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L-GUILDS AND BINARY L-MEROTOPIES

Mona Khare1, Rashmi Singh2

Abstract. The present paper is primarily concerned with the study
of L-guilds in an L-merotopic space. It is shown that every L-cluster is
an L-guild; however the converse is not true. For contigual and regular
L-merotopies, where on one side we gave an example of a space, which is
neither contigual nor binary, on the other side we constructed L-merotopic
spaces that are contigual and binary. It is shown that the category LBIN of
binary L-merotopic spaces and L-merotopic maps is bireflective in LMER,
the category of L-merotopic spaces and L-merotopic maps.
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1. Introduction

In 1965, Katětov [11] defined merotopic spaces by axiomatizing the concept
of collection of sets containing arbitrary small members called a micromeric
collection. Nearness spaces are those merotopic spaces for which a relationship
exists between the near collection and the closure operator. In 1974, Herrlich [9]
introduced the concept of nearness spaces by axiomatizing the concept of near-
ness of arbitrary collections of subsets of X. It is a generalization of the concept
of two sets being near. Nearness spaces have contributed to the understanding
of various extension problems. Brandenburg [4] and Carlson [6] solved such
type of problem for developable spaces and for complete Moore space. Quite
a few problems of this type are also solved in [3, 5, 7]. Nearness spaces have
been fruitful for approaching topology from categorical viewpoint. The cate-
gories of topological R0 spaces, uniform spaces, proximity spaces and contiguity
spaces are embedded in the category of nearness spaces. The category of uni-
form spaces and uniformly continuous maps form a full bireflective subcategory
of NEAR (the category of nearness spaces and nearness maps), which in turn
forms a full bireflective subcategory of MER.

In [2], Bentley introduced the concept of a guild in a merotopic space (X, ξ̄)
as the grill whose every two elements belong to ξ̄. Different additional conditions
are imposed on grills to define clans, bunches, etc. (see e.g. [1, 8]). Clusters,
an analogue of ultrafilter in proximity spaces, were introduced by Leader [14].
Mrówka [17] gave the axiomatic characterization of the family of all clusters in
a proximity space. More theory on clusters in proximity spaces can be found in
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[15, 16, 18]. In the year 1974, Herrlich [9] introduced the concept of a cluster
in a merotopic space; ‘clusters’ which appear with the same name in proximity
spaces is a different concept.

Prerequisites for the present paper are collected in Section 2. In Section 3,
the notion of an L-guild in an L-merotopic space (X, ξ) is given to be an L-grill
having an additional condition of being congenial. It is shown by means of an
example that a congenial collection need not be an L-grill and also, it may not
belong to ξ, followed by it, there is an example of an L-guild which does not
belong to ξ. To each guild in classical merotopic space, there is an L-guild in the
corresponding L-merotopic space and vice versa. Similar statements are given
for congenial collections also. It is shown that every L-cluster, introduced in
this section, is an L-guild and the converse is disproved by an example.

In Section 4, binary, contigual and regular L-merotopic spaces are defined.
An indiscrete L-merotopic space is neither contigual nor binary. Corresponding
to each L-merotopic space, we have a binary L-merotopic space generating the
same L-Čech closure operator. It is shown that every binary space is contigual
and a regular contigual L-merotopic space is binary. ‘Is a contigual space bi-
nary?’ it remains open question. Examples of a contigual L-merotopic space
and a contigual merotopic space are given. We proved that the category LBIN of
binary L-merotopic spaces and L-merotopic maps is a bireflective subcategory
of LMER whose objects are L-merotopic spaces and morphisms are L-merotopic
maps. On the same lines, it is shown that the category of binary L-nearness
spaces and L-nearness maps is bireflective in the category of L-nearness spaces
and L-nearness maps.

Let X be a nonempty ordinary set and L be an F -lattice (i.e. a completely
distributive lattice with largest element 1, smallest element 0, and an order
reversing involution ′ : L → L). For t in L, a mapping f : X → L defined by
f(x) = t, for all x ∈ X is denoted by t and the family of all functions from X
to L is by LX . We denote by ℵ0 the first infinite cardinal number, by |A| the
cardinality of A, A ⊆ LX , and by N the set of positive integers.

For A, B subsets of LX , we say that A corefines B if for all f ∈ A, there
exists g ∈ B such that f > g; A ∨ B ≡ {f ∨ g : f ∈ A, g ∈ B}; A ∧ B ≡ {f ∧ g :
f ∈ A, g ∈ B}.

For the theory of grills, filters, ultrafilters, and L-Čech closure spaces we
refer the readers to [12, 13, 19, 20, see also 21]. Details on merotopy and
nearness, when L = P(X), can be seen in ([9, 10], where many more references
can be found).

2. L-guilds

Definition 2.1. Let X be a nonempty set and ξ ⊆ P(LX). Then ξ is called
an L-merotopy on X provided, for the subsets A, B of LX ,

(M1) A corefines B and B ∈ ξ ⇒ A ∈ ξ,
(M2)

∧A 6= 0 ⇒ A ∈ ξ,
(M3) φ 6= ξ 6= P(LX),
(M4) A ∨ B ∈ ξ ⇒ A ∈ ξ or B ∈ ξ.
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The pair (X, ξ) is called an L-merotopic space. For an L-merotopic space
(X, ξ), we define:

clξf =
∨
{xp : {xp, f} ∈ ξ}, f ∈ LX .

Here xp ∈ LX , p ∈ L, is defined by xp(x) = p, xp(y) = 0, x 6= y. An L-
merotopy ξ on X is called an L-nearness if the following additional condition is
also satisfied: {clξf, clξg} ∈ ξ ⇒ {f, g} ∈ ξ.

Examples
Let X be a nonempty set. Then:
(i) ξ = {A ⊆ LX : 0 /∈ A} is an L-nearness on X. The pair (X, ξ) is the

largest L-nearness space and will be called the discrete L-space. Here, clξf =
{1}, f ∈ LX − {0}.

(ii) ξ = {A ⊆ LX :
∧A 6= 0} is an L-nearness on X. The pair (X, ξ) is the

smallest L-nearness space (L-merotopic space) and will be called the indiscrete
L-space. Here, clξf = χsupp f , f ∈ LX ; and for A ⊆ X, χA(x) = 1, if x ∈ A and
χA(x) = 0, if x /∈ A; and supp f = {x ∈ X : f(x) > 0}.

(iii) ξ = {A ⊆ LX : |supp f | > ℵ0 for all f ∈ A} ∪ {A ⊆ LX :
∧A 6= 0} is

an L−nearness on an infinite set X. Also, clξf = χsupp f .
(iv) For φ 6= C ⊆ LX , ξ = {A ⊆ LX : C ∩ sec A 6= φ}∪ {A ⊆ LX :

∧A 6= 0}
is an L−merotopy on X, where sec A = {f ∈ LX : f ∧ g 6= 0 for all g ∈ A}.

(v) Let (X, cl) be an L−Čech closure space. Then
(a) ξ = {A ⊆ LX :

∧{clf : f ∈ A} 6= 0} is an L−merotopy on X.
(b) ξ = {A ⊆ LX : for all B ⊆ A with |B| < ℵ0,

∧
g∈B

clg 6= 0} is an

L−merotopy on X.

Definition 2.2. Let (X, ξ) be an L-merotopic space and let A be a subset of
LX . Then A is said to be congenial iff f, g ∈ A ⇒ {f, g} ∈ ξ. A congenial L-
grill on X is called an L-guild in X. A congenial collection (L-guild) A is called
a maximal congenial collection (maximal L-guild) if it is not properly contained
in any other congenial collection (L-guild). An L-cluster in an L-merotopic
space (X, ξ) is a maximal element of ξ.

By Zorn’s lemma, for any congenial subset A of an L-merotopic space, there
exists a maximal congenial collection containing A. Similarly, every L-guild
in an L-merotopic space is contained in a maximal L-guild. Also, it may be
verified that for any L-guild G in X and A, B ∈ P (LX), if A ∨ B ⊆ G, then
either A ⊆ G, or B ⊆ G.

Example 2.3. (i) Let X be a set containing at least three points and ξ be
the indiscrete L-merotopy on X. Choose three distinct points, say x, y, z of X.
Then Q = (U [x] ∩ U [y]) ∪ (U [y] ∩ U [z]) ∪ (U [x] ∩ U [z]) is a congenial collection
in (X, ξ) but is not an L-grill, because x1 ∨ y1 ∈ Q while x1 /∈ Q and y1 /∈ Q.
Here U [x] = {f : f(x) > 0} is the principal L-ultrafilter on X. Since Q /∈ ξ, this
example also shows that a congenial collection in (X, ξ) may not belong to ξ.
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Let G be a congenial collection with Q ⊆ G. Then x1 ∨ y1 ∈ G. Since
χ{y,z} ∈ G and G is congenial, we have x1 /∈ G as x1 ∧ χ{y,z} = 0. Similarly,
y1 /∈ G. Hence a maximal congenial collection may fail to be an L-grill.

(ii) Let (X, ξ) be an L-merotopic space. Let x ∈ X and t ∈ (0, 1]. Then
xAt = {f ∈ IX : f(x) > t} is an L-guild in X. Also, U [x] is an L-guild in an
L-merotopic space (X, ξ).

(iii) A free L-ultrafilter, say Θ, in the indiscrete L-merotopic space (X, ξ) is
an L-guild. Moreover, Θ does not belong to ξ.

Proposition 2.4. In an L-merotopic space (X, ξ), (i) every L-ultrafilter is an
L-guild, and (ii) every L-cluster is an L-guild.

Proof. (i) Let U be an L-ultrafilter on X and f, g ∈ U . Then f ∧ g 6= 0, and
so {f, g} ∈ ξ. Hence U is congenial. Since every L-ultrafilter is an L-grill, the
result follows.

(ii) Let A be an L-cluster in X. Let f ∨ g ∈ A. Since ({f} ∪ A) ∨ ({g} ∪
A) ∨ ({g} ∪ A) corefines A, we have either {f} ∪ A ∈ ξ or {g} ∪ A ∈ ξ. By the
maximality of A, f ∈ A or g ∈ A. Let f ∈ A and f 6 g. Then, since {g} ∪ A
corefines A and A is an L-cluster, g ∈ A. Also, 0 /∈ A.

Remark 2.5. It can be seen from Example 2.3(iii) that the statement (ii) in
the above proposition is not reversible.

Proposition 2.6. Let (X, ξ) be an L-merotopic space and let A ⊆ LX be such
that every finite subcollection of A belongs to ξ. Then there exists an L-guild in
X containing A.

Proof. Let Ω = {B : A ⊂ B and every finite subcollection of B belongs to ξ}.
Then ∪Bi is an upper bound of the chain {Bi}∞i=1. By Zorn’s lemma there exists
a maximal element, say G, of Ω with A ⊆ G. Since every finite subcollection
of G belongs to ξ, G is a congenial collection in (X, ξ). For G to be an L-grill,
let f /∈ G and g /∈ G. Then {f} ∪ G /∈ Ω follows from the maximality of G.
Similarly {g} ∪ G /∈ Ω. Hence there exist finite subsets D and H of G such that
{f} ∪ D and {g} ∪H do not belong to ξ. Since ({f} ∪ D) ∨ ({g} ∪H) corefines
{f ∨ g} ∪ D ∪ H, we have {f ∨ g} ∪ D ∪ H /∈ ξ. Hence {f ∨ g} ∪ G /∈ Ω, or
f ∨ g /∈ G.

3. Binary L-merotopic spaces

Definition 3.1. Let (X, ξ) be an L-merotopic space and A ⊆ LX . Then
(i) (X, ξ) is said to be binary iff every L-guild in (X, ξ) belongs to ξ;
(ii) (X, ξ) is said to be contigual iff every finite subset of A belongs to

ξ ⇒ A ∈ ξ;
(iii) (X, ξ) is said to be regular iff

{f ∈ IX : {g,1− f} /∈ ξ, for some g ∈ A} ∈ ξ ⇒ A ∈ ξ.
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If (X, ξ) is a binary (contigual, regular respectively) L-merotopic space, then
ξ is referred to as a binary (contigual, regular respectively) L-merotopy on X;
(X, ξ) is called a binary L-nearness space provided ξ is an L-nearness on X.

Remark 3.2. An L-guild in (X, ξ) may or may not belong to ξ, e.g. L-guilds
xAt and U [x] of Example 2.3(ii) belong to any merotopy ξ on X, however in
the indiscrete L-merotopic space (X, ξ) of Example 2.1(ii) the L-guild Θ does
not belong to ξ. In the same indiscrete L-merotopic space (X, ξ), Θ also gives
an example of a set whose every finite subset belong to ξ but the set itself does
not belong to ξ. Thus the indiscrete L-merotopic space is neither contigual nor
binary.

Corresponding to each L-merotopic space, the following theorem produces
a binary L-merotopic space.

Theorem 3.3. Let (X, ξ) be an L-merotopic space. Define ξ̂ = {A ⊆ LX :
A ⊆ G, G is an L-guild in (X, ξ)}. Then (X, ξ̂) is a binary L-merotopic space
and, for f ∈ LX , clξ̂f 6 clξf . Moreover, if ξ is an L-nearness, then ξ̂ is also
an L-nearness.

Proof. Let A corefines B and B ⊆ G for some L-guild G in (X, ξ). Then for
f ∈ A, there exists g ∈ B such that f > g ∈ G. Since G is an L-grill, f ∈ G.
Hence A ⊆ G. Let ∧A 6= 0. Then there exists x ∈ X such that f(x) 6= 0 for
every f ∈ A. We have an L-guild U [x] in (X, ξ) which contains A. If 0 ∈ A,
then A /∈ ξ̂ and so ξ 6= P (LX). Finally, observe that every L-guild in ξ̂ is an
L-guild in ξ also. Let {clξ̂f, clξ̂g} ⊆ G, for some L-guild G in ξ. Then the family
H = {h ∈ LX : clξf ∈ G} is an L-guild in ξ containing {f, g}.

Example 3.4. Let X be a nonempty set. Then ξ = {A ⊆ LX :: A ⊂ G, G is
an L-grill on X} is a contigual L-merotopy on X: By the similar arguments as
given in the proof of the above theorem, ξ is an L-merotopy on X. Let A ⊆ LX

and every finite subset B of A belongs to ξ. Then there exists an L-grill GB in
X such that B ⊆ GB . Hence A ⊆ ∪{GB : B ⊆ A, |B| < ℵ0}.

Theorem 3.5. Let (X, ξ) be an L-merotopic space. Define Bξ = ξ ∪ {A ⊆
LX : A ⊆ G, G is an L-guild in (X, ξ)}. Then

(i) (BX, Bξ) is an L-merotopic space, where BX has the same underlying set
of points as X;

(ii) for f, g ∈ LX , {f, g} ∈ ξ iff {f, g} ∈ Bξ;

(iii) G is an L-guild in ξ iff G is an L-guild in Bξ;

(iv) the L-merotopic space (BX, Bξ) is binary;

(v) for any f ∈ LX , clξf = clBξf ;
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(vi) if (X, ξ) is an L-nearness space, then (BX, Bξ) is an L-nearness space.

Proof. (i) Follows from Theorem 3.3.
(ii) Let {f, g} ∈ Bξ and there exists an L-guild G in (X, ξ) with {f, g} ⊆ G.

Then {f, g} ∈ ξ.
(v) For f ∈ LX , clξf = ∨{xp : {xp, f} ∈ ξ} = ∨{xp : {xp, f} ∈ Bξ} = clBξf .
(vi) Let {clBξf, clBξg} ∈ Bξ and there exists an L-guild G in (X, ξ) such

that {clBξf, clBξg} ⊆ G. Since G is congenial, {clBξf, clBξg} ∈ ξ. Hence by (v),
{f, g} ∈ ξ.

Definition 3.6. (i) The family of all L-merotopic spaces (L-nearness spaces)
and L-merotopic maps forms a category and is denoted by LMER (LNEAR).

(ii) The category whose objects are binary L-merotopic spaces and mor-
phisms are L-merotopic maps is denoted by LBIN.

Proposition 3.7. Let T be an onto L-merotopic map from an L-merotopic
space (X, ξ) to an L-merotopic space (Y, η). If G is an L-guild in (X, ξ), then
T (G) = {T (f) : f ∈ G} is an L-guild in (Y, η).

Proof. Since T is an L-merotopic map and {f1, f2} ∈ ξ for all f1, f2 ∈ G,
{T (f1), T (f2)} ∈ η for all f1, f2 ∈ G. Hence T (G) is a congenial collection in η.
Let g > T (f), f ∈ G. Then T−1(g) > T−1(T (f)) > f and so T−1(g) ∈ G. Since
T is onto g = T (T−1(g)) which shows that g ∈ T (G).

Remark 3.8. Let (X, ξ) and (Y, η) be L-merotopic spaces. Let T : (X, ξ) →
(Y, η) be a bijective map such that T (A) ∈ η ⇒ A ∈ ξ (that is T−1 is an
L-merotopic map). Then by the above proposition if H is an L-guild in (Y, η),
then T−1(H) = {T−1(g) : g ∈ H} is an L-guild in (X, ξ).

Let T be an L-merotopic map from an L-merotopic space (X, ξ) to a binary
L-merotopic space (Y, η). Let A ∈ Bξ. If A ∈ ξ, then T (A) ∈ η, otherwise there
exists an L-guild G in (X, ξ) with A ⊆ G. Consider H = {h ∈ LY : T (g) 6 h
for some g ∈ G}. We assert that H is an L-guild in (Y, η) containing T (A) :
Let h1, h2 ∈ H. Then there exist g1, g2 ∈ G such that T (g1) 6 h1 and T (g2) 6
h2. Since {g1, g2} ∈ ξ, {T (g1), T (g2)} ∈ η. Again, since {h1, h2} corefines
{T (g1), T (g2)}, we have {h1, h2} ∈ η that is H is congenial. Let h1 ∨ h2 ∈ H.
Then T (g) 6 h1 ∨ h2 for some g ∈ G. Since g 6 g 6 T−1(T (g)) 6 T−1(h1) ∨
T−1(h2), we get either T−1(h1) ∈ G or T−1(h2) ∈ G. Using T (T−1(h)) 6 h
for all h ∈ IY , we get h1 ∈ H or h2 ∈ H. Hence T : (BX,Bξ) → (Y, η) is
an L-merotopic map and so the identity mapping IX : (X, ξ) → (BX, Bξ) is a
binary reflection for (X, ξ). Thus we obtain the following :

Theorem 3.9. LBIN is bireflective in LMER.

Theorem 3.10. The category of binary L-nearness spaces and L-nearness
maps is bireflective in LNEAR.
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Proposition 3.11. Every binary L-merotopic space is contigual.

Proof. Let (X, ξ) be a binary L-merotopic space and A ⊆ LX be such that
every finite subcollection of A belongs to ξ. By Proposition 2.6, there exists an
L-guild G in X with A ⊆ G. Since X is a binary space, G ∈ ξ. Hence A ∈ ξ.

Theorem 3.12. Every regular contigual L-merotopic space is binary.

Proof. Let (X, ξ) be a regular contigual L-merotopic space and let G 6= φ be
an L-guild in X. Suppose that G /∈ ξ. Since X is regular, B = {f ∈ LX :
{g,1 − f} /∈ ξ for some g ∈ G} /∈ ξ. Since X is contigual, there exists a finite
collectionA, withA ⊆ B andA /∈ ξ. Therefore

∧A = 0 and so (
∨

f∈A
(1−f)) ∈ G.

Hence there exists f ∈ A such that 1− f ∈ G. Since f ∈ B, there exists g ∈ G
such that {g,1− f} /∈ ξ, contradicting the fact that G is congenial.

Following questions remain open in this section:
(i) Is there any example of a contigual L-merotopic space that is not binary?
(ii) Is there any example of a regular L-merotopic space that is not binary?
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