Novi Sad J. Math. Vol. 36, No. 2, 2006, 57-64

L-GUILDS AND BINARY L-MEROTOPIES

Mona Khare¹, Rashmi Singh²

Abstract. The present paper is primarily concerned with the study of L-guilds in an L-merotopic space. It is shown that every L-cluster is an L-guild; however the converse is not true. For contigual and regular L-merotopies, where on one side we gave an example of a space, which is neither contigual nor binary, on the other side we constructed L-merotopic spaces that are contigual and binary. It is shown that the category LBIN of binary L-merotopic spaces and L-merotopic maps is bireflective in LMER, the category of L-merotopic spaces and L-merotopic maps.

AMS Mathematics Subject Classification (2000): 54E17, 54A05, 54E05 Key words and phrases: L-guild, L-cluster, L-merotopic space

1. Introduction

In 1965, Katětov [11] defined merotopic spaces by axiomatizing the concept of collection of sets containing arbitrary small members called a micromeric collection. Nearness spaces are those merotopic spaces for which a relationship exists between the near collection and the closure operator. In 1974, Herrlich [9] introduced the concept of nearness spaces by axiomatizing the concept of nearness of arbitrary collections of subsets of X. It is a generalization of the concept of two sets being near. Nearness spaces have contributed to the understanding of various extension problems. Brandenburg [4] and Carlson [6] solved such type of problem for developable spaces and for complete Moore space. Quite a few problems of this type are also solved in [3, 5, 7]. Nearness spaces have been fruitful for approaching topology from categorical viewpoint. The categories of topological R_0 spaces, uniform spaces, proximity spaces and contiguity spaces are embedded in the category of nearness spaces. The category of uniform spaces and uniformly continuous maps form a full bireflective subcategory of NEAR (the category of nearness spaces and nearness maps), which in turn forms a full bireflective subcategory of MER.

In [2], Bentley introduced the concept of a guild in a merotopic space $(X, \bar{\xi})$ as the grill whose every two elements belong to $\bar{\xi}$. Different additional conditions are imposed on grills to define clans, bunches, etc. (see e.g. [1, 8]). Clusters, an analogue of ultrafilter in proximity spaces, were introduced by Leader [14]. Mrówka [17] gave the axiomatic characterization of the family of all clusters in a proximity space. More theory on clusters in proximity spaces can be found in

 $^{^1\}mathrm{Department}$ of Mathematics, University of Allahabad, Allahabad, India, e-mail: raghav9802@rediffmail.com

²Allahabad Mathematical Society, 10, C.S.P. Singh Marg, Allahabad, India

[15, 16, 18]. In the year 1974, Herrlich [9] introduced the concept of a cluster in a merotopic space; 'clusters' which appear with the same name in proximity spaces is a different concept.

Prerequisites for the present paper are collected in Section 2. In Section 3, the notion of an *L*-guild in an *L*-merotopic space (X, ξ) is given to be an *L*-grill having an additional condition of being congenial. It is shown by means of an example that a congenial collection need not be an *L*-grill and also, it may not belong to ξ , followed by it, there is an example of an *L*-guild which does not belong to ξ . To each guild in classical merotopic space, there is an *L*-guild in the corresponding *L*-merotopic space and vice versa. Similar statements are given for congenial collections also. It is shown that every *L*-cluster, introduced in this section, is an *L*-guild and the converse is disproved by an example.

In Section 4, binary, contigual and regular L-merotopic spaces are defined. An indiscrete L-merotopic space is neither contigual nor binary. Corresponding to each L-merotopic space, we have a binary L-merotopic space generating the same L-Čech closure operator. It is shown that every binary space is contigual and a regular contigual L-merotopic space is binary. 'Is a contigual space binary?' it remains open question. Examples of a contigual L-merotopic space and a contigual merotopic space are given. We proved that the category LBIN of binary L-merotopic spaces and L-merotopic maps is a bireflective subcategory of LMER whose objects are L-merotopic spaces and morphisms are L-merotopic maps. On the same lines, it is shown that the category of binary L-nearness spaces and L-nearness maps is bireflective in the category of L-nearness spaces and L-nearness maps.

Let X be a nonempty ordinary set and L be an F-lattice (i.e. a completely distributive lattice with largest element 1, smallest element 0, and an order reversing involution $\prime : L \to L$). For t in L, a mapping $f : X \to L$ defined by f(x) = t, for all $x \in X$ is denoted by t and the family of all functions from X to L is by L^X . We denote by \aleph_0 the first infinite cardinal number, by $|\mathcal{A}|$ the cardinality of $\mathcal{A}, \mathcal{A} \subseteq L^X$, and by N the set of positive integers.

For \mathcal{A}, \mathcal{B} subsets of L^X , we say that \mathcal{A} corefines \mathcal{B} if for all $f \in \mathcal{A}$, there exists $g \in \mathcal{B}$ such that $f \ge g$; $\mathcal{A} \lor \mathcal{B} \equiv \{f \lor g : f \in \mathcal{A}, g \in \mathcal{B}\}$; $\mathcal{A} \land \mathcal{B} \equiv \{f \land g : f \in \mathcal{A}, g \in \mathcal{B}\}$.

For the theory of grills, filters, ultrafilters, and *L*-Čech closure spaces we refer the readers to [12, 13, 19, 20, see also 21]. Details on merotopy and nearness, when $L = \mathcal{P}(X)$, can be seen in ([9, 10], where many more references can be found).

2. L-guilds

Definition 2.1. Let X be a nonempty set and $\xi \subseteq \mathcal{P}(L^X)$. Then ξ is called an *L*-merotopy on X provided, for the subsets \mathcal{A}, \mathcal{B} of L^X ,

(M1) \mathcal{A} corefines \mathcal{B} and $\mathcal{B} \in \xi \Rightarrow \mathcal{A} \in \xi$,

(M2) $\bigwedge \mathcal{A} \neq 0 \Rightarrow \mathcal{A} \in \xi$,

(M3) $\phi \neq \xi \neq \mathcal{P}(L^X),$

(M4) $\mathcal{A} \lor \mathcal{B} \in \xi \Rightarrow \mathcal{A} \in \xi \text{ or } \mathcal{B} \in \xi.$

The pair (X,ξ) is called an *L*-merotopic space. For an *L*-merotopic space (X,ξ) , we define:

$$cl_{\xi}f = \bigvee \{x_p : \{x_p, f\} \in \xi\}, f \in L^X.$$

Here $x_p \in L^X$, $p \in L$, is defined by $x_p(x) = p, x_p(y) = 0, x \neq y$. An Lmerotopy ξ on X is called an *L*-nearness if the following additional condition is also satisfied: $\{cl_{\xi}f, cl_{\xi}g\} \in \xi \Rightarrow \{f, g\} \in \xi$.

Examples

Let X be a nonempty set. Then:

(i) $\xi = \{ \mathcal{A} \subseteq L^X : \mathbf{0} \notin \mathcal{A} \}$ is an L-nearness on X. The pair (X, ξ) is the largest L-nearness space and will be called the discrete L-space. Here, $cl_{\xi}f =$ $\{\mathbf{1}\}, f \in L^X - \{\mathbf{0}\}.$

(ii) $\xi = \{ \mathcal{A} \subseteq L^X : \bigwedge \mathcal{A} \neq \mathbf{0} \}$ is an *L*-nearness on *X*. The pair (X, ξ) is the smallest L-nearness space (L-merotopic space) and will be called the *indiscrete L-space.* Here, $cl_{\xi}f = \chi_{\text{supp }f}$, $f \in L^{\hat{X}}$; and for $A \subseteq X$, $\chi_A(x) = 1$, if $x \in A$ and $\chi_A(x) = 0$, if $x \notin A$; and supp $f = \{x \in X : f(x) > 0\}$.

 $\begin{array}{l} \chi_{A}(x) = 0, \text{ if } x \notin A, \text{ and supp } f = \{x \in X : f(x) \geq 0\}.\\ (\text{iii}) \ \xi = \{\mathcal{A} \subseteq L^{X} : | \text{supp } f | \geqslant \aleph_{0} \text{ for all } f \in \mathcal{A}\} \cup \{\mathcal{A} \subseteq L^{X} : \bigwedge \mathcal{A} \neq \mathbf{0}\} \text{ is }\\ \text{an } L\text{-nearness on an infinite set } X. \text{ Also, } cl_{\xi}f = \chi_{\text{supp } f}.\\ (\text{iv}) \text{ For } \phi \neq \mathcal{C} \subseteq L^{X}, \ \xi = \{\mathcal{A} \subseteq L^{X} : \mathcal{C} \cap \sec \mathcal{A} \neq \phi\} \cup \{\mathcal{A} \subseteq L^{X} : \bigwedge \mathcal{A} \neq \mathbf{0}\} \text{ is an } L\text{-merotopy on } X, \text{ where sec } \mathcal{A} = \{f \in L^{X} : f \land g \neq \mathbf{0} \text{ for all } g \in \mathcal{A}\}. \end{array}$

(v) Let (X, cl) be an $L-\check{C}$ choice space. Then

(a) $\xi = \{\mathcal{A} \subseteq L^X : \bigwedge \{clf : f \in \mathcal{A}\} \neq \mathbf{0}\}$ is an *L*-merotopy on *X*. (b) $\xi = \{\mathcal{A} \subseteq L^X : \text{ for all } \mathcal{B} \subseteq \mathcal{A} \text{ with } |\mathcal{B}| < \aleph_0, \bigwedge_{q \in B} clg \neq \mathbf{0}\}$ is an

L-merotopy on X.

Definition 2.2. Let (X,ξ) be an *L*-merotopic space and let \mathcal{A} be a subset of L^X . Then \mathcal{A} is said to be *congenial* iff $f, g \in \mathcal{A} \Rightarrow \{f, g\} \in \xi$. A congenial Lgrill on X is called an L-guild in X. A congenial collection (L-guild) \mathcal{A} is called a maximal congenial collection (maximal L-guild) if it is not properly contained in any other congenial collection (L-guild). An L-cluster in an L-merotopic space (X,ξ) is a maximal element of ξ .

By Zorn's lemma, for any congenial subset \mathcal{A} of an *L*-merotopic space, there exists a maximal congenial collection containing \mathcal{A} . Similarly, every L-guild in an L-merotopic space is contained in a maximal L-guild. Also, it may be verified that for any L-guild \mathcal{G} in X and $\mathcal{A}, \mathcal{B} \in P(L^X)$, if $\mathcal{A} \vee \mathcal{B} \subseteq \mathcal{G}$, then either $\mathcal{A} \subseteq \mathcal{G}$, or $\mathcal{B} \subseteq \mathcal{G}$.

Example 2.3. (i) Let X be a set containing at least three points and ξ be the indiscrete L-merotopy on X. Choose three distinct points, say x, y, z of X. Then $Q = (\mathcal{U}[x] \cap \mathcal{U}[y]) \cup (\mathcal{U}[y] \cap \mathcal{U}[z]) \cup (\mathcal{U}[x] \cap \mathcal{U}[z])$ is a congenial collection in (X,ξ) but is not an L-grill, because $x_1 \vee y_1 \in Q$ while $x_1 \notin Q$ and $y_1 \notin Q$. Here $\mathcal{U}[x] = \{f : f(x) > 0\}$ is the principal *L*-ultrafilter on *X*. Since $Q \notin \xi$, this example also shows that a congenial collection in (X,ξ) may not belong to ξ .

Let \mathcal{G} be a congenial collection with $Q \subseteq \mathcal{G}$. Then $x_1 \vee y_1 \in \mathcal{G}$. Since $\chi_{\{y,z\}} \in \mathcal{G}$ and \mathcal{G} is congenial, we have $x_1 \notin \mathcal{G}$ as $x_1 \wedge \chi_{\{y,z\}} = 0$. Similarly, $y_1 \notin \mathcal{G}$. Hence a maximal congenial collection may fail to be an L-grill.

(ii) Let (X,ξ) be an *L*-merotopic space. Let $x \in X$ and $t \in (0,1]$. Then ${}_{x}\mathcal{A}_{t} = \{f \in I^{X} : f(x) \ge t\}$ is an *L*-guild in *X*. Also, $\mathcal{U}[x]$ is an *L*-guild in an *L*-merotopic space (X,ξ) .

(iii) A free L-ultrafilter, say Θ , in the indiscrete L-merotopic space (X, ξ) is an L-guild. Moreover, Θ does not belong to ξ .

Proposition 2.4. In an L-merotopic space (X,ξ) , (i) every L-ultrafilter is an L-guild, and (ii) every L-cluster is an L-guild.

Proof. (i) Let \mathcal{U} be an *L*-ultrafilter on *X* and $f, g \in \mathcal{U}$. Then $f \wedge g \neq 0$, and so $\{f, g\} \in \xi$. Hence \mathcal{U} is congenial. Since every *L*-ultrafilter is an *L*-grill, the result follows.

(ii) Let \mathcal{A} be an *L*-cluster in *X*. Let $f \lor g \in \mathcal{A}$. Since $(\{f\} \cup \mathcal{A}) \lor (\{g\} \cup \mathcal{A}) \lor (\{g\} \cup \mathcal{A})$ corefines \mathcal{A} , we have either $\{f\} \cup \mathcal{A} \in \xi$ or $\{g\} \cup \mathcal{A} \in \xi$. By the maximality of \mathcal{A} , $f \in \mathcal{A}$ or $g \in \mathcal{A}$. Let $f \in \mathcal{A}$ and $f \leq g$. Then, since $\{g\} \cup \mathcal{A}$ corefines \mathcal{A} and \mathcal{A} is an *L*-cluster, $g \in \mathcal{A}$. Also, $0 \notin \mathcal{A}$.

Remark 2.5. It can be seen from Example 2.3(iii) that the statement (ii) in the above proposition is not reversible.

Proposition 2.6. Let (X, ξ) be an L-merotopic space and let $\mathcal{A} \subseteq L^X$ be such that every finite subcollection of \mathcal{A} belongs to ξ . Then there exists an L-guild in X containing \mathcal{A} .

Proof. Let $\Omega = \{\mathcal{B} : \mathcal{A} \subset \mathcal{B} \text{ and every finite subcollection of } \mathcal{B} \text{ belongs to } \xi\}$. Then $\cup \mathcal{B}_i$ is an upper bound of the chain $\{\mathcal{B}_i\}_{i=1}^{\infty}$. By Zorn's lemma there exists a maximal element, say \mathcal{G} , of Ω with $\mathcal{A} \subseteq \mathcal{G}$. Since every finite subcollection of \mathcal{G} belongs to ξ , \mathcal{G} is a congenial collection in (X, ξ) . For \mathcal{G} to be an L-grill, let $f \notin \mathcal{G}$ and $g \notin \mathcal{G}$. Then $\{f\} \cup \mathcal{G} \notin \Omega$ follows from the maximality of \mathcal{G} . Similarly $\{g\} \cup \mathcal{G} \notin \Omega$. Hence there exist finite subsets \mathcal{D} and \mathcal{H} of \mathcal{G} such that $\{f\} \cup \mathcal{D}$ and $\{g\} \cup \mathcal{H}$ do not belong to ξ . Since $(\{f\} \cup \mathcal{D}) \lor (\{g\} \cup \mathcal{H})$ corefines $\{f \lor g\} \cup \mathcal{D} \cup \mathcal{H}$, we have $\{f \lor g\} \cup \mathcal{D} \cup \mathcal{H} \notin \xi$. Hence $\{f \lor g\} \cup \mathcal{G} \notin \Omega$, or $f \lor g \notin \mathcal{G}$.

3. Binary *L*-merotopic spaces

Definition 3.1. Let (X,ξ) be an *L*-merotopic space and $\mathcal{A} \subseteq L^X$. Then

(i) (X,ξ) is said to be *binary* iff every *L*-guild in (X,ξ) belongs to ξ ;

(ii) (X,ξ) is said to be *contigual* iff every finite subset of \mathcal{A} belongs to $\xi \Rightarrow \mathcal{A} \in \xi$;

(iii) (X,ξ) is said to be regular iff

$$\{f \in I^X : \{g, \mathbf{1} - f\} \notin \xi, \text{ for some } g \in \mathcal{A}\} \in \xi \Rightarrow \mathcal{A} \in \xi.$$

L-Guilds and Binary L-Merotopies

If (X, ξ) is a binary (contigual, regular respectively) *L*-merotopic space, then ξ is referred to as a binary (contigual, regular respectively) *L*-merotopy on *X*; (X, ξ) is called a *binary L-nearness space* provided ξ is an *L*-nearness on *X*.

Remark 3.2. An *L*-guild in (X, ξ) may or may not belong to ξ , e.g. *L*-guilds ${}_x\mathcal{A}_t$ and $\mathcal{U}[x]$ of Example 2.3(ii) belong to any merotopy ξ on X, however in the indiscrete *L*-merotopic space (X, ξ) of Example 2.1(ii) the *L*-guild Θ does not belong to ξ . In the same indiscrete *L*-merotopic space (X, ξ) , Θ also gives an example of a set whose every finite subset belong to ξ but the set itself does not belong to ξ . Thus the indiscrete *L*-merotopic space is neither contigual nor binary.

Corresponding to each L-merotopic space, the following theorem produces a binary L-merotopic space.

Theorem 3.3. Let (X,ξ) be an L-merotopic space. Define $\hat{\xi} = \{\mathcal{A} \subseteq L^X : \mathcal{A} \subseteq G, \mathcal{G} \text{ is an L-guild in } (X,\xi)\}$. Then $(X,\hat{\xi})$ is a binary L-merotopic space and, for $f \in L^X$, $cl_{\hat{\xi}}f \leq cl_{\xi}f$. Moreover, if ξ is an L-nearness, then $\hat{\xi}$ is also an L-nearness.

Proof. Let \mathcal{A} corefines \mathcal{B} and $\mathcal{B} \subseteq \mathcal{G}$ for some *L*-guild \mathcal{G} in (X, ξ) . Then for $f \in \mathcal{A}$, there exists $g \in \mathcal{B}$ such that $f \ge g \in \mathcal{G}$. Since \mathcal{G} is an *L*-grill, $f \in \mathcal{G}$. Hence $\mathcal{A} \subseteq \mathcal{G}$. Let $\wedge \mathcal{A} \neq \mathbf{0}$. Then there exists $x \in X$ such that $f(x) \neq 0$ for every $f \in \mathcal{A}$. We have an *L*-guild $\mathcal{U}[x]$ in (X, ξ) which contains \mathcal{A} . If $\mathbf{0} \in \mathcal{A}$, then $\mathcal{A} \notin \hat{\xi}$ and so $\xi \neq P(L^X)$. Finally, observe that every *L*-guild in $\hat{\xi}$ is an *L*-guild in ξ also. Let $\{cl_{\xi}f, cl_{\xi}g\} \subseteq \mathcal{G}$, for some *L*-guild \mathcal{G} in ξ . Then the family $\mathcal{H} = \{h \in L^X : cl_{\xi}f \in \mathcal{G}\}$ is an *L*-guild in ξ containing $\{f, g\}$.

Example 3.4. Let X be a nonempty set. Then $\xi = \{\mathcal{A} \subseteq L^X :: \mathcal{A} \subset \mathcal{G}, \mathcal{G} \text{ is an } L$ -grill on X} is a contigual L-merotopy on X: By the similar arguments as given in the proof of the above theorem, ξ is an L-merotopy on X. Let $\mathcal{A} \subseteq L^X$ and every finite subset \mathcal{B} of \mathcal{A} belongs to ξ . Then there exists an L-grill \mathcal{G}_B in X such that $\mathcal{B} \subseteq \mathcal{G}_B$. Hence $\mathcal{A} \subseteq \cup \{\mathcal{G}_B : \mathcal{B} \subseteq \mathcal{A}, |\mathcal{B}| < \aleph_0\}$.

Theorem 3.5. Let (X,ξ) be an L-merotopic space. Define $B\xi = \xi \cup \{\mathcal{A} \subseteq L^X : \mathcal{A} \subseteq \mathcal{G}, \mathcal{G} \text{ is an L-guild in } (X,\xi)\}$. Then

- (i) (BX, Bξ) is an L-merotopic space, where BX has the same underlying set of points as X;
- (*ii*) for $f, g \in L^X$, $\{f, g\} \in \xi$ iff $\{f, g\} \in B\xi$;
- (iii) \mathcal{G} is an L-guild in ξ iff \mathcal{G} is an L-guild in $B\xi$;
- (iv) the L-merotopic space $(BX, B\xi)$ is binary;
- (v) for any $f \in L^X$, $cl_{\xi}f = cl_{B\xi}f$;

(vi) if (X,ξ) is an L-nearness space, then $(BX,B\xi)$ is an L-nearness space.

Proof. (i) Follows from Theorem 3.3.

(ii) Let $\{f, g\} \in B\xi$ and there exists an *L*-guild \mathcal{G} in (X, ξ) with $\{f, g\} \subseteq \mathcal{G}$. Then $\{f, g\} \in \xi$.

(v) For $f \in L^X$, $cl_{\xi}f = \lor \{x_p, f\} \in \xi\} = \lor \{x_p, f\} \in B\xi\} = cl_{B\xi}f$. (vi) Let $\{cl_{B\xi}f, cl_{B\xi}g\} \in B\xi$ and there exists an *L*-guild \mathcal{G} in (X, ξ) such that $\{cl_{B\xi}f, cl_{B\xi}g\} \subseteq \mathcal{G}$. Since \mathcal{G} is congenial, $\{cl_{B\xi}f, cl_{B\xi}g\} \in \xi$. Hence by (v), $\{f, g\} \in \xi$.

Definition 3.6. (i) The family of all *L*-merotopic spaces (*L*-nearness spaces) and *L*-merotopic maps forms a category and is denoted by LMER (LNEAR).

(ii) The category whose objects are binary *L*-merotopic spaces and morphisms are *L*-merotopic maps is denoted by LBIN.

Proposition 3.7. Let T be an onto L-merotopic map from an L-merotopic space (X,ξ) to an L-merotopic space (Y,η) . If \mathcal{G} is an L-guild in (X,ξ) , then $T(\mathcal{G}) = \{T(f) : f \in \mathcal{G}\}$ is an L-guild in (Y,η) .

Proof. Since T is an L-merotopic map and $\{f_1, f_2\} \in \xi$ for all $f_1, f_2 \in \mathcal{G}$, $\{T(f_1), T(f_2)\} \in \eta$ for all $f_1, f_2 \in \mathcal{G}$. Hence $T(\mathcal{G})$ is a congenial collection in η . Let $g \ge T(f), f \in \mathcal{G}$. Then $T^{-1}(g) \ge T^{-1}(T(f)) \ge f$ and so $T^{-1}(g) \in \mathcal{G}$. Since T is onto $g = T(T^{-1}(g))$ which shows that $g \in T(G)$.

Remark 3.8. Let (X,ξ) and (Y,η) be *L*-merotopic spaces. Let $T: (X,\xi) \to (Y,\eta)$ be a bijective map such that $T(\mathcal{A}) \in \eta \Rightarrow \mathcal{A} \in \xi$ (that is T^{-1} is an *L*-merotopic map). Then by the above proposition if \mathcal{H} is an *L*-guild in (Y,η) , then $T^{-1}(\mathcal{H}) = \{T^{-1}(g) : g \in \mathcal{H}\}$ is an *L*-guild in (X,ξ) .

Let T be an L-merotopic map from an L-merotopic space (X, ξ) to a binary L-merotopic space (Y, η) . Let $\mathcal{A} \in B\xi$. If $\mathcal{A} \in \xi$, then $T(\mathcal{A}) \in \eta$, otherwise there exists an L-guild \mathcal{G} in (X,ξ) with $\mathcal{A} \subseteq \mathcal{G}$. Consider $\mathcal{H} = \{h \in L^Y : T(g) \leq h \text{ for some } g \in \mathcal{G}\}$. We assert that \mathcal{H} is an L-guild in (Y, η) containing $T(\mathcal{A})$: Let $h_1, h_2 \in \mathcal{H}$. Then there exist $g_1, g_2 \in \mathcal{G}$ such that $T(g_1) \leq h_1$ and $T(g_2) \leq h_2$. Since $\{g_1, g_2\} \in \xi, \{T(g_1), T(g_2)\} \in \eta$. Again, since $\{h_1, h_2\}$ corefines $\{T(g_1), T(g_2)\}$, we have $\{h_1, h_2\} \in \eta$ that is \mathcal{H} is congenial. Let $h_1 \lor h_2 \in \mathcal{H}$. Then $T(g) \leq h_1 \lor h_2$ for some $g \in \mathcal{G}$. Since $g \leq g \leq T^{-1}(T(g)) \leq T^{-1}(h_1) \lor T^{-1}(h_2)$, we get either $T^{-1}(h_1) \in \mathcal{G}$ or $T^{-1}(h_2) \in \mathcal{G}$. Using $T(T^{-1}(h)) \leq h$ for all $h \in I^Y$, we get $h_1 \in \mathcal{H}$ or $h_2 \in \mathcal{H}$. Hence $T : (BX, B\xi) \to (Y, \eta)$ is an L-merotopic map and so the identity mapping $I_X : (X, \xi) \to (BX, B\xi)$ is a binary reflection for (X, ξ) . Thus we obtain the following :

Theorem 3.9. LBIN is bireflective in LMER.

Theorem 3.10. The category of binary L-nearness spaces and L-nearness maps is bireflective in LNEAR.

Proposition 3.11. Every binary L-merotopic space is contigual.

Proof. Let (X,ξ) be a binary *L*-merotopic space and $\mathcal{A} \subseteq L^X$ be such that every finite subcollection of \mathcal{A} belongs to ξ . By Proposition 2.6, there exists an *L*-guild \mathcal{G} in X with $\mathcal{A} \subseteq \mathcal{G}$. Since X is a binary space, $\mathcal{G} \in \xi$. Hence $\mathcal{A} \in \xi$.

Theorem 3.12. Every regular contigual L-merotopic space is binary.

Proof. Let (X,ξ) be a regular contigual *L*-merotopic space and let $\mathcal{G} \neq \phi$ be an *L*-guild in *X*. Suppose that $\mathcal{G} \notin \xi$. Since *X* is regular, $B = \{f \in L^X : \{g, \mathbf{1} - f\} \notin \xi$ for some $g \in \mathcal{G}\} \notin \xi$. Since *X* is contigual, there exists a finite collection \mathcal{A} , with $\mathcal{A} \subseteq \mathcal{B}$ and $\mathcal{A} \notin \xi$. Therefore $\bigwedge \mathcal{A} = \mathbf{0}$ and so $(\bigvee_{f \in \mathcal{A}} (\mathbf{1} - f)) \in \mathcal{G}$.

Hence there exists $f \in \mathcal{A}$ such that $1 - f \in \mathcal{G}$. Since $f \in \mathcal{B}$, there exists $g \in \mathcal{G}$ such that $\{g, 1 - f\} \notin \xi$, contradicting the fact that \mathcal{G} is congenial.

Following questions remain open in this section:

- (i) Is there any example of a contigual *L*-merotopic space that is not binary?
- (ii) Is there any example of a regular *L*-merotopic space that is not binary?

References

- Bentley, H. L., Nearness spaces and extensions of topological spaces. In: Studies in Topology (N. Stavrakas, K. Allen, eds.), pp. 47-66. New York: Academic Press 1975.
- [2] Bentley, H. L., Binary nearness spaces. Indian J. Math. 42 (2000), 175-181.
- [3] Bentley, H. L., Herrlich, H., Ori, R. G., Zero sets and complete regularity for nearness spaces. In: Categorical Topology and its Relation to Algebra and Combinatorics (Jii Adámek, Saunders MacLane, eds.), Singapore: World Scientific 1989.
- [4] Bradenburg, H., On a class of nearness spaces and the epireflective hull of developable topological spaces. Proc. of the Int. Topology Symp. Belgrade, 1977.
- [5] Carlson, J. W., H-closed and countably compact extensions. Pacific J. Math. 81 (1979), 317-326.
- [6] Carlson, J. W., Developable spaces and nearness structures. Proc. Amer. Math. Soc. 78 (1980), 573-579.
- [7] Carlson, J. W., Baire space and second category extensions. Topology and its Appl. 12 (1981), 135-140.
- [8] Gagrat M. S., Thron, W. J., Nearness structure and proximity extensions. Trans. Amer. Math. Soc. 208 (1975), 103-125.
- [9] Herrlich, H., A concept of nearness. Gen. Top. Appl. 4 (1974), 191-212.
- [10] Herrlich, H., Topological Structures. Mathematical Centre Tracts 52 (1974), 59-122.
- [11] Katětov, M., On continuity structures and spaces of mappings. Comment. Math. Univ. Carolinae 6 (1965), 257-278.
- [12] Katsaras, A. K., On fuzzy proximity spaces. J. Math. Anal. Appl. 75 (1980), 571-583.

- [13] Khare, M., A relationship between classical and fuzzy proximities. Fuzzy Sets and Systems 90 (1997), 55-59.
- [14] Leader, S., On clusters in proximity spaces. Fund. Math. 47 (1959), 205-213.
- [15] Leader, S., On completion of proximity spaces by local clusters. Fund. Math. 48 (1960), 201-216.
- [16] Leader, S., On duality in proximity spaces. Proc. Amer. Math. Soc. 13 (1962), 518-523.
- [17] Mrówka, S. G., Axiomatic characterization of the family of all clusters in a proximity space. Fund. Math. 48 (1960), 123-126.
- [18] Naimpally, S. A., Warrack, B. D., Proximity Spaces. Cambridge Tract No. 59, Cambridge, 1970.
- [19] Srivastava, P. and Khare, M., Fuzzy grills, fuzzy ultrafilters and counterexamples. Simon Stevin 67 (1993), 65-75.
- [20] Srivastava P., Gupta, R. L., Fuzzy proximity structures and fuzzy ultrafilters. J. Math. Anal. Appl. 92 (1983), 297-311.
- [21] Liu, Ying-Ming, Luo, Mao-Kang, Fuzzy Topology. Singapore: World Scientific Publishing Co. 1997.

Received by the editors May 5, 2006