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DECOMPOSITION OF THE DISTRIBUTION ON BMO
SPACE

Amina Lahmar Benbernou1, Sadek Gala2

Abstract. In this paper, we characterize
−→
f so that if the inequality

∣∣∣∣
∫

Rd

−→
f . (u∇v − v∇u) dx

∣∣∣∣ ≤ C ‖u‖ .
H

1 ‖v‖ .
H

1

holds for all u, v ∈ D (
Rd

)
, then

−→
f can be represented in the form

−→
f = ∇g + Div H

where g ∈ BMO
(
Rd

)
, H is a skew-symmetric matrix field such that

H ∈ BMO
(
Rd

)d2

.
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1. Introduction

Recently, S. Gala [5] proved a remarkable theorem to characterize the class
of vector fields

−→
f which satisfies the commutator inequality

(1.1)
∣∣∣∣
∫

Rd

−→
f . (u∇v − v∇u) dx

∣∣∣∣ ≤ C ‖u‖ .
H

1 ‖v‖ .
H

1

for all u, v ∈ D (
Rd

)
. Here we use Theorem 1 from [5] to decompose

−→
f in the

form −→
f = ∇g + Div H

in the distributional sense, where g ∈ BMO
(
Rd

)
, H is a skew-symmetric matrix

field such that H ∈ BMO
(
Rd

)d2

and Div : D′ (Rd
)d×d → D′ (Rd

)
is the row

divergence operator defined by

Div (hi,j) =




d∑

j=1

∂jhi,j




d

i=1

.
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We start with some prerequisites for our main result. Let D (
Rd

)
= C∞0

(
Rd

)
be the class of all infinitely differentiable, compactly supported complex-valued
functions, and let D′ (Rd

)
denote the corresponding space of (complex-valued)

distributions.
For ϕ ∈ D′ (Rd

)
, consider the multiplication operator on D (

Rd
)

defined by

(1.2) 〈ϕu, v〉 = 〈ϕ, uv〉 , u, v ∈ D (
Rd

)
,

where 〈., .〉 represents the usual pairing between D (
Rd

)
and D′ (Rd

)
. If the

sesquilinear form 〈ϕ., .〉 is bounded on
.

H
1 (
Rd

)×
.

H
1 (
Rd

)
:

(1.3) |〈ϕu, v〉| ≤ c ‖∇u‖L2(Rd) ‖∇v‖L2(Rd) , u, v ∈ D (
Rd

)
,

where the constant c is independent of u, v, then ϕu ∈
.

H
−1 (

Rd
)
, where

.

H
−1 (

Rd
)

=
(

.

H
1 (
Rd

))∗
is a dual Sobolev space, and the multiplication oper-

ator can be extended by continuity to all of the space
.

H
1 (
Rd

)
. Here, the space

.

H
1 (
Rd

)
is defined as the completion of (complex-valued) D (

Rd
)

functions with
respect to the norm ‖u‖ .

H
1
(Rd)

= ‖∇u‖L2(Rd) . As usual, this extension is also de-

noted by ϕ. By the polarization identity, (1.3) is equivalent to the boundedness
of the corresponding quadratic form :

(1.4) |〈ϕu, u〉| =
∣∣∣
〈
ϕ, |u|2

〉∣∣∣ ≤ c ‖∇u‖2L2(Rd) , u ∈ D (
Rd

)

where the constant c is independent of u. If ϕ is a (complex-valued) Borel
measure on Rd, then (1.4) can be recast in the form

∫

Rd

|u(x)|2 dϕ(x) ≤ c ‖u‖2.
H

1 , u ∈ D (
Rd

)

which has been studied in a comprehensive way. We refer to [2], [3], [6], [8],
where different analytic conditions for the so-called trace inequalities of this
type can be found.

H1
(
Rd

)
is the Hardy space in the sense of Fefferman and Stein [4] and

BMO
(
Rd

)
is the John-Nirenberg space. BMO

(
Rd

)
is the Banach space mod-

ulo constants with the norm ‖.‖∗ defined by

‖b‖∗ = sup
x∈Rd

1
|Q|

∫

Q

|b(y)−mQ(b)| dy

where

mQ(b) =
1
|Q|

∫

Q

b(y)dy
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Fefferman and Stein [4] proved that the Banach space dual of H1
(
Rd

)
is

isomorphic to BMO
(
Rd

)
, that is,

‖b‖∗ ≈ sup
‖f‖≤1

∣∣∣∣∣∣

∫

Rd

b(x)f(x)dx

∣∣∣∣∣∣
.

As a consequence of Theorem 1 in [5], we deduce that if

(1.5)
∣∣∣∣
∫

Rd

−→
f . (u∇v − v∇u) dx

∣∣∣∣ ≤ C ‖u‖ .
H

1 ‖v‖ .
H

1

holds for all u, v ∈ D (
Rd

)
, then

−→
f can be decomposed into the form

−→
f = ∇g + Div H

in the distributional sense, where g ∈ BMO
(
Rd

)
, H is a skew-symmetric matrix

field such that H ∈ BMO
(
Rd

)d2

and Div : D′ (Rd
)d×d → D′ (Rd

)
is the row

divergence operator defined by

Div (hi,j) =




d∑

j=1

∂jhi,j




d

i=1

.

We now state our main result for arbitrary (complex-valued) distributions−→
f .

Theorem 1. Let
−→
f ∈ D′ (Rd

)
and d ≥ 3. If (1.5) is satisfied, then

(1.6)
−→
f = ∇g + Div H

in the distributional sense where

(1.7) g = ∆−1div
−→
f ∈ BMO

(
Rd

)
and H = ∆−1curl

−→
f ∈ BMO

(
Rd

)d2

.

Here g and H are defined respectively by

g = lim
j→+∞

gj, gj = ∆−1div
(
ϕj

−→
f

)
,(1.8)

H = lim
j→+∞

Hj, Hj = ∆−1curl
(
ϕj

−→
f

)
,(1.9)

in terms of the convergence in the weak-*topology of BMO
(
Rd

)
. The above

limits do not depend on the choice of ϕj.

Moreover,

(1.10) ∇g = lim
j→+∞

∇gj , Div H = lim
j→+∞

Div Hj in D′ (Rd
)
,
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(1.11) curl (∇g) = 0, div (Div H) = 0, ∆g = div
−→
f , ∆H = curl

−→
f .

The proof of Theorem 1 is rather delicate. We shall need several lemmas for
proving some a priori estimates.

Lemma 1. Let
−→
f ∈ D′ (Rd

)
. If (1.5) holds, then we have

(1.12)
∥∥∥div

−→
f

∥∥∥ .
H
−1

(Q)
≤ C |Q| 12− 1

d

for every cube Q in Rd with C independent of Q.

Proof. The proof of this fact is straightforward. Let v ∈ D (Q) be given and
let u be a function in D (Q) such that u = 1 on supp v. Then the following
estimate is valid :

∣∣∣
〈−→

f , u∇v − v∇u
〉∣∣∣ =

∣∣∣
〈−→

f ,∇v
〉∣∣∣ =

∣∣∣
〈
div

−→
f , v

〉∣∣∣
≤ C(d) ‖∇u‖L2(Rd) ‖∇v‖L2(Q) .

Taking the infinimum over all such u on the right-hand side, we get
∣∣∣
〈
div

−→
f , v

〉∣∣∣ ≤ C
√

cap (Q) ‖∇v‖L2(Q)

where the capacity of a compact set e ⊂ Rd cap(.) is defined by ([7], sect.
11.15), (see also [1]) :

cap (e) = inf
{
‖u‖2.

H
1
(Rd)

: u ∈ D (
Rd

)
, u ≥ 1 on e

}
.

Since for a cube Q in Rd,

cap (Q) ' |Q|1− 2
d

the proof of lemma is complete. 2

In order to prove our main result, the following lemma will be used.

Lemma 2. Let
−→
f ∈ D′ (Rd

)
. If (1.5) holds, we then have

(1.13)
∥∥∥−→f

∥∥∥ .
H
−1

(Q)
≤ C |Q| 12

for every cube Q in Rd with C independent of Q.

Proof. Let Q∗ be the cube with the same center as Q but with the side lenght
twice as long. Suppose that v ∈ D (Q) and let ϕ be a C∞ function taking values
in [0, 1] with support in Q∗ and so that ϕ = 1 on Q. Let us set u = (xi − ai)ϕ(
i = 1, d

)
, where a = (ai) is the center of Q. Then it is easy to see that

‖∇u‖L2(Q∗) ≤ ‖∇u‖L2(Q) ≤ C |Q| 12 .
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Next note that for such u and v
〈−→

f , u∇v − v∇u
〉

=
〈−→

f ,∇ (uv)− 2v∇u
〉

= −
〈
div

−→
f , uv

〉
− 2

〈−→
f , v∇u

〉

= −
〈
div

−→
f , (xi − ai) v

〉
− 2 〈fi, v〉 .

Concerning
〈
div

−→
f , (xi − ai) v

〉
, we observe that by using (1.12), the Poincaré

inequality with v replaced by (xi − ai) v
∣∣∣
〈
div

−→
f , (xi − ai) v

〉∣∣∣ ≤ C |Q| 12− 1
d ‖∇ [(xi − ai) v]‖L2(Q)

≤ C |Q| 12− 1
d

(
‖v‖L2(Q) + ‖(xi − ai)∇v‖L2(Q)

)

≤ C |Q| 12− 1
d

(
2 |Q| 1d ‖∇v‖L2(Q) + ‖(xi − ai)∇v‖L2(Q)

)

≤ C |Q| 12 ‖∇v‖L2(Q) , ∀v ∈ D (Q) .

Since for every i = 1, d,

2 |〈fi, v〉| ≤
∣∣∣
〈−→

f , u∇v − v∇u
〉∣∣∣ +

∣∣∣
〈
div

−→
f , (xi − ai) v

〉∣∣∣
≤ C ‖∇u‖L2(2Q) ‖∇v‖L2(Q) + C |Q| 12 ‖∇v‖L2(Q)

≤ C |Q| 12 ‖∇v‖L2(Q) ,

and we can conclude. 2

For a fixed cube Q in Rd, we denote by {ωj}∞j=0 a smooth partition of unity
associated with Q, i.e., fix ω0 ∈ D (2Q) with the properties ωj ∈ D

(
2j+1Q\2j−1Q

)
,

j ≥ 1 so that

(1.14) 0 ≤ ωj(x) ≤ 1, | ∇ωj(x)| ≤ C
(
2j l (Q)

)−1
, j ∈ N

where l (Q) denotes the side lenght of Q and C depends only on d. Finally, we
have for all x ∈ Rd,

∞∑

j=0

ωj(x) = 1.

In the following Ri

(
resp. Ri,m = −∂i∂m∆−1

)
(i, m = 1, ..., d) denotes the

Riesz transforms (resp. the double Riesz transforms) on Rd (see [9]) which are
given respectively up to a constant multiple by

Ki(x− y) =
(xi − yi)

|x− y|d
, Ki,m(x− y) =

|x− y|2 − d−1(xi − yi)(xm − ym)

|x− y|d+2
.

From this we derive
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Lemma 3. The following estimates hold.

(i) For every v ∈ D (Q) and j ≥ 0
(1.15)∥∥∇ (

ωj∂i∂m∆−1v
)∥∥

L2(2j+1Q)
≤ C2−j(1+ d

2 ) ‖∇v‖L2(Q) , i,m = 1, ..., d

where C depends only on d.

(ii) For every v ∈ D (Q) such that
∫

Q

vdx = 0 and j ≥ 2

(1.16)∥∥∇ (
ωj∂i∆−1v

)∥∥
L2(2j+1Q)

≤ C2−j(1+ d
2 ) |Q|− 1

2 ‖∇v‖L1(Q) , i = 1, ..., d

where C depends only on d.

Proof. To prove (1.15), let v ∈ D (Q) and let a = aQ be the center of Q and
ρ = l (Q) its side lenght. For j = 0, 1, it follows from Poincaré’ s inequality, the
boundedness of Ri,m on L2

(
Rd

)
, that

∥∥∇ (
ωj∂i∂m∆−1v

)∥∥
L2(2j+1Q)

≤ ∥∥∇ωj

(
∂i∂m∆−1v

)∥∥
L2(2j+1Q)

+
∥∥ωj∂i∂m

(
∆−1∇v

)∥∥
L2(2j+1Q)

≤ C
(
ρ−1 ‖Ri,mv‖L2(Rd) + ‖Ri,m∇v‖L2(Rd)

)

≤ C
(
ρ−1 ‖v‖L2(Q) + ‖∇v‖L2(Q)

)

≤ C ‖∇v‖L2(Q) .

On the other hand, we have for j ≥ 2,

|Ki(x− y)−Ki(x− a)| ≤ C(d)
|y − a|
|x− y|d

,(1.17)

|Ki,m(x− y)−Ki,m(x− a)| ≤ C(d)
|y − a|

|x− y|d+1
,(1.18)

if |y − a| < R, |y − a| > 2R. Using the preceding estimates with R = c(d)2jρ,
we see that for x ∈ 2j+1Q\2j−1Q :

∣∣∂i∂m∆−1v(x)
∣∣ =

∣∣∣∣∣∣

∫

Q

(Ki(x− y)−Ki(x− a)) ∂mv(y)dy

∣∣∣∣∣∣

≤
∫

Q

|Ki(x− y)−Ki(x− a)| |∇v(y)| dy

≤ C2−jdρ1−d ‖∇v‖L1(Q) ,
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∣∣∇∂i∂m∆−1v(x)
∣∣ =

∣∣∣∣∣∣

∫

Q

(Ki,m(x− y)−Ki,m(x− a)) ∂m∇v(y)dy

∣∣∣∣∣∣

≤
∫

Q

|Ki,m(x− y)−Ki,m(x− a)| |∇v(y)| dy

≤ C2−j(d+1)ρ−d ‖∇v‖L1(Q) .

Hence,
∥∥∇ (

ωj∂i∂m∆−1v
)∥∥

L2(2j+1Q)
≤ ∥∥∇ωj

(
∂i∂m∆−1v

)∥∥
L2(2j+1Q)

+
∥∥ωj∂i∂m

(
∆−1∇v

)∥∥
L2(2j+1Q)

≤ C2−j( d
2 +1)ρ−

d
2 ‖∇v‖L1(Q)

≤ C2−j(1+ d
2 ) ‖∇v‖L2(Q) ,

which gives (1.15).

The proof of (1.16) for j ≥ 2, provided
∫

Q

vdx = 0, is similar to that of (1.15).

Using the estimates (1.17) and (1.18) we deduce that for x ∈ 2j+1Q\2j−1Q,

∣∣∇ (
ωj∂i∆−1v

)
(x)

∣∣ ≤ | ∇ωj(x)|
∣∣∂i∆−1v(x)

∣∣ + | ωj(x)|
∣∣∇∂i∆−1v(x)

∣∣

≤ C2−jρ−1

∫

Q

|Gi(x− y)−Gi(x)| |v(y)| dy

+C

d∑
m=1

∫

Q

|Gi,m(x− y)−Gi,m(x)| |v(y)| dy

≤ C2−j(1+d) |Q|−1
∫

Q

|v(y)| dy.

This yields
∥∥∇ (

ωj∂i∆−1v
)∥∥

L2(2j+1Q)
≤ C2−j(1+ d

2 ) |Q|− 1
2 ‖∇v‖L2(Q) .

This completes the proof. 2

If we want to prepare the scaling argument, we consider a function ϕ ∈
D (
Rd

)
with the properties

0 ≤ ϕ ≤ 1, ϕ(x) = 1 if |x| ≤ 1, ϕ(x) = 0 if |x| ≥ 2,

and define the functions

ϕj ∈ D
(
Rd

)
, ϕj(x) = ϕ(j−1x), x ∈ Rd, j ∈ N.
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It follows that
lim

j→+∞
ϕj(x) = 1 for all x ∈ Rd,

and setting
Bj =

{
x ∈ Rd : |x| < j

}
, Gj = B2j\Bj ,

we get Supp ∇ϕj ⊆ Gj , Supp ϕj ⊆ Bj , j ∈ N.
With these notations we obtain

Lemma 4. Let
−→
f ∈ D′ (Rd

)
. Then, we have

∥∥∥ϕj

−→
f

∥∥∥ .
H
−1

(Q)
≤ C |Q| 12 ,

for every cube Q in Rd where C does not depend on Q.

Proof. The proof is straightforward. By using (1.13) with
−→
f replaced by

ϕj

−→
f we obtain

(1.19)
∥∥∥ϕj

−→
f

∥∥∥ .
H
−1

(Q)
≤ C |Q| 12 ,

for every cube Q where C does not depend on Q and j. This is a consequence
of the inequality ∥∥(∇ϕj

)
v
∥∥

L2(Rd)
≤ c(d) ‖∇v‖L2(Rd)

for v ∈ D (
Rd

)
, which follows from Poincaré’ s inequality. 2

Remark 1. We observe that gj and Hj given respectively by (1.8) and (1.9)

are well-defined in the distributional sense. Moreover, by (1.19), ϕj

−→
f ∈

.

H
−1

(Q)

and hence gj ∈ L2
(
Rd

)
, Hj ∈ L2

(
Rd

)d2

.

Next, we have to show that the following lemma.

Lemma 5. Let
−→
f ∈ D′ (Rd

)
. Then

(1.20)
∥∥∥∂i∂m∆−1

(
ϕj

−→
f

)∥∥∥ .
H
−1

(Q)
≤ C |Q| 12

for all i, m = 1, 2, ..., d with a constant C independent of the cube Q and j.

Proof. We know already that ∂i∂m∆−1
(
ϕj

−→
f

)
is well-defined in D′ (Rd

)
. Then

〈
∂i∂m∆−1

(
ϕj

−→
f

)
,−→v

〉
=

〈
ϕj

−→
f , ∆−1∂i∂m

−→v
〉

=
∞∑

j=0

〈
ϕj

−→
f , ωj∆−1∂i∂m

−→v
〉

,
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for every v ∈ D (Q), where the sum on the right contains only a finite number
of non-zero terms. Therefore, it follows from (1.19), statement (i) of Lemma 3,
and Schwarz inequality,

∣∣∣
〈
ϕj

−→
f , ∆−1∂i∂m

−→v
〉∣∣∣ ≤

∞∑

j=0

∣∣∣
〈
ϕj

−→
f , ωj∆−1∂i∂m

−→v
〉∣∣∣

≤ c

∞∑

j=0

2j d
2 |Q| 12 ∥∥∇ (

ωj∂i∂m∆−1−→v )∥∥
L2(2j+1Q)

≤ C

∞∑

j=0

2j d
2 |Q| 12 2−j(1+ d

2 ) ‖∇v‖L2(Q)

≤ C |Q| 12 ‖∇v‖L2(Q) ,

which proves (1.20). In particular,

‖∇gj‖ .
H
−1

(Q)
≤ C |Q| 12 , ‖D (Hj)‖ .

H
−1

(Q)
≤ C |Q| 12 .

2

From this, we deduce immediately

Corollary 1. Let
−→
f ∈ D′ (Rd

)
. If (1.5) is satisfied, then

‖gj −mQ (gj)‖L2(Q) ≤ c ‖∇gj‖ .
H
−1

(Q)
≤ C |Q| 12 ,

‖Hj −mQ (Hj)‖L2(Q) ≤ c ‖D (Hj)‖ .
H
−1

(Q)
≤ C |Q| 12 ,

where mQ (gj) (resp. mQ (Hj)) denotes the mean value of gj (resp. Hj) over Q
and C does not depend on Q and j. Hence

sup
j
‖gj‖BMO(Rd) < ∞ and sup

j
‖Hj‖BMO(Rd)d2 < ∞.

We claim that both {gj} and {Hj} converge in the weak-*topology of BMO

repectively to f ∈ BMO
(
Rd

)
and H ∈ BMO

(
Rd

)d2

defined up to an additive
constant. We will deduce that

∆g = div
−→
f and ∆H = curl

−→
f in the distributional sense

and set
g = ∆−1div

−→
f and H = ∆−1curl

−→
f .

Proof. Since {gj} is uniformly bounded in the BMO−norm, it is enough to
verify that it forms a Cauchy sequence in the weak-*topology of BMO on a dense
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family of C∞0 −functions in H1
(
Rd

)
. Suppose that v ∈ D (Q) and

∫

Q

vdx = 0.

Then one can easily check that
∣∣∣∣∣∣

∫

Rd

(gn − gm) vdx

∣∣∣∣∣∣
≤

∑

j≥n0

∣∣∣
〈
(ϕn − ϕm)

−→
f , ωj∇∆−1v

〉∣∣∣ ,

where n0 → +∞ as m,n → +∞. By (1.19), it follows that
∣∣∣
〈
(ϕn − ϕm)

−→
f , ωj∇∆−1v

〉∣∣∣ ≤ c2
j
2 |Q| 12

∥∥∇ (
ωj∇∆−1v

)∥∥
L2(2jQ)

.

By statement (ii) of Lemma 3,

(1.21)
∥∥∇ (

ωj∇∆−1v
)∥∥

L2(2jQ)
≤ C2−j(1+ d

2 ) |Q|− 1
2 ‖v‖L1(Q) , j ≥ n0,

where C does not depend on j, Q and v. Thus, we get
∣∣∣
〈
(ϕn − ϕm)

−→
f , ωj∇

(
∆−1v

)〉∣∣∣ ≤ C2−j ‖v‖L1(Q) , j ≥ n0

and consequently

∑

j≥n0

∣∣∣
〈
(ϕn − ϕm)

−→
f , ωj∇

(
∆−1v

)〉∣∣∣ ≤ C ‖v‖L1(Q)

∑

j≥n0

2−j , j ≥ n0.

Using the preceding inequalities and letting m, n → +∞ so that n0 → +∞, it
follows that {gj} is a Cauchy sequence in the weak-*topology of BMO which
implies in particular,

(1.22) lim
j→+∞

∫

Rd

gjvdx =
∫

Rd

gvdx, v ∈ D (
Rd

)
,

∫

Rd

vdx = 0,

where g ∈ BMO
(
Rd

)
. 2

Furthermore, we have

Lemma 6. The limit in (1.22) does not depend on the choice of the cut-off
functions ϕj.

Proof. To prove this lemma, we show that for every v ∈ D (Q) and
∫

Q

vdx = 0,

(1.23)
∫

Rd

gvdx = −
∑

j≥0

〈−→
f , ωj∇

(
∆−1v

)〉
.
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which will imply the assertion. By (1.13) and statement (ii) of Lemma 3, it
follows immediately that

∑

j≥m

∣∣∣
〈−→

f , ωj∇
(
∆−1v

)〉∣∣∣ ≤ C
∑

j≥m

2
j
2 |Q| 12

∥∥∇ (
ωj∇∆−1v

)∥∥
L2(2jQ)

≤ C ‖v‖L1(Q)

∑

j≥m

2−j ,

for every m ≥ 1. Moreover, by (1.19) a similar estimate holds with ϕj

−→
f in

place of
−→
f and C does not depend on m and j.

Clearly, (1.23) holds with
−→
f replaced by ϕj

−→
f and for j large,

∑

0≤j≤m

〈−→
f , ωj∇

(
∆−1v

)〉
=

∑

0≤j≤m

〈
ϕj

−→
f , ωj∇

(
∆−1v

)〉
.

By picking m and j large enough, and taking into account the above estimates
together with (1.22), we arrive at (1.23).

We observe that (1.23) with div −→v in place of v yields

(1.24) 〈∇g,−→v 〉 = −
∫

Rd

g div −→v dx =
∑

j≥0

〈−→
f , ωj∇

(
∆−1div −→v )〉

,

for every v ∈ D (
Rd

)
supported on a cube Q. Furthermore, we have ∇g ∈

D′ (Rd
)d and

∇g = lim
j→+∞

∇gj in D′ (Rd
)d

, curl (∇g) = 0, in D′ (Rd
)d2

.

Moreover, for every v ∈ D (
Rd

)
,

〈∆g, v〉 = lim
j→+∞

〈gj ,∆v〉 = − lim
j→+∞

〈
ϕj

−→
f ,∇v

〉
= −

〈−→
f ,∇v

〉
,

which gives ∆g =div
−→
f in D′ (Rd

)
.

In a completely analogous fashion, one verifies that Hj → H in the weak-
*topology of BMO,

Div H = lim
j→+∞

Div Hj in D′ (Rd
)d

,

and ∆H =curl
−→
f in D′ (Rd

)d2

, div (Div H) = 0. Moreover, H is a skew-
symmetric matrix field since Hj is skew-symmetric for every j. 2

We are in a position to establish decomposition (1.6) for vector fields which
obey (1.5).
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Proof. Let us set −→α = ∇g and
−→
β =Div H. Using a standard decomposition

for v ∈ D (
Rd

)d

(1.25) −→v = ∇ (
∆−1div −→v )

+ Div
(
∆−1curl −→v )

,

we deduce

〈∇gj ,
−→v 〉 = −〈gj , div −→v 〉 =

〈
ϕj

−→
f ,∇ (

∆−1div −→v )〉

=
〈
ϕj

−→
f ,−→v

〉
−

〈
ϕj

−→
f , Div

(
∆−1curl −→v )〉

.

Hence,

〈−→α ,−→v 〉 = lim
j→+∞

〈∇gj ,
−→v 〉

= lim
j→+∞

〈
ϕj

−→
f ,−→v

〉
− lim

j→+∞

〈
ϕj

−→
f , Div

(
∆−1curl −→v )〉

=
〈−→

f ,−→v
〉
− lim

j→+∞
〈Div Hj ,

−→v 〉

=
〈−→

f ,−→v
〉
−

〈−→
β ,−→v

〉
.

This completes the proof. 2
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