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EXTENSION OF LIAPUNOV THEORY TO
FIVE-POINT BOUNDARY VALUE PROBLEMS FOR

THIRD ORDER DIFFERENTIAL EQUATIONS

M. S. N. Murty1 and G. Suresh Kumar

Abstract. This paper presents criteria for the existence and uniqueness
of solutions to five-point boundary value problems associated with third
order differential equations by using matching technique. ’Liapunov-like’
functions are used as a tool to establish existence and uniqueness of solu-
tions by matching two three-point boundary value problems.
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1. Introduction

In this paper we study the problem of the existence and uniqueness of so-
lutions of five-point boundary value problems for the third order differential
equation

(1.1) y′′′ = f(x, y, y′, y′′).

Here f is assumed to be continuous on [a, c]×R3 and unique solutions to initial
value problems associated with (1.1) exist and extend throughout [a, c].

Several authors [1]-[8] used matching technique of solutions to obtain ex-
istence and uniqueness of solutions to three-point boundary value problems
associated with nth(n ≥ 3) order nonlinear differential equations.

The approach taken here is similar to that of Barr and Sherman [2] and
Rao, Murty and Murty [7], and is based on the use of a solution matching tech-
nique and suitable ’Liapunov-like’ function defined later. Recently, Henderson
and Tisdel [5] obtained existence and uniqueness of the solutions of five-point
boundary value problems with the following monotonicity assumption on f :
For all w ∈ R, f(x, v1, v2, w) > f(x, u1, u2, w),

(i) when x ∈ (a, b], u1 ≥ v1 and v2 > u2, or
(ii) when x ∈ [b, c), u1 ≤ v1 and v2 > u2.
In this paper we replace this monotonicity condition by an appropriate

’Liapunov-like’ function and establish existence and uniqueness of the solutions
of five-point boundary value problems.
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Section 2 gives criteria under which solutions of (1.1) which satisfy boundary
conditions at three points may be matched to obtain a unique solution of (1.1)
satisfying boundary conditions at five points.

In section 3, with the help of a suitable ’Liapunov-like’ function, we obtain
at most one solution to the following three-point boundary value problems (1.1)
satisfying

(1.2i) y(a)− y(x1) = y1, y(b) = y2, y(i)(b) = m (i = 1, 2)

and

(1.3i) y(b) = y2, y(i)(b) = m, y(x2)− y(c) = y3 (i = 1, 2).

Further, using the hypothesis that the solutions exist for the problems (1.1)
satisfying (1.2i) and (1.3i) a unique solution to the five-point boundary value
problem (1.1) satisfying

(1.4) y(a)− y(x1) = y1, y(b) = y2, y(x2)− y(c) = y3

is constructed.

2. Existence and uniqueness of solutions

In this section the following theorem illustrates how the solutions of two
three-point boundary value problems are matched to obtain a unique solution
to the five-point boundary value problem.

Theorem 2.1. Let y1, y2, y3, b ∈ R with a < x1 < b < x2 < c and suppose
that

(i) For each m ∈ R there exist solutions of (1.1) satisfying (1.2i) or (1.3i)(i =
1, 2).

(ii) For each m ∈ R and each t there exists at most one solution of each of
the following boundary value problems (1.1) satisfying

y(a)− y(x1) = y1, y(b) = y2, y′′(t) = m, where t ∈ (a, b]

and

y(b) = y2, y′′(t) = m, y(x2)− y(c) = y3, where t ∈ [b, c).

Then there exists a unique solution to the boundary value problem (1.1) satisfy-
ing (1.4).

Proof. Let y1(x,m) denote a solution of (1.1) satisfying (1.22) with the second
derivative m at x = b. First we show that y′1(b,m) is an increasing func-
tion of m. If m2 > m1, by definition y′′1 (b,m2) > y′′1 (b,m1). Let w(x) =
y1(x,m2) − y1(x,m1). We claim that w′′(x) > 0 for all x ∈ (a, b]. Suppose
to the contrary that there exists a point p ∈ (a, b) such that w′′(p) ≤ 0. Since
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w′′(x) is continuous, there exists a point q ∈ [p, b) such that w′′(q) = 0. This im-
plies that y′′1 (q, m2) = y′′1 (q, m1) = k, which is a contradiction to our hypothesis
(ii). Since w′(x) is increasing on (a, b] and w(a) = w(x1), there exists a point
r ∈ (a, x1) such that w′(r) = 0 and w′(x) > 0 for all x ∈ (r, b]. In particular
w′(b) > 0, and hence y′1(b,m) is strictly increasing function of m.

Let y2(x,m) denote a solution of (1.1) satisfying (1.32) with the second
derivative m at x = b. In a similar way it can be shown that y′2(b,m) is a
strictly decreasing function of m.

Now it is claimed that y′1(b,m) has no jump discontinuities as a function of m.
Suppose to the contrary that y′1(b,m) has a jump discontinuity at m = m1 and
if y′1(b,m

−
1 ) = u, y′1(b,m1) = v, y′1(b, m

+
1 ) = w, then u < v < w. Choose k 6= v

and consider a solution Y (x) of (1.1) satisfying y(a) − y(x1) = y1, y(b) = y2,
y′(b) = k. Since Y ′′(b) exists, Y ′′(b) = p. For p = m1, y1(x, p) ≡ Y (x) which
leads to a contradiction. Similarly, y′2(b,m) has no jump discontinuities.

Now we show that y′1(b, .) : R
onto→ R.

Let z0 ∈ R, the boundary value problem (1.1) satisfying y(a) − y(x1) = y1,
y(b) = y2, y′(b) = z0 has a solution φ. Let φ′′(b) = q, then y1(x, q) ≡ φ(x)
implies y′1(b, q) = φ′(b) = z0. Similarly, y′2(b, .) also maps from R onto R.

Thus both y′1(b,m) and y′2(b,m) are continuous strictly monotone functions
of m, whose ranges are the set of real numbers. Denote Y ′(b,m) = y′1(b,m) −
y′2(b, m)

Y ′(b, m) →∞ as m → +∞

Y ′(b,m) → −∞ as m → −∞

. Thus there exists an m0 ∈ R such that y′1(b,m0) = y′2(b,m0). By defini-
tion of y1(x,m0) and y2(x,m0) we have y1(b,m0) = y2(b,m0) and y′′1 (b,m0) =
y′′2 (b, m0). Thus

y(x) =
{

y1(x,m0), a ≤ x ≤ b
y2(x,m0), b ≤ x ≤ c

is a solution of (1.1) satisfying (1.4).
To establish uniqueness, suppose that y1(x) and y2(x) are two distinct solu-

tions of (1.1) satisfying (1.4). Let w(x) = y1(x)− y2(x), then w(a)−w(x1) = 0,
w(b) = 0, w(x2)− w(c) = 0. Thus there exists a point p1 ∈ (a, x1) and a point
p2 ∈ (x2, c) such that w′(p1) = w′(p2) = 0. This implies that there exists a
point p3 ∈ (p1, p2) such that w′′(p3) = 0, i.e y′′1 (p3) = y′′2 (p3) which is again a
contradiction to hypothesis (ii). 2

The matching of solutions in the above theorem in hypothesis (i) was ac-
complished by depending on hypothesis (ii), which is related to uniqueness of
the solutions of four-point boundary value problems. Hence it is preferable to
match solutions of three-point boundary value problems without the help of a
hypothesis involving four-point boundary value problems. This was achieved in
the next section with the use of ’Liapunov-like’ function.
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3. Liapunov function - Existence and uniqueness of solu-
tions

In this section, we define the Liapunov function and establish lemmas which
are useful for proving our main theorem regarding the existence and uniqueness
of five-point boundary value problems.

Suppose y1 and y2 be two solutions of (1.1) satisfying (1.2i) or (1.3i) (i =
1, 2), write y = y1 − y2 then

(3.1) y′′′ = F (x, y, y′, y′′) = f(x, y + y2, y
′ + y′2, y

′′ + y′′2 )− f(x, y2, y
′
2, y

′′
2 )

and F (x, 0, 0, 0) = 0. The boundary conditions (1.2i), (1.3i) respectively become

(3.2i) y(a)− y(x1) = 0, y(b) = 0, y(i)(b) = 0 (i = 1, 2)

and

(3.3i) y(b) = 0, y(i)(b) = 0, y(x2)− y(c) = 0 (i = 1, 2).

Hence y(x) ≡ 0 is a solution of (3.1) satisfying (3.2i) or (3.3i)(i = 1, 2). Thus
we have proved the following.

Lemma 3.1. The problem (1.1) satisfying (1.2i) or (1.3i)(i = 1, 2) has a
unique solution if and only if y(x) ≡ 0 is the only solution of (3.1) satisfy-
ing (3.2i) or (3.3i)(i = 1, 2).

Definition 3.1. A Liapunov function V (x, y, y′, y′′) is a continuous locally
Lipschitzian real valued function with respect to (y, y′, y′′). Corresponding to
V (x, y, y′, y′′) we define

V ′
f (x, y, y′, y′′) = lim

h→0+
inf

1
h

[V (x+h, y +hy′, y′+hy′′, y′′+hf)−V (x, y, y′, y′′)]

V ′(x, y, y′, y′′) = lim
h→0+

inf
1
h

[V (x+h, y(x+h), y′(x+h), y′′(x+h))−V (x, y, y′, y′′)]

where f is a function defined and continuous on a domain M = [a, c]×N , where
[a, c] is an interval on the real line and N ⊂ R3. Choose M = M1 ∪M2, where
M1 = [a, b]×N and M2 = [b, c]×N .

Lemma 3.2. If V (x, y, y′, y′′) is a Liapunov function and y(x) is a solution
of (1.1) then V ′(x, y, y′, y′′) = V ′

f (x, y, y′, y′′) and V (x, y, y′, y′′) is nonincreas-
ing(nondecreasing) if and only if V ′

f (x, y, y′, y′′) ≤ 0 (V ′
f (x, y, y′, y′′) ≥ 0).

Proof. Analogous to the proof of Yoshizawa [p.4 of [9]]. 2
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Lemma 3.3. For F defined in (3.1), if there exists a Liapunov function
V (x, y, y′, y′′) defined on M1 such that

(i) V (x, y, y′, y′′) = 0 if y = 0
(ii) V (x, y, y′, y′′) > 0 if y 6= 0
(iii) V ′

F (x, y, y′, y′′) ≥ 0 in the interior of M1.
Then for each m ∈ R, there exists at most one solution to the three-point bound-
ary value problems (1.1) satisfying (1.2i)(i = 1, 2).

Proof. The proof of the problem (1.1) satisfying (1.22) will be given. A
similar proof holds for the other boundary value problem. Suppose y1(x) and
y2(x) are two distinct solutions of (1.1) satisfying (1.22). Write w(x) = y1(x)−
y2(x), then

(3.4) w′′′ = F (x,w, w′, w′′), w(a)− w(x1) = 0, w(b) = 0, w′′(b) = 0,

where F (x, 0, 0, 0) = 0. From Lemma 3.1 it suffices to show that w(x) ≡ 0 is
the only solution of (3.4). Suppose φ(x) is a nontrivial solution of (3.4), then
there exists a η ∈ (a, b) such that φ(η) 6= 0. Hence

(3.5) V (η, φ(η), φ′(η), φ′′(η)) > 0.

Since V ′
F (x, y, y′, y′′) ≥ 0 in the interior of M1 and from Lemma 3.2 it follows

that V (x, y, y′, y′′) is nondecreasing along the solution φ(x). Thus η < b implies

(3.6) V (η, φ(η), φ′(η), φ′′(η)) ≤ V (b, φ(b), φ′(b), φ′′(b)) = 0.

Hence (3.5) and (3.6) contradict each other and hence y1(x) ≡ y2(x). 2

Lemma 3.4. For F defined in (3.1), if there exists a Liapunov function
V (x, y, y′, y′′) defined on M2 such that

(i) V (x, y, y′, y′′) = 0 if y = 0
(ii) V (x, y, y′, y′′) > 0 if y 6= 0
(iii) V ′

F (x, y, y′, y′′) ≤ 0 in the interior of M2.
Then for each m ∈ R, there exists at most one solution to the three-point bound-
ary value problems (1.1) satisfying (1.3i) (i = 1, 2).

Proof. Analogous to the proof of Lemma 3.3. 2

Theorem 3.1. Let y1, y2, y3, b ∈ R with a < x1 < b < x2 < c. Suppose that
(i) For each m ∈ R there exist solutions of (1.1) satisfying (1.2i) or (1.3i)
(i = 1, 2).
(ii) V (x, y, y′, y′′) is a Liapunov function as in Lemmas 3.3 and 3.4.
Then there exists at most one solution to the boundary value problem (1.1)
satisfying (1.4).
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Proof. From Lemmas 3.3 and 3.4 the solutions of (1.1) satisfying (1.2i) or
(1.3i)(i = 1, 2) are unique. Let y1(x,m) denote the solution of (1.1) satisfying
(1.22). If m2 > m1, then y′′1 (b,m2) > y′′1 (b,m1). Let w(x) = y1(x,m2) −
y1(x,m1), since w′′(x) is continuous and w′′(b) > 0, either

(1) w′′(x) > 0 for all x ∈ [a, b]
(2) w′′(a) = 0 and w′′(x) > 0 for all x ∈ (a, b]
or
(3) there exists a point q ∈ (a, b) such that w′′(q) = 0 and w′′(x) > 0 for all

x ∈ (q, b] holds.
First we show that in all the above three cases there exists a point p ∈ (a, b)

such that w′(x) > 0 for all x ∈ (p, b]. Suppose that (1) or (2) holds. Since
w(a) = w(x1) there exists a point p ∈ (a, x1) such that w′(p) = 0. This,
together with (1) or (2) implies w′(x) > 0 for all x ∈ (p, b].

Suppose (3) holds. We claim that there exists a point p ∈ [q, b) such that
w′(p) > 0, thus from (3), w′(x) > 0 for all x ∈ (p, b]. Suppose to the contrary
that w′(x) < 0 for all x ∈ [q, b). Since w(b) = 0 implies w(q) > 0. Hence

(3.7) V (q, w(q), w′(q), w′′(q)) > 0.

Since V ′
F (x, y, y′, y′′) ≥ 0 in the interior of M1 and from Lemma 3.2 it follows

that V (x, y, y′, y′′) is nondecreasing along w(x). Since q < b implies

(3.8) V (q, w(q), w′(q), w′′(q)) ≤ V (b, w(b), w′(b), w′′(b)) = 0.

Thus (3.7) and (3.8) contradict each other. In particular in all three cases
w′(b) > 0, therefore y′1(b,m) is a strictly increasing function of m.

Let y2(x,m) denote a solution of (1.1) satisfying (1.32). A proof similar to
the above shows that y′2(b,m) is a strictly decreasing function of m.

The remaining proof of the existence of solutions of five-point boundary value
problem (1.1) satisfying (1.4) is obtained by matching the solutions of two three-
point boundary value problems (1.1) satisfying (1.22) and (1.1) satisfying (1.32)
and follows as in the proof of Theorem 2.1.

To establish uniqueness, suppose that y1(x) and y2(x) are two distinct solu-
tions of (1.1) satisfying (1.4). Write y(x) = y1(x)− y2(x), then

(3.9) y′′′(x) = F (x, y, y′, y′′) = 0, y(a)− y(x1) = 0, y(b) = 0, y(x2)− y(c) = 0,

where F (x, 0, 0, 0) = 0. Suppose y0(x) is a non-trivial solution of (3.9). There
exists a point p ∈ [a, c] such that y0(p) 6= 0. Since y0(b) = 0, we have either
p ∈ [a, b) or p ∈ (b, c] and y0(p) 6= 0. For p ∈ [a, b) we have

(3.10) V (p, y0(p), y′0(p), y′′0 (p)) > 0.

Since V ′
F (x, y, y′, y′′) ≥ 0 in the interior of M1 and from Lemma 3.2 it follows

that V (x, y, y′, y′′) is nondecreasing along y0(x). Since p < b implies

(3.11) V (p, y0(p), y′0(p), y′′0 (p)) ≤ V (b, y0(b), y′0(b), y
′′
0 (b)) = 0,
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which is again a contradiction. Similarly, the other case follows. Hence the
uniqueness holds. 2

Remark 3.1. It may be noted that even when the monotonicity condition
is not satisfied by f , a Liapunov function satisfying all the requirements as in
Theorem 3.1 may exist to ensure the existence and uniqueness of solutions to
five-point boundary value problems as seen from the following example:

(3.12) y′′′ + y′ = 0

y(0)− y(
π

4
) =

−1√
2
, y(

π

2
) = 1, y(

3π

4
)− y(π) =

1√
2
.

Here V (x, y, y′, y′′) = y2 is a Liapunov function for (3.12) on M = [0, π]×N =
M1 ∪M2, where M1 = [0, π

2 ]×N , M2 = [π
2 , π]×N and N ⊂ R3.
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