) satisfy the sys-
tem of generalized associativity equations:

(nGA) A1(B1(xn
1 ), x2n−1

n+1 ) = Ai(xi−1
1 , Bi(xn+i−1

i ), x2n−1
n+i ) (i = 2, ..., n)

then all Ai, Bi(i = 1, ..., n) are isotopic to an n–group G with unit. Moreover,
there is a binary group · such that G(x1, ..., xn) = x1 · ... · xn.

The formulas of a general solution were also given.
Here we give Ušan’s proof in the ternary case, actually a minor variant of

the original, using a slightly modernized notation.

Proof. Let us write the equation (3GA) in this form:

(3GA) A(B(x, y, z), u, v) = C(x,D(y, z, u), v) = E(x, y, F (z, u, v)) .

This means that the formulas of a general solution of (3GA) should be of
the form:

A(x, y, z) = G(A1x,A2y, A3z) , B(x, y, z) = A−1
1 G(A1B1x,A1B2y, A1B3z)

C(x, y, z) = G(C1x,C2y, C3z) , D(x, y, z) = C−1
2 G(C2D1x,C2D2y, C2D3z)

E(x, y, z) = G(E1x, E2y,E3z) , F (x, y, z) = E−1
3 G(E3F1x,E3F2y, E3F3z)

for a suitable 3-group G and permutations A1, . . . , F3.
Choose arbitrary elements a, b, c, d, f from S and define:

e = A(B(a, b, c), d, f) , A12(x, y) = A(x, y, f) ,

A1(x) = A(x, d, f) , A2(x) = A(B(a, b, c), x, f) ,

A3(x) = A(B(a, b, c), d, x) , B12(x, y) = B(x, y, c) ,

B1(x) = B(x, b, c) ,B2(x) = B(a, x, c) ,

B3(x) = B(a, b, x) , C12(x, y) = C(x, y, f) ,

C1(x) = C(x,D(b, c, d), f) , C2(x) = C(a, x, f) ,

C3(x) = C(a,D(b, c, d), x) , D13(x, y) = D(x, c, y) ,

D1(x) = D(x, c, d) , D2(x) = D(b, x, d) ,



4 A. Krapež

D3(x) = D(b, c, x) , E1(x) = E(x, b, F (c, d, f)) ,

E2(x) = E(a, x, F (c, d, f)) , E3(x) = E(a, b, x) ,

F1(x) = F (x, d, f) , F2(x) = F (c, x, f) , F3(x) = F (c, d, x) ,

G(x, y, z) = A(A−1
1 x,A−1

2 y, A−1
3 z) , x · y = G(x, y, e) .

We can express A in terms of G: A(x, y, z) = G(A1x,A2y, A3z).
If we replace y by b and z by c in (3GA), we get A(B1x, u, v) = C(x,D3u, v).

Also A1B1 = C1 , A2 = C2D3 and A3 = C3. It follows that C(x,D3u, v) =
G(A1B1x,A2u,A3v) = G(C1x,C2D3u,C3v) i.e. C(x, y, z) = G(C1x,C2y, C3z).
Analogously, E(x, y, z) = G(E1x,E2y, E3z).

To express B in terms of G, we note that A1B1 = E1, A1B2 = E2, A1B3 =
E3F1 and A1B(x, y, z) = E(x, y, F1z) = G(E1x, E2y,E3F1z) =
G(A1B1x,A1B2y, A1B3z) i.e. B(x, y, z) = A−1

1 G(A1B1x,A1B2y, A1B3z).
Analogously, D(x, y, z) = C−1

2 G(C2D1x,C2D2y, C2D3z) and F (x, y, z) =
E−1

3 G(E3F1x,E3F2y,E3F3z).
If we express all operations in (3GA) via G, we get:

G(G(A1B1x,A1B2y,A1B3z), A2u,A3v) = G(C1x,G(C2D1y, C2D2z, C2D3u),
C3v) = G(E1x,E2y,G(E3F1z, E3F2u,E3F3v)). But A1B1x = C1x = E1x,
so we can replace all these expressions by a new variable X. Analogously for
other variables, so we finally get: G(G(X, Y, Z), U, V ) = G(X, G(Y,Z, U), V ) =
G(X, Y, G(Z, U, V )) which tells us that G is a ternary group. Moreover,
G(e, e, x) = A(A−1

1 e,A−1
2 e,A−1

3 x) = A(A−1
1 A1B(a, b, c), A−1

2 A2d,A−1
3 x) =

A(B(a, b, c), d, A−1
3 x) = A3A

−1
3 x = x. Similarly, G(x, e, e) = G(e, x, e) = x

so e is a unit of G.
We also have A12(x, y) = A(x, y, f) = G(A1x,A2y,A3f) = G(A1x,A2y, e) =

A1x · A2y, and similarly B12(x, y) = A−1
1 (A1B1x · A1B2y) , C12(x, y) = C1x ·

C2y , D13(x, y) = C−1
2 (C2D1x·C2D3y) . If we use these relations in the equality

A12(B12(x, y), u) = C12(x, D13(y, u)) we get (A1B1x · A1B2y) · A2u = C1x ·
(C2D1y · C2D3u). Since A1B1 = C1 , A1B2 = C2D1 and A2 = C2D3, the last
relation expresses the associativity of ·, i.e. · is a group.

Also, from the equality E(x, y, F2u) = A12(B12(x, y), u) we get
G(E1x,E2y, E3F2u) = A1A

−1
1 (A1B1x ·A1B2y) ·A2u = (E1x ·E2y) ·E3F2u i.e.

G(x, y, z) = x · y · z. 2

One of my first results related to quasigroup functional equations was a new
proof of the above Ušan’s theorem. It was published in [9] as an example, but
despite of its minor status within the paper, I still remember this result with
pride. It was my entrance point to the field.

As for the Ušan’s theorem itself, it bears this name in the literature, some-
thing every scientist strives for – to get the result which is so important to stay
remembered by his name.

4. A theorem of Schauffler

Another interesting result by J. Ušan is the generalization of the theorem of
R. Schauffler to the n-ary case.



Some significant results of Janez Ušan 5

Theorem 3. (R. Schauffler [16]) Let S be a nonempty set and Ω the set of
all (binary) quasigroups on S. If for all A,B ∈ Ω there are C,D ∈ Ω such that
(GA) is true, then S has at most three elements.

Ušan generalized it to the ternary case first ([20]), but fairly soon, the general
case was solved too.

Theorem 4. (J. Ušan, M. R. Žǐzović [23]) Let S be a nonempty set and Ωn

the set of all n-ary quasigroups on S. If for all i (1 ≤ i ≤ n) the following is
true: for all Ai, Bi ∈ Ωn there are Aj , Bj ∈ Ωn (j = 1, ..., n) such that (nGA)
is true; then S has at most three elements.

Inspired by these results, I proved the following analogue of the Schauffler the-
orem:

Theorem 5. (A. Krapež [10]) For any two groupoids A,B on S, there are
groupoids C,D on S such that (GA) holds, iff S is infinite or has one element
only.

I never attempted to prove the groupoid analogue of the Ušan-Žižović theorem.
So let this be an opportunity to state it as an unsolved problem:

Problem 4.1. Let S be a nonempty set and Πn the set of all n-ary groupoids
on S. What are the necessary and sufficient conditions so that for all i (1 ≤ i ≤
n) the following is true: for all Ai, Bi ∈ Πn there are Aj , Bj ∈ Πn (j = 1, ..., n)
such that (nGA) is true? In particular, does S has to be either infinite or a
singleton?

5. Functional equations on infinitary quasigroups

V. D. Belousov and Z. Stojaković [5] (see also [4]) proved that there is no
nontrivial (i, j)-associative infinitary quasigroup, strengthening the result of Ž.
Madevski, B. Trpenovski and Ǵ. Čupona [11] where it was proved that there
are no nontrivial infinitary groups. This paper was presented at the important
symposium ’Quasigroups and functional equations’ held in September of 1974
in Belgrade and Novi Sad, in which J. Ušan also participated.

Definition 5.1. An infinitary operation is a mapping A : Sω −→ S, where Sω

is the set of all ω-sequences a∞1 of elements from S. The structure (S; A) is called
an ω-groupoid. An ω-groupoid is an ω-quasigroup if for every ω-sequence a∞1
from S, every b ∈ S and every positive integer i, equation A(ai−1

1 , x, a∞i+1) = b
has a unique solution for x.

An ω-groupoid (S; A) is (i, j)-associative if

A(xi−1
1 , A(x∞i ), y∞1 ) = A(xj−1

1 , A(x∞j ), y∞1 );

it is associative if it is (i, j)-associative for all positive integers i 6= j.
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An associative ω-quasigroup is an ω-group. An ω-loop is an ω-quasigroup
with an element e such that A(e, . . . , e, x, e, . . . ) = x for every x and every place
in which x can be put.

V. D. Belousov and Z. Stojaković proved also the existence of ω-quasigroups
and ω-loops of all (finite or infinite) orders. They also solved the equation
of generalized (i, j)–associativity. In a later paper they solved the functional
equation of generalized entropy (bisymmetry) on infinitary quasigroups.

Building on these results, J. Ušan and D. Žarkov in [24] solved the (finite)
system of generalized (1, j)-associativities for 1 < j ≤ n. This is a system of
equations A1(A2(x∞1 ), y∞1 ) = A2j−1(x

j−1
1 , A2j(x∞j , yj−1

1 ), y∞j ), where j assumes
all integer values such that 1 < j ≤ n. The solution is given in terms of an
arbitrary group and two ω-quasigroups on S of which one is an ω-loop.

6. n-groups and their Hosszú–Gluskin algebras

A group (S; ·) is usually described as an associative groupoid which possesses
a unique distinguished element e called the unit, which is characterized by the
neutrality with respect to multiplication, i.e. satisfying the axioms e ·x = x and
x · e = x, and by the existence, for any given element x, of the unique inverse
element y (depending on x), such that the product of the element and its inverse
(in any order) is the unit. In other words, the axiom ∀x∃1y(x · y = e∧ y ·x = e)
is also assumed.

A vigorous research at the turn of 19th century into 20th has shown that
above axioms are not independent, but more importantly, that the groups so
defined have some ’deficiencies’. Take the group of integers under addition and
the subset of all numbers greater than, say 99. The subset is closed under
addition, but is not itself a group. In modern parlance, such groups do not
constitute a variety.

We are all familiar with the solution given by L. E. Dickson, even though
the majority do not recognize the name. Dickson defined groups as algebras
(S; ·,−1, e) with three operations: binary multiplication ·, unary inverse opera-
tion −1 and nullary operation (i.e. constant) e satisfying the axioms:

(A) (x · y) · z = x · (y · z)

(Lu) e · x = x

(Li) x−1 · x = e

(or their left/right duals). The axioms are independent and the groups now do
constitute a variety.

It was much later that T. Evans gave the characterization of groups as as-
sociative quasigroups, i.e. the algebras (S; ·, \, /) with three binary operations,
satisfying axioms (A) and:

(Q1) x\xy = y
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(Q2) x(x\y) = y

(Q3) xy/y = x

(Q4) (x/y)y = x .

It is always useful to have different representations of a mathematical ob-
ject. Witness the lattices, where we use to good advantage both our intuition
with lattices defined as ordered sets and nice properties of lattices as algebras
following from their being a variety.

In case of groups, Evans’ representation incorporates groups within quasi-
groups as a variety with a special property. Moreover the variety of groups is
a subvariety of the variety of quasigroups, which immediately gives us a lot of
information about both varieties.

In case of n-ary quasigroups, M. Hosszú in [8] proved the following repre-
sentation theorem:

Theorem 6. (S; A) is an n-group iff A(xn
1 ) = (

∏n
i=1 ϕi−1(xi)) · b, where

1. · is a group operation

2. ϕ is an automorphism of ·
3. ϕ(b) = b

4. For all x ∈ S ϕn−1(x) = b · x · b−1 .

Two years later L. M. Gluskin [7] independently proved the same result.
Theorem 6 is usually called the Hosszú-Gluskin theorem.

In [25], J. Ušan defined a Hosszú-Gluskin algebra of order n (n ≥ 3) (abbrevia-
ted nHG-algebra) as an algebra (S; ·, ϕ, b) satisfying conditions (1)–(4) of The-
orem 6.

An nHG-algebra (S; ·, ϕ, b) for which an n-group (S; A) can be represented
as A(xn

1 ) = (
∏n

i=1 ϕi−1(xi)) · b is said to correspond to the n-group (S; A).
Theorem 6 now can be restated as:

Theorem 7. For every n-group, there is a corresponding nHG-algebra.

Ušan also proved:

Theorem 8. Let nHG-algebras (S; ·, ϕ, b) and (S; ◦, Φ, B) both correspond to
the given n-group. Then there is an a ∈ S such that:

1. x ◦ y = x · a · y
2. Φ(x) = a−1 · ϕ(x) · ϕ(a)

3. B = (
∏n−1

i=1 ϕi−1(a−1)) · b .
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Corresponding nHG-algebras can be conveniently used to reveal the proper-
ties of their underlying n-groups. Ušan used this to prove the following remark-
able theorems:

Theorem 9. (J. Ušan [28]) An equivalence of S is a congruence of an n-
group on S iff it is a congruence of a corresponding nHG-algebra.

We say that the order ≤ on S is compatible with an algebra on S iff every
operation of the algebra is monotone in every argument.

Theorem 10. (J. Ušan, M. Žižović [27]) The order ≤ on S is compatible
with an n-group on S iff it is compatible with a corresponding nHG-algebra.

The same goes for topological structures:

Theorem 11. (J. Ušan [29]) Let (S;A) be an n-group and T a topology on
S. Then (S;A, T ) is a topological n-group iff (S; ·, ϕ, b, T ) is a corresponding
topological nHG-algebra i.e. iff

- (S; ·, T ) is a topological group

- ϕ is continuous in T
for a corresponding nHG-algebra (S; ·, ϕ, b).

For details see the original papers or the book [30] where all previous results
were collected.

The last theorem that I will mention here is Ušan’s proof of a generalization
of Dickson’s theorem:

Theorem 12. (J. Ušan [26]) An n-groupoid (S;A) is an n-group iff there are
operations I : Sn−1 −→ S and E : Sn−2 −→ S such that the algebra (S; A, I, E)
satisfies the axioms:

1. A(xn−2
1 , A(x2n−2

n−1 ), x2n−1) = A(xn−1
1 , A(x2n−1

n ))

2. A(E(xn−2
1 ), xn−1

1 ) = xn−1

3. A(I(xn−1
1 ), xn−1

1 ) = E(xn−2
1 ) .

Moreover, the axioms 1. to 3. are mutually independent.

For n = 2 the above theorem reduces to Dickson’s theorem. What is par-
ticularly interesting in this result is the inovative generalization of a notion of
’unit’. By choosing to use a function (E) and not an element, J. Ušan created
an opportunity to apply the notion in other contexts, resulting in many new
insights and connections. The book [30] is full of relevant examples which the
interested reader might wish to consult.
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