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ON THE FOURTH ORDER ROOT FINDING
METHODS OF EULER’S TYPE1

Ljiljana D. Petković2, Miodrag S. Petković3

Abstract. A new iterative method of the fourth order for solving nonlin-
ear equations of the form f(x) = 0 is derived. The comparison with other
existing methods is performed regarding the computational efficiency and
numerical examples. The fourth-order derivative free method for the si-
multaneous calculation of all polynomial zeros, arising from the proposed
method, is also studied.
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Let f be a real single-valued function of a real variable, possessing a certain
number of continuous derivatives in the neighborhood Λ(ζ) of a real simple zero
ζ. Assuming that f ′ does not vanish in Λ(ζ), let us define the Newton correction

u = u(x) =
f(x)
f ′(x)

appearing in the well-known Newton’s method

(1) x̂ = x− f(x)
f ′(x)

for approximating the zero ζ. The quantity x̂ is a new approximation to ζ
which, under suitable convergence conditions, is closer to ζ than the previous
approximation x. The same notation will be universally used for some other
iterative methods.

Let d be the number of new function evaluations (the values of f and its
derivatives) per iteration applying an iterative method IM, and let r be the
order of convergence of IM. Ostrowski [3, p. 20] introduced the notion of com-
putational efficiency of IM by

(2) E(IM) = r1/d.

For example, the computational efficiency of Newton’s method (1) is E(1) =
21/2 ∼= 1.414.
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The aim of this paper is to construct a new iterative method for solving
nonlinear equations, possessing a higher computational efficiency than Newton’s
method.

Let x ∈ Λ(ζ). Using Taylor’s development we obtain

(3) 0 = f(ζ) = f(x) + f ′(x)(ζ − x) +
f ′′(x)

2
(ζ − x)2 + · · ·

and

f(x− u) = f(x)− f ′(x)u+ (−1)k
∞∑

k=2

f (k)(x)uk

k!

= (−1)k
∞∑

k=2

f (k)(x)uk

k!
.(4)

If we neglect higher terms in the development (3), then the zero ζ should
be replaced by an approximative value x̂. In this way we obtain the quadratic
equation in x̂− x :

f(x) + f ′(x)(x̂− x) +
f(x− u(x))

u(x)2
(x̂− x)2 = 0

or

(x− x̂)2
f(x− u(x))
u(x)f(x)

− (x− x̂) + u(x) = 0

Solving the last quadratic equation in x̂ − x, after the rationalization of the
nominator one obtains a new iterative root finding method

(5) x̂ = x− 2u(x)

1±

√
1− 4f(x− u(x))

f(x)

=: φ(x),

where φ is the iterative function.
The iterative function φ defines a two-step (or predictor-corrector) method;

first one calculates Newton’s correction u(x) = f(x)
f ′(x) and then Newton’s ap-

proximation x − u(x), which appears in the second step as the argument of
f.

Remark 1. We take the sign in front of the square root in (5) so that the de-
nominator is greater in magnitude. If the current approximation x is reasonably
close to the wanted zero ζ, it can be shown that the sign + should be chosen
(see Henrici [2, p. 532]).

To find the order of convergence of the iterative method (5), we first recall
classical Schröder’s theorem [9].

Theorem 1. The order of convergence of an iterative method defined by its
iterative function ψ is r if and only if

ψ(ζ) = ζ; ψ(k)(ζ) = 0, (k = 1, 2, . . . , r − 1); ψ(r)(ζ) 6= 0.
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Then the asymptotic error constant is Cr(ζ) =
ψ(r)(ζ)
r!

.

Theorem 2. If x is sufficiently close to the zero ζ of f , then the order of
convergence of the iterative method (5) is four.

Proof. Since we consider reasonably good approximations to the zero ζ, following
Remark 1 we will take the sign + in front of the square in (5). Truncating the
series (4) we obtain

(6)
f(x− u)
f(x)

=
f ′′(x)f(x)
2!f ′(x)2

− f ′′′(x)f(x)2

3!f ′(x)3
+
f (4)(x)f(x)3

4!f ′(x)3
+O(|f(x)|4)

so that

φ(x) = x− 2u(x)

1 +
√

1− 4
(

f ′′(x)f(x)
2!f ′(x)2 − f ′′′(x)f(x)2

3!f ′(x)3 + f(4)(x)f(x)3

4!f ′(x)3

)
+O(|f(x)|4)

.

From the last relation we immediately obtain φ(ζ) = ζ. The derivatives of φ(x)
are rather complicated and we found them using symbolic computation in the
programming package Mathematica 5. Since the term O(|f(x)|4) is very small
and does not influence the order of convergence > 4, we omit it in this procedure.
Substituting x = ζ in the expressions for the derivatives φ(k)(x) we obtain

φ′(ζ) = 0, φ′′(ζ) = 0, φ′′′(ζ) = 0, φ(4)(ζ) = −2f ′′(ζ)f ′′′(ζ)
f ′(ζ)2

6= 0.

Therefore, the order of convergence of the iterative method (5) is four, and the
asymptotic error constant is

C4(ζ) =
φ(4)(ζ)

4!
= −f

′′(ζ)f ′′′(ζ)
12f ′(ζ)2

. �

Remark 2. From (6) we find f(x−u)/f(x) ≈ f ′′(x)f(x)/(2f ′(x)2). Substitut-
ing this approximation in (5), we obtain classical third-order Euler’s method

x̂ = x− 2f(x)

f ′(x)±

√
f ′(x)2 − 2f ′′(x)f(x)

f ′(x)2

.

For this resemblance, the iterative method (5) can be regarded as the method
of Euler’s type. Let us note that the convergence speed of Euler’s method is
decreased in relation to (5).

For the comparison purpose, we present another two predictor-corrector
methods. First of them is a combination of Newton’s and secant method and
has the form

(7) x̂ = x− u(x)f(x)
f(x)− f(x− u(x))
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(see Traub [10, p. 180]). It requires three function evaluations, the same as
the new method (5), but its order of convergence is only three. More efficient
method with the same number of function evaluations and the convergence order
four is Ostrowski’s method

(8) x̂ = x− u(x)
(

1 +
f(x− u(x))

f(x)− 2f(x− u(x))

)
,

proposed in [3, p. 253]. Another two-point methods can be found in Traub’s
book [10] and in the recent paper [6].

Using (2) we found that the computational efficiency of the new method (5)
is E(5) = 41/3 ∼= 1.584. Since E(7) = 31/3 ∼= 1.442, we have the following chain
of inequalities

E(5) = E(8) ∼= 1.584 > E(7) ∼= 1.442 > E(1) ∼= 1.414.

Example 1. We tested the iterative methods (1), (5), (7) and (8) employing a
hundred algebraic and transcendental functions of various types, many of them
taken from the respective books and papers. For demonstration, we select the
following four examples:

f1(x) = arctanx, x0 = 2.3,

f2(x) = 1
2 log(x2 + 1)− 1

x
sin 100x, x0 = 1.6,

f3(x) = (x15 + 1)ex2−1, x0 = 1.7,

f4(x) = x10 − 4x9 + 5x8 − x2 + 4x− 5, x0 = 4.

The listed examples were tested by the programming package Mathematica 5
in multiple-precision arithmetic. The stopping criterion was given by |f(xk)| <
10−14 for every k. The results are given in Table 1, where the notation (−h)k

means that the accuracy max |f(xk)| = O(10−h) is obtained after k iterations.
Let ζk be the zero of the function fk. Most methods converge to ζ1 = 0,

ζ2 = 1.51937..., ζ3 = −1, ζ4 = 1. However, there are two exceptions stressed in
Table 1 by the comment c) and listed below Table 1.

A hundred experiments, including the four examples displayed in Table 1,
demonstrated that the new method (5) is competitive with existing root solvers,
and even superior in a number of examples. The convergence rate of the method
(5) given in Theorem 2 is fully confirmed by numerical examples when the initial
approximation is reasonably close to the sought zero.
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Examples → f1 f2 f3 f4

Methods ↓ x0 = 2.3 x0 = 1.6 x0 = 1.7 x0 = 4

(1) div (−17)8 (−22)39 (−17)16
(5) (−20)5 (−45)4 (−37)10

1) (−46)8
2)

(7) (−36)4 (−17)5 div (−15)10
(8) div (−15)4 (−53)63 (−15)7

1) ζ = 0.97814... + i 0.20791... 2) ζ = 2 + i

Table 1 Results of numerical experiments; the term div points to the divergence.

In general, root finding methods with the square root structure often find
a complex zero of a real function having conjugate complex zeros, especially
in solving algebraic equations. In that case, some mathematical computation
systems, for instance Mathematica, automatically continues to run in complex
arithmetic. A similar situation occurs when we search for a real zero and face
a negative entry under the square root. In most cases the square root methods,
including the method (5), produce after a certain number of iterative steps an
approximation α + iβ (in complex arithmetic) to a real zero ζ overcoming the
difficulty. Namely, it turns out that α ≈ ζ (to the wanted accuracy) and β is a
very small number in magnitude (“parasite” part) that should be rejected.

In recent papers (see, e.g., [4], [5], [8]) it was shown how to construct iterative
methods for the simultaneous determination of all zeros of a polynomial starting
from methods for finding a single zero of a nonlinear equation f(x) = 0. The
following question arises: Can we derive some simultaneous method based on
the iterative method (5)?

In the subsequent discussion we will consider the construction of an iterative
method for the simultaneous determination of all simple (real or complex) zeros
of algebraic polynomials, derived from the method (5). Let P be a monic
polynomial

P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0, (ai ∈ C)

with simple real or complex zeros ζ1, . . . , ζn, and let z1, . . . , zn be n pairwise
distinct approximations to these zeros. Introducing

Wi = Wi(z1, . . . , zn) =
P (zi)∏

j 6=i

(zi − zj)
, (i ∈ In := {1, . . . , n})

and applying Lagrange’s interpolation formula to the polynomial

P (z)−
n∏

j=1

(z − zj)
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of degree n− 1, one obtains for any z ∈ C,

(9) P (z) =
n∏

j=1

(z − zj) +
n∑

k=1

Wk

n∏
j=1
j 6=k

(z − zj).

In this paper we will use the following abbreviations

Gk,i =
∑
j 6=i

Wj

(zi − zj)k
(k = 1, 2), Bi =

Wi

1 +G1,i
.

Let us define the rational function z 7→ hi(z) (i ∈ In) by

hi(z) := Wi(z1, . . . , zi−1, z, zi+1, . . . , zn) =
P (z)∏

j 6=i

(z − zj)
.

Then from (9) we obtain

(10) hi(z) = Wi + (z − zi)
(
1 +

∑
j 6=i

Wj

z − zj

)
.

For any z ∈ C \ {z1, . . . , zi−1, zi+1, . . . , zn} we obtain

(11) h′i(z) = 1 +
∑
j 6=i

Wj
zi − zj

(z − zj)2
, h′′i (z) = −2

∑
j 6=i

Wj
zi − zj

(z − zj)3
.

From (10) and (11) we evaluate at the point z = zi :

(12) hi(zi) = Wi, h′i(zi) = 1 +G1,i, h′′i (zi) = −2G2,i.

Let u(z) = P (z)/P ′(z). For a fixed zi the iterative formula (5) reads

(13) ẑi = zi −
2u(zi)

1±

√
1− 4P (zi − u(zi))

P (zi)

. (i ∈ In)

According to the definition of the function hi(z), we note that hi(z) and the
polynomial P have the same zeros. Let us put hi(z) instead of P in (13), then
u(zi) is replaced by hi/h

′
i = Bi. In this way (13) becomes

(14) ẑi = zi −
2Bi

1±
√

1− 4hi(zi −Bi)
hi

.

Using Taylor’s development and (12), we find

hi(zi −Bi)
hi(zi)

∼=
hi(zi)− h′i(zi)Bi + 1

2h
′′
i (zi)B2

i

hi(zi)
= − WiG2,i(

1 +G1,i

)2 .
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Substituting this in (14) we obtain the following iterative method for the simul-
taneous determination of polynomial zeros

(15) ẑi = zi −
2Wi

1 +G1,i ±
√

(1 +G1,i)2 + 4WiG2,i

(i ∈ In).

The iterative formula (15) was derived [7] starting from the Euler’s method. Its
order of convergence is four. If the approximations z1, . . . , zn are reasonably
close to the zeros ζ1, . . . , ζn, then the sign + is to be chosen in (15), see [7].

Example 2. The simultaneous method (15) was applied for the determination
of all zeros of the polynomial equation f4(x) = 0 given above. The exact zeros
of this polynomial are ±1, ±i, 2±i, ±

√
2/2±i

√
2/2. As initial approximations

we have taken n = 10 complex numbers equidistantly spaced on the circle with
radius R, that is

z(0)
m = R exp(iθm), i =

√
−1, θm =

π

n

(
2m− 3

2

)
(m = 1, . . . , 10)

(see Aberth [1]). We have experimented with various values of R to demonstrate
good convergence behavior of the simultaneous method (15). In practice, we
take the radius given by

(16) R = 2 max
1≤λ≤n

∣∣aλ

∣∣1/λ

following Henrici’s well-known result [2, Corollary 6.4k] that all zeros of the
monic polynomial P (x) = xn + a1x

n−1 + · · · + an−1x + an lie inside the disk
centered at the origin, with the radius R given by (16).

R 100 50 20 8 4 2

max
1≤i≤10

|f4(z
(k)
i | (−37)21 (−16)17 (−26)15 (−27)11 (−19)8 (−14)5

Table 2

The maximal values of the polynomial evaluated at the approximations obtained by the si-

multaneous process (15) for different initial approximations.

The results of our numerical experiment are given in Table 2. Similarly as
in Table 1, the superscript index k in (−h)k indicates the number of iterations
necessary to satisfy the stopping criterion

max
1≤i≤10

|f4(z(k)
i )|

(
= O(10−h

)
< 10−14.

From Table 2 we conclude that the method (15) converged for all initial
approximations, some of them being very far from the exact zeros. This is a
significant advantage since user is not obliged to take care about the choice of
initial approximations, which is one of the most difficult problems in solving
nonlinear equations.
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Fig. 1 Trajectories of approximations generated by the method (15).

The convergence of initial approximations equidistantly spaced on the circle
{z : |z| = 8} (found by (16)) is shown graphically in Fig. 1, where the exact
zeros are marked by small circles. With few exceptions, the approximations are
approaching the sought zeros with small variations. In fact, they permanently
aim at the targets - desired zeros, in the course of iterative procedure.
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