NOVI SAD J. MATH. Vol. 36, No. 2, 2006, 153-156

ON A COMMON FIXED POINT FOR SEQUENCE OF SELFMAPPINGS IN GENERALIZED METRIC SPACE

Ljiljana Gajić¹

Abstract. We prove the existence and uniqueness of a common fixed point for a sequence of mappings on generalized metric space with a contractive condition.

AMS Mathematics Subject Classification (2000): 47H10 Key words and phrases: Common Fixed Point, D-metric Space

1. Introduction

Let $\{f_n\}$ be a sequence of selfmappings on a metric space.

As is known, there are three types of theorems for sequences of mappings. The first assumes that each pair f_i, f_j satisfies the same contractive condition, and concludes that $\{f_n\}$ has a common fixed point. The second assumes that each f_n satisfies the same contractive condition and that $\{f_n\}$ tends pointwise to a limit function f. The conclusion is that f has a fixed point z which is the limit of each of the fixed points z_n of f_n . The third type assumes that each f_n has a fixed point z_n , and that $\{f_n\}$ converges uniformly to a function f which satisfies a particular contractive condition. With z, the fixed point of f, the conclusion is that $z_n \to z$.

In this paper we are going to prove a fixed point results of first type in a generalized metric space - so called D-metric space.

Let us recall some basic definitions, examplars and properties of D-metric spaces.

In 1992, a new structure of a generalized metric space, so called D-metric space was introduced by B.C. Dhage [2] on the lines of the ordinary metric space. Also, some fixed point theorems for the contractive mappings in D-metric space

¹Department of Mathematics and Informatics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, E-mail: gajic@im.ns.ac.yu.

are proved. In last fifteen years there have been many fixed point results in D-metric space (see [1], [4], [5], [6], [8], [9]). In this paper we are going to prove a common fixed point theorem for a sequence of selfmappings defined on D-metric space.

Definition [2]. Let X denote a non-empty set and \mathbb{R}^+ the set of all nonnegative real numbers. Then X, together with a function $D: X \times X \times X \to \mathbb{R}^+$, is called a D-metric space if it satisfies the following properties:

- (i) $D(x, y, z) = 0 \Leftrightarrow x = y = z$ (coincidence),
- (*ii*) D(x, y, z) = D(p(x, y, z)) (symmetry),

(p denotes the permutation function),

(*iii*) $D(x, y, z) \le D(x, y, a) + D(x, a, z) + D(a, y, z)$

for $x, y, z, a \in X$ (tetrahedral inequality).

A sequence $\{x_n\} \subset X$ is said to be D-convergent and converges to a point x if $\lim_{m,n} D(x_m, x_n, x) = 0$. A sequence $\{x_n\} \subset X$ is called D-Cauchy if $\lim_{m,n,p} D(x_m, x_n, x_p) = 0$. A complete D-metric space is one in which every D-Cauchy sequence converges to a point in it. A set $S \subset X$ is said to be bounded if there exists a constant M > 0 such that $D(x, y, z) \leq M$ for all $x, y, z \in S$ and the constant M is called a D-bound of S.

In a D-metric space, if D is continuous in two variables, then the limit of a sequence is unique, if it exists. Throughout this paper the D-metric is assumed to be continuous in two variables.

Example [2] Let (X, d) be a metric space. Define a function $D: X \times X \times X \rightarrow [0, \infty)$ by

$$D(x, y, z) = d(x, y) + d(y, z) + d(z, x)$$

for $x, y, z \in X$.

Clearly, the function D is a D-metric on X and consequently (X, D) is a D-metric space.

Remark. Thus for every ordinary metric space (X, d) there exists a D-metric space (X, D), but the converse may not be true. Therefore D-metric spaces are the generalizations of ordinary metric spaces.

The more powerful tool in our considerations is D-Cauchy Principle.

Lemma 1.1.[3] (D-Cauchy Principle) Let $\{x_n\} \subseteq X$ be a bounded sequence

On a common fixed point for sequence of selfmappings in ...

with D-bound M satisfying

$$D(x_n, x_{n+1}, x_m) \le \alpha^n \cdot M$$

for all $m > n \in \mathbb{N}$ and $0 \le \alpha < 1$. Then $\{x_n\}$ is D-Cauchy.

2. Main result

Theorem 2.1. Let (X, D) be a complete D-metric space $f_n : X \to X$, $n \in \mathbb{N}$, be a sequence of mappings with property that for each $x, y, z \in X$ and any $i, j, k \in \mathbb{N} \setminus \Delta$, $\Delta = \{(n, n, n) | n \in \mathbb{N}\}$,

(1)
$$D(f_i(x), f_j(y), f_k(z)) \le q \cdot D(x, y, z)$$

for some q < 1.

If there exists $x_0 \in X$ such that $\sup_{y \in X} D(x_0, f_1(x_0), y) = M$, for some

M > 0, then there exists a unique common fixed point for the family $\{f_n\}$.

Proof. For $x_0 \in X$ define a sequence

$$x_n = f_n(x_{n-1}), \quad n \in \mathbb{N}.$$

Let us prove that $\{x_n\}$ is a D-Cauchy sequence.

For any
$$n, p \in \mathbb{N}$$

 $D(x_n, x_{n+1}, x_{n+p}) = D(f_n(x_{n-1}), f_{n+1}(x_n), f_{n+p}(x_{n+p-1}))$
 $\leq q \cdot D(x_{n-1}, x_n, x_{n+p-1}) = q \cdot D(f_{n-1}(x_{n-2}), f_n(x_{n-1}), f_{n+p-1}(x_{n+p-2}))$
 $\leq q^2 \cdot D(x_{n-2}, x_{n-1}, x_{n+p-2}) \leq \dots \leq q^n \cdot D(x_0, x_1, x_p)$
 $\leq q^n \cdot \sup_{y \in X} D(x_0, f_1(x_0), y) = q^n \cdot M.$

So conditions of Lemma 1.1 are satisfied and $\{x_n\}$ is D-Cauchy. Since X is complete, there exists $z \in Z$ such that $z = \lim_{n \to \infty} x_n$.

We are going to prove that z is the unique fixed point for the sequence $\{f_n\}$.

Fixed
$$k \in \mathbb{N}$$
. For any $m \in \mathbb{N}$, $m > k$,
 $D(x_m, f_k(z), f_k(z)) = D(f_m(x_{m-1}), f_k(z), f_k(z))$
 $\leq q \cdot D(x_{m-1}, z, z).$

Since D is continuous in two variables, it follows that

$$D(z, f_k(z), f_k(z)) \le q \cdot D(z, z, z) = 0.$$

Consequently, $z = f_k(z)$.

If we suppose that for some $y \in X$ $f_k(y) = y$, for all $k \in \mathbb{N}$, as q < 1 and

 $D(z, z, y) = D(f_k(z), f_{k+1}(z), f_{k+2}(y)) \le q \cdot D(z, z, y)$

it follows that z = y. So the uniqueness is proved and the proof is completed. **Corollary 2.1** Let (X, D) be a complete bounded D-metric space $f_n : X \to X$, $n \in \mathbb{N}$, be a sequence of mappings with the property that for some $m \in \mathbb{N}$, each $x, y, z \in X$ and any $i, j, k \in \mathbb{N} \setminus \Delta$, $\Delta = \{(n, n, n) | n \in \mathbb{N}\}$,

(2) $D(f_i^m(x), f_j^m(y), f_k^m(z)) \le q \cdot D(x, y, z)$

for some q < 1.

Then there exists a unique common fixed point for the family $\{f_n\}$.

Proof. Theorem 2.1 implies that there exists the unique common fixed point for the sequence $\{f_k^m\}$. But, the fixed point for f_k^m by uniqueness is a fixed point for f_k , so, the proof is completed.

References

- Ahmad, B., Ashraf, M., Rhoades, B. E., Fixed point for Expansive Mapping in D-Metric Spaces. Indian J. of Pure Appl. Math. 32 (2001), 1513–1518.
- [2] Dhage, B. C., Generalise Metric Spaces and Mappings with Fixed Points. Bull. Cal. Math. Soc. 84(1992) 329–336.
- [3] Dhage, B. C., Some results on common fixed points-I. Indian J. of Pure Appl. Math. 30(1999), 827–837.
- [4] Dhage, B. C., A Common Fixed Point principle in D-Metric Spaces. Bull. Cal. Math. Soc. 91(1999) 475–480.
- [5] Dhage, B. C., Pathan, A. M., Rhoades, B. E., A General Existence Principal for Fixed Point Theorems in D-Metric Spaces. Internat. J. Math. & Math. Sci. 23(2000) 441–448.
- [6] Rhoades, B. E., A Fixed Point Theorem for Generalized Metric Spaces. Internat. J. Math. & Math. Sci. 19(1996) 457–460.
- [7] Ume, J. S., Kim, J. K., Common Fixed Point Theorems in D-Metric Spaces with Local Boundedness. Indian J. of Pure Appl. Math. 31(2000), 857–871.

Received by the editors October 31, 2006