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ON RECTIFYING CURVES AS CENTRODES AND
EXTREMAL CURVES IN THE MINKOWSKI 3-SPACE

Kazim Ilarslan1 and Emilija Nešović2

Abstract. In this paper, we characterize the spacelike, the timelike and
the null rectifying curves in the Minkowski 3-space in terms of centrodes.
In particular, we show that the spacelike and timelike rectifying curves
are the extremal curves for which the corresponding function takes its
extremal value. On the other hand, we also show that the null rectifying
curves are not the extremal curves and give some interesting geometric
properties of such curves.
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1. Introduction

The notion of rectifying curves was introduced by B. Y. Chen in [3]. By
definition, a regular unit speed space curve α(s) in the Euclidean 3-space E3 is
called a rectifying curve, if its position vector always lies in its rectifying plane
{T,B}, spanned by the tangent and the binormal vector field. Therefore, the
position vector α of a rectifying curve satisfies the equation

α(s) = λ(s)T (s) + µ(s)B(s),

for some differentiable functions λ and µ in acrlength function s. There are
many characterizations of the rectifying curves, lying fully in the Euclidean 3-
space and in the Minkowski 3-space E3

1 . For example, a curve α in E3 (or in E3
1)

is congruent to a rectifying curve if and only if the ratio of its torsion τ and its
curvature κ, is a nonconstant linear function in arclength function s (see [3, 5]).
The Euclidean rectifying curves are determined explicitly in [3, 5]. It is shown
in [4] that there exists a simple relationship between the Euclidean rectifying
curves and centrodes, which play important roles in mechanics, kinematics, as
well as in differential geometry, in defining the curves of constant precession.
Moreover, the Euclidean rectifying curves are the extremal curves which satisfy
the equality case of a general inequality ([4]).

In this paper, we study the spacelike, the timelike and the null rectifying
curves in the Minkowski 3-space. By using similar methods as in [4] we show
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that there is a simple relationship between the rectifying curves and centrodes.
In particular, we prove that the non-null rectifying curves are the extremal
curves, for which the corresponding function takes its extremal value. On the
other hand, we prove that the null rectifying curves are not extremal curves,
and give some interesting geometric properties of such curves.

2. Preliminaries

The Minkowski 3-space E3
1 is a Euclidean 3-space E3 provided with the

standard flat metric given by

g = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3
1 . Since g is indefinite

metric, recall that a vector v ∈ E3
1 can be spacelike if g(v, v) > 0 or v = 0,

timelike if g(v, v) < 0 and null if g(v, v) = 0 and v 6= 0. In particular, the norm
(length) of a vector v is given by ||v|| =

√
|g(v, v)|, and two vectors v and w

are said to be orthogonal, if g(v, w) = 0. Next, recall that an arbitrary curve
α(s) in E3

1 , can locally be spacelike, timelike or null (lightlike), if all its velocity
vectors α′(s) are respectively spacelike, timelike or null. If g(α′(s), α′(s)) = ±1,
the non-null curve α is said to be of unit speed (or parameterized by arclength
function s).

The Frenet frame {T, N, B} of a unit speed non-null curve α(s) in E3
1 , with

g(α′′(s), α′′(s)) 6= 0 for each s, is given by T (s) = α′(s), N(s) = α′′(s)/||α′′(s)||,
B(s) = T (s) × N(s). Let us put g(T, T ) = ε0 = ±1 and g(N, N) = ε1 = ±1.
Then g(B,B) = −ε0ε1 and the following Frenet formulas hold ([6]):

(1)

T ′(s) = ε1κ(s)N(s),

N ′(s) = −ε0κ(s)T (s)− ε0ε1τ(s)B(s),

B′(s) = −ε1τ(s)N(s).

The vector product v × w of two vectors v and w in E3
1 is defined in [6] by the

validity of the equation

g(v × w, z) = det(v, w, z),

for all z ∈ E3
1 . Accordingly, the Frenet frame of α satisfies the equations

T ×N = B,

N ×B = −ε1T,

B × T = −ε0N.

Recall that the arclength function s of a null curve β in E3
1 is defined in [1] by

s(t) =
∫ t

0

√
||β′′(u)|| du. In particular, if g(β′′(s), β′′(s)) = 1, the null curve β is

said to be parameterized by the arclength function s. The Frenet frame {T, N,B}
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of a unit speed null curve β(s) is given by T (s) = β′(s), N(s) = β′′(s), and B(s)
is the unique null vector field such that g(T, B) = 1, g(N, B) = 0. This frame
satisfies the equations

T ×N = T,

N ×B = B,

B × T = N,

and the Frenet equations of β are given by ([8]):

(2)

T ′(s) = κ(s)N(s),

N ′(s) = τ(s)T (s)− κ(s)B(s),

B′(s) = −τ(s)N(s),

where the curvature κ(s) takes only two values: κ(s) = 0 if β is a straight line,
or κ(s) = 1 in all other cases.

When the Frenet frame moves along a curve in E3
1 , there exist an axis of

instantaneaus frame’s rotation. The direction of such axis is given by the Dar-
boux (rotation) vector. If α is a unit speed non-null curve, the Darboux vector
of α is given by

(3) Dα(s) = −ε0ε1τα(s)Tα(s)− ε0ε1κα(s)Bα(s),

Moreover, if β is a unit speed null curve, the Darboux vector of β has the
equation

(4) Dβ(s) = τβ(s)Tβ(s) + κβ(s)Bβ(s),

A curve given by (3) or (4) is called respectively the centrode of α or β. Hence
the Darboux equations ([6])

T ′ = D × T,
N ′ = D ×N,
B′ = D ×B,

are just a variant of the Frenet equations (1) and (2).
Recall that the pseudosphere and the pseudohyperbolical space with center

at the origin and of radius 1 are hyperquadrics in E3
1 , respectively defined by

([7])
S2

1(1) = {v ∈ E3
1 : g(v, v) = 1},

H2
0 (1) = {w ∈ E3

1 : g(w, w) = −1}.

3. Some known results

In this section we recall some theorems from [5], which are important for the
proofs of theorems which follow.
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Theorem A. Let α = α(s) be a unit speed non-null curve in E3
1 . Then the

following statements hold:
(i) α is a rectifying curve with a spacelike rectifying plane if and only if, up

to the parametrization, α is given by

α(t) =
a

cos(t)
y(t), a ∈ R+

0 ,

where y(t) is a unit speed spacelike curve lying in S2
1(1).

(ii) α is a spacelike (timelike) rectifying curve with a timelike rectifying plane
and a spacelike (timelike) position vector, if and only if up to the parametriza-
tion, α is given by

α(t) =
a

sinh(t)
y(t), a ∈ R+

0 ,

where y(t) is a unit speed timelike (spacelike) curve lying in S2
1(1) (H2

0 (1)).
(iii) α is a spacelike (timelike) rectifying curve with a timelike rectifying plane

and a timelike (spacelike) position vector, if and only if up to the parametriza-
tion, α is given by

α(t) =
a

cosh(t)
y(t), a ∈ R+

0 ,

where y(t) is a unit speed spacelike (timelike) curve lying in H2
0 (1)(S2

1(1)).
Theorem B. Let α = α(s) be a unit speed null curve in E3

1 , with the first
curvature k(s) = 1. Then α is a rectifying curve with a spacelike (timelike)
position vector if and only if , up to the parametrization, α is given by

α(t) = ety(t),

where y(t) is a unit speed timelike (spacelike) curve lying in S2
1(1) (H2

0 (1)).
Theorem C. Let α = α(s) be a unit speed non-null curve in E3

1 , with a
spacelike or a timelike rectifying plane and with the curvature κ(s) > 0. Then
up to the isometries of E3

1 , the curve α is a rectifying if and only if there holds
τ(s)/κ(s) = c1s + c2, where c1 ∈ R0, c2 ∈ R.

Theorem D. Let α = α(s) be a unit speed null curve in E3
1 with the first

curvature k(s) = 1. Then up to the isometries of E3
1 , the curve α is a rectifying

if and only if there holds τ(s)/κ(s) = c1s + c2, where c1 ∈ R0, c2 ∈ R.

4. The rectifying curves as centrodes in E3
1

It is shown in [5] that there are no spacelike rectifying curves with the null
principal normals in E3

1 . Consequently, in this section we show that the timelike,
the null and the spacelike rectifying curves with the non-null principal normals
in the Minkowski 3-space, are characterized in terms of centrodes, in a similar
way as in E3 (see [4]).

Theorem 4.1. The centrode of a unit speed non-null curve α(s) in E3
1 , with

constant curvature κα 6= 0, nonconstant torsion and g(α′′(s), α′′(s)) 6= 0 is a
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non-null rectifying curve. Conversely, every unit speed non-null rectifying curve
in E3

1 , is the centrode of some unit speed non-null curve with constant curvature
κ 6= 0 and nonconstant torsion.

Proof. First assume that α(s) is a unit speed non-null curve in E3
1 with the

curvature κα(s) = c ∈ R0, the torsion τα(s) 6= constant and g(α′′(s), α′′(s)) 6= 0.
Consider the centrode of α given by

Dα(s) = −ε0ε1τα(s)Tα(s)− ε0ε1κα(s)Bα(s).

By taking the derivative of Dα with respect to s and applying the Frenet equa-
tions (1), we get

(5) D′
α(s) = −ε0ε1τ

′
α(s)Tα(s).

It follows that g(D′
α, D′

α) 6= 0, which means that Dα is a non-null curve.
Denote by {TD, ND, BD} the Frenet frame of Dα. Then TD = D′

α/||D′
α||, so

relation (5) implies TD = ±Tα. Consequently, T ′D = ±T ′α, which means that
ND and Nα are parallel vectors. This implies that BD and Bα are also parallel
vectors. Hence Dα lies in the plane {TD, BD}, so Dα is a rectifying curve.

Conversely, if α(s) is a unit speed non-null rectifying curve in E3
1 , Theorem

C implies τα(s)/κα(s) = c1s + c2, c1 ∈ R0, c2 ∈ R. We may assume that
κα(s) = (c0/s)τα(s), c0 ∈ R0. Next we define functions f and g by f(s) =
(1/c0)

∫ s

s0
κα(u) du and g(s) = f−1(s). Up to the isometries of E3

1, there exist
a unit speed non-null curve β(t) such that κβ(t) = c0 and τβ(t) = g(t). Let
g(Tβ , Tβ) = ε = ±1 and g(Nβ , Nβ) = η = ±1. By using (3), it follows that the
centrode of β is given by

Dβ(t) = −εηg(t)Tβ(t)− εηc0Bβ(t).

Let γ(s) = Dβ(f(s)) be the reparametrization of Dβ . Therefore,

γ(s) = −εηsTβ(f(s))− εηc0Bβ(f(s)).

We will prove that the curves α and γ are congruent. Differentiating the last
equation with respect to s and using (1), we find

γ′(s) = −εηTβ(f(s)),

and thus g(γ′(s), γ′(s)) = g(Tβ(f(s)), Tβ(f(s))) = ε. Consequently, γ(s) is a
unit speed non-null curve with

Tγ(s) = −εηTβ(f(s)).

Differentiating the previous equation two times with respect to s, and using (1),
we find

|κα(s)| = |κγ(s)|, |τα(s)| = |τγ(s)|,
which means that α and γ are congruent curves. This proves the theorem. 2
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Remark 4.1. Theorem 4.1 is also valid when the curve α has a nonconstant
curvature and constant torsion τα 6= 0.

It is shown in [2] that the Cartan frame of a null curve in E4
1 can be defined to

be parameter independent. Accordingly, we can define the Frenet frame of a null
curve in E3

1 in a similar way. Let β(t) be a null curve in E3
1 , parameterized by

an arbitrary parameter t. We define the tangent vector Tβ(t) and the principal
normal vector Nβ(t) by

(6) Tβ(t) =
β′(t)
||β′′(t)|| , Nβ(t) = T ′β(t).

Then the binormal vector Bβ(t) is the unique null vector field such that
g(Tβ , Bβ) = 1, g(Nβ , Bβ) = 0. It is easy to see that the Frenet equations
of β(t) are given by

(7)

T ′β(t) = κβ(t)Nβ(t),

N ′
β(t) = τβ(t)Tβ(t)− κβ(t)Bβ(t),

B′
β(t) = −τβ(t)Nβ(t),

where κβ(t) = 0 if β is a straight line, or κβ(t) = 1 in all other cases.

Theorem 4.2. The centrode of a null rectifying curve β(s), parameterized by
arclength s, is in E3

1 a null rectifying curve. Conversely, every null rectifying
curve β(s), parameterized by acrlength s, is in E3

1 the centrode of some null
curve γ(t) with the torsion τγ(t) = ct, where t is the arclength parameter and
c ∈ R0.

Proof. Let β(s) be a null rectifying curve in E3
1 , parameterized by arclength

s and with κβ(s) = 1. By theorem D, it follows that τβ(s)/κβ(s) = c1s + c2,
where c1 ∈ R0, c2 ∈ R, and hence τβ(s) = c1s + c2. Consider the centrode of β
given by

(8) Dβ(s) = τβ(s)Tβ(s) + κβ(s)Bβ(s).

Differentiating the previous equation with respect to s and using (2), we find

(9) D′
β(s) = c1Tβ(s).

Consequently, g(D′
β(s), D′

β(s)) = 0, so Dβ is a null curve. Differentiating (9)
with respect to s yields D′′

β(s) = c1Nβ(s). If {TD, ND, BD} is the Frenet frame
of Dβ , relation (6) implies TD(s) = D′

β(s)/||D′′
β(s)||, ND(s) = T ′D(s). Con-

sequently, TD(s) = Tβ(s), ND(s) = Nβ(s), which implies BD(s) = Bβ(s).
Therefore, the position vector of the centrode Dβ given by (8) lies in the plane
{TD, BD}, which means that Dβ is a rectifying curve.

Conversely, let β(s) be a null rectifying curve in E3
1 , parameterized by the

arclength s and with κβ(s) = 1. Then Theorem D implies τβ(s)/κβ(s) = c1s+c2,
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whereby c1 ∈ R0, c2 ∈ R, and thus τβ(s) = c1s + c2. We may assume that
τβ(s) = c1s. Next, we define the functions f and g by f(s) = c1s, g(s) =
f−1(s)/c1. Up to the isometries of E3

1 , there exists null curve γ(t) such that
κγ(t) = 1, τγ(t) = g(t), where t is the arclength function of γ. By relation (4),
the centrode of γ is given by

Dγ(t) = τγ(t)Tγ(t) + κγ(t)Bγ(t).

Consequently, Dγ(t) = g(t)Tγ(t)+Bγ(t). Let δ(s) = Dγ(f(s)) be the reparame-
trization of Dγ . It follows that

(10) δ(s) =
1
c1

sTγ(f(s)) + Bγ(f(s)).

We will prove that the curves β and δ are congruent. Differentiating (10) with
respect to s and using (7), we get

δ′(s) =
1
c1

Tγ(f(s)).

Differentiating the previous equation with respect to s and using (7), yields

δ′′(s) = Nγ(f(s)).

Therefore, g(δ′′(s), δ′′(s)) = 1. Let {Tδ, Nδ, Bδ} be the Frenet frame of δ. Then
relation (6) implies Tδ(s) = δ′(s), Nδ(s) = T ′δ(s), and accordingly

(11) Tδ(s) =
1
c1

Tγ(f(s)), Nδ(s) = Nγ(f(s)).

By taking the derivative of Nδ with respect to s and using (7), we obtain

(12) N ′
δ(s) = sTγ(f(s))− c1Bγ(f(s)).

Next, relations (11) and (12) imply

(13) N ′
δ(s) = c1sTδ(s)− c1Bγ(f(s)).

On the other hand, from (7) we have

(14) N ′
δ(s) = τδ(s)Tδ(s)−Bδ(s),

so relations (13) and (14) yield

τδ(s) = c1s, Bδ(s) = c1Bγ(f(s)).

Since κβ(s) = κδ(s) = 1 and τβ(s) = τδ(s) = c1s, it follows that β and γ are
congruent curves, which proves the theorem. 2
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5. The rectifying curves as extremal curves in E3
1

If α is a non-null curve given by α(t) = ρ(t)y(t), where ρ(t) 6= 0 is an
arbitrary function and y(t) is a curve lying in S2

1(1) (or in H2
0 (1)), then y is

called the pseudospherical projection of α (or the projection of α in H2
0 (1)). Let

κα and ϑα = ||α′|| be the curvature and the speed of α, and let κg be the
geodesic curvature of y. We consider the function Fα defined by Fα = ϑ4

ακ2
α/ρ2.

In the following theorems, we show that in the set of non-null curves with
the same projection y, only the rectifying curve α has a property that the
corresponding function Fα takes its extremal value, equal to κ2

g. Therefore, the
non-null rectifying curves are the extremal curves. Depending on the causal
character of curves α and y, the extremal value κ2

g can be the maximum or the
minimum value of the function Fα.

Theorem 5.1. If y(t) is a unit speed spacelike curve in S2
1(1) with the geodesic

curvature κg, ρ > 0 arbitrary function and α(t) = ρ(t)y(t) the curve with the
spacelike rectifying plane in E3

1 , then

Fα ≤ κ2
g,

where the equality sign holds if and only if α is a rectifying curve.

Proof. Assume that the curve α is given by α(t) = ρ(t)y(t), where y(t) is a
unit speed spacelike curve in S2

1(1) and ρ(t) > 0. Also assume that α has the
spacelike rectifying plane. Since

α′(t) = ρ′(t)y(t) + ρ(t)y′(t),

it follows that
g(y × y′, α′) = 0.

Thus y×y′ lies in the timelike plane spanned by {Nα, Bα} and has the equation

(15) y × y′ = cosh(γ)Nα + sinh(γ)Bα,

where γ = γ(t) is an arbitrary function. Next, we may decompose the vector
field y′′(t) with respect to the orthonormal frame {y, y′, y × y′} by

y′′ = g(y′′, y)g(y, y)y + g(y′′, y′)g(y′, y′)y′ + g(y′′, y × y′)g(y × y′, y × y′)y × y′.

By definition, the geodesic curvature κg of y is given by

κg(t) = g(y′′(t), y(t)× y′(t)),

and hence

(16) y′′(t) = −y(t)− κg(t)y(t)× y′(t).

Differentiating (15) with respect to t, using (16) and Frenet equations for arbi-
trary speed curves, we obtain

(17) − κgy
′ = ϑακα cosh(γ)Tα + (γ

′
+ ταϑα)(sinh(γ)Nα + cosh(γ)Bα),
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where ϑα = ||α′|| is the speed of α. Since y′ × (y × y′) = −y, it follows that

(18) κgy
′ × (y × y′) = −κgy.

Substituting (15) and (17) in (18), we get

(19) κgy = (γ′ + ταϑα)Tα − ϑακα cosh(γ)(sinh(γ)Nα + cosh(γ)Bα).

Next, taking the scalar product of (19) with Tα, we find

(20) κgg(y, Tα) = γ′ + ταϑα.

Moreover, since Tα = (ρ′/ϑα)y + (ρ/ϑα)y′, it follows that

(21) g(y, Tα) =
ρ′

ϑα
.

Then (20) and (21) imply

(22) γ′ + ταϑα =
κgρ

′

ϑα
.

Substituting (22) in (17), we obtain

−ϑακgy
′ = ϑ2

ακα cosh(γ)Tα + κgρ
′(sinh(γ)Nα + cosh(γ)Bα).

Next, using the equation g(y′(t), y′(t)) = 1 we get

κ2
g =

ϑ4
ακ2

α cosh2(γ)
ρ2

.

Consequently, the last equation implies the inequality

(23) κ2
g ≥

ϑ4
ακ2

α

ρ2
= Fα.

It is easy to see that in (23) the equality sign holds if and only if cosh(γ) = 1.
Moreover, relation (15) implies cosh(γ) = 1 if and only if y × y′ = Nα. On the
other hand, differentiating the equation α(t) = ρ(t)y(t) with respect to t, we
get

α′′ = ρ′′y + 2ρ′y′ + ρy′′.

Next, using relation (16) we obtain

(24) (α′ × α′′)× α′ = (2ρ′2 − ρρ′′ + ρ2)(ρy − ρ′y′) + ρ(ρ2 − ρ′2)κgy × y′.

Since α′ × α′′ is in the direction of Bα, it follows that (α′ × α′′) × α′ is in the
direction of Nα = y × y′. Accordingly, relation (24) implies the differential
equation

2ρ′2 − ρρ′′ + ρ2 = 0.
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The solution of the previous equation is given by ρ(t) = a/ cos(t), a ∈ R+
0 .

Therefore, by statement (i) of Theorem A it follows that α is a rectifying curve
if and only if in (23) the equality sign holds. This completes the proof of the
theorem.

In a similar way, we obtain the following two theorems. 2

Theorem 5.2. If y(t) is a unit speed timelike (spacelike) curve in S2
1(1) (H2

0 (1))
with the geodesic curvature κg, ρ > 0 arbitrary function and α(t) = ρ(t)y(t) the
timelike curve in E3

1 , then
Fα ≥ κ2

g,

where the equality sign holds if and only if α is a rectifying curve.

Theorem 5.3. If y(t) is a unit speed timelike (spacelike) curve in S2
1(1) (H2

0 (1))
with the geodesic curvature κg, ρ > 0 arbitrary function and α(t) = ρ(t)y(t) the
spacelike curve with the timelike rectifying plane in E3

1 , then

Fα ≤ κ2
g,

where the equality sign holds if and only if α is a rectifying curve.

Next we consider the null curve β(t) in E3
1 and its corresponding function

Fβ = ϑ4
βκ2

β/ρ2, where ϑβ(t) =
√
||β′′(t)||, κβ(t) = 1, and ρ > 0, is an arbitrary

differentiable function. In the following theorem we show that in the set of null
curves with the same projection y, lying in S2

1(1) or in H2
0 (1), all curves are

rectifying. Consequently, the null rectifying curves are not the extremal curves.

Theorem 5.4. If y(t) is a unit speed timelike (spacelike) curve in S2
1(1) (H2

0 (1))
with the geodesic curvature κg, ρ > 0 arbitrary function and β(t) = ρ(t)y(t) the
null curve in E3

1 , then:
(i) β is a rectifying curve;
(ii) Fβ = κ2

g;
(iii) κg(t) = ce3t, c ∈ R+

0 .

Proof. Let y(t) be a unit speed timelike curve in S2
1(1) and ρ(t) > 0 an arbitrary

function. If β is a null curve given by β(t) = ρ(t)y(t), then β′(t) = ρ′(t)y(t) +
ρ(t)y′(t), and hence g(β′(t), β′(t)) = ρ′2(t)−ρ2(t) = 0. It follows that ρ(t) = et,
so Theorem B implies that β is a rectifying curve. This proves statement (i).

By statement (i), β is a rectifying curve with the equation β(t) = ety(t).
Differentiating the previous equation two times with respect to t, we find

(25) β′′(t) = et(y(t) + 2y′(t) + y′′(t)).

By assumption of the theorem, vector fields y, y′, and y×y′ form an orthonormal
frame along y. Consequently, we may decompose the vector field y′′ by

(26) y′′ = g(y′′, y)g(y, y)y+g(y′′, y′)g(y′, y′)y′+g(y′′, y×y′)g(y×y′, y×y′)y×y′.
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By definition, the geodesic curvature κg of y is given by

(27) κg(t) = g(y(t)× y′(t), y′′(t)).

Further relations (26) and (27) imply y′′(t) = y(t) + κg(t)y(t) × y′(t), and
therefore

(28) g(y′′, y′′) = 1 + κ2
g.

Using (25) and (28) we get

(29) g(β′′(t), β′′(t)) = e2tκ2
g(t).

Therefore, since ϑβ(t) =
√
||β′′(t)||, κβ(t) = 1 and using (29), we obtain

Fβ = ϑ4
βκ2

β/ρ2 = κ2
g.

This proves statement (ii).
By statement (i), β is a rectifying curve, so by definition the position vector

of β has the equation

(30) β(s) = λ(s)Tβ(s) + µ(s)Bβ(s),

for some differentiable functions λ and µ in the arclength function s. Differen-
tiating (30) with respect to s and using (2), we obtain

(31) λ(s) = s + a1, a1 ∈ R, µ(s) = a2, a2 ∈ R0.

Further relations (30) and (31) imply

g(β(s), β(s)) = c1s + c2, c1 ∈ R0, c2 ∈ R.

On the other hand, since β(t) = ety(t), we easily get

g(β(t), β(t)) = e2t,

where t = t(s). It follows that

(32) e2t = c1s + c2.

Moreover, since s(t) =
∫ t

0

√
||β′′(u)|| du, we find (ds/dt)4 = g(β′′(t), β′′(t)), so

relation (29) implies

(33) s′(t) =
√

etκg(t).

On the other hand, relation (32) implies

(34) s′(t) = 2e2t/c1.

Finally, from (33) and (34) we obtain κg(t) = ce3t, c ∈ R+
0 , which proves

statement (iii). 2



64 K. Ilarslan, E. Nešović
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