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DECOMPOSITION OF THE DISTRIBUTION ON BMO
SPACE

Amina Lahmar Benbernou'!, Sadek Gala®

Abstract. In this paper, we characterize 7 so that if the inequality

T @V - ova)de| < O llul 1 |[oll ;1

Rd

holds for all u, v € D (Rd), then ? can be represented in the form
—
f =Vg+DivH

where g € BMO (]Rd), H is a skew-symmetric matrix field such that
2

H e BMO (RY)".

AMS Mathematics Subject Classification (2000): 42B20, 42B35

Key words and phrases: Sobolev spaces, distribution, BM O spaces

1. Introduction

Recently, S. Gala [5] proved a remarkable theorem to characterize the class
—
of vector fields f which satisfies the commutator inequality

(1.1) f @V —vva)dz| < Cul 1 ||o]

Rd

for all u, v € D (R?). Here we use Theorem 1 from [5] to decompose 7 in the
form

-

f =Vg+DivH
in the distributional sense, where g € BM O (]Rd), H is a skew-symmetric matrix

2
field such that H € BMO (RY)* and Div : D' (R%)*? = D’ (R%) is the row
divergence operator defined by

d

d
Div (h@j) = Zajhivj
Jj=1

i=1
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We start with some prerequisites for our main result. Let D (Rd) =C§° (Rd)
be the class of all infinitely differentiable, compactly supported complex-valued
functions, and let D’ (Rd) denote the corresponding space of (complex-valued)
distributions.

For ¢ € D’ (Rd), consider the multiplication operator on D (Rd) defined by

(1.2) (pu,v) = (p,av) , u,v € D (]Rd) ,

where (.,.) represents the usual pairing between D (Rd) and D’ (Rd). If the
1 1
sesquilinear form (., .) is bounded on H (Rd) x H (]Rd) :

(1.3) (o, v)] < eIVl pagey VOl paey,  wv € D(RT),

-1
where the constant c¢ is independent of w,v, then pu € H (Rd), where

*

-1 .1
H (Rd) = (H (Rd)> is a dual Sobolev space, and the multiplication oper-

1
ator can be extended by continuity to all of the space H (Rd). Here, the space

1
H (Rd) is defined as the completion of (complex-valued) D (]Rd) functions with
respect to the norm HUHHI(Rd) = |Vl p2(gay - As usual, this extension is also de-
noted by ¢. By the polarization identity, (1.3) is equivalent to the boundedness
of the corresponding quadratic form :

(1.4) )l = (. Jul)] < eI Vulame, weD R

where the constant ¢ is independent of w. If ¢ is a (complex-valued) Borel
measure on R, then (1.4) can be recast in the form

/ [u(@)? (@) < cllull®:, we D (RY)
Rd

which has been studied in a comprehensive way. We refer to [2], [3], [6], [8],
where different analytic conditions for the so-called trace inequalities of this
type can be found.

H' (RY) is the Hardy space in the sense of Fefferman and Stein [4] and
BMO (Rd) is the John-Nirenberg space. BMO (Rd) is the Banach space mod-
ulo constants with the norm |||, defined by

1
bl = sup é 1b(y) — ma(®)| dy

zERC

where

1
mo) = 5 é b(y)dy
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Fefferman and Stein [4] proved that the Banach space dual of H' (R?) is
isomorphic to BMO (Rd), that is,

Ibll, ~ sup / b() f()da|

<1
1<),

As a consequence of Theorem 1 in [5], we deduce that if

7). (uVv —vVa) de
Rd

(1.5) < Cllull ol

holds for all u, v € D (Rd), then 7) can be decomposed into the form

-
f =Vg+DivH

in the distributional sense, where g € BM O (IRd)7 H is a skew-symmetric matrix

2
field such that H € BMO (R))" and Div : D' (RY)™? — D’ (R9) is the row
divergence operator defined by

d

d
Div (hi,j) = Zajhm
j=1 i=1

We now state our main result for arbitrary (complex-valued) distributions
—

f.
Theorem 1. Let 7) €D’ (RY) and d > 3. If (1.5) is satisfied, then
(1.6) ? =Vg+ DivH
in the distributional sense where
(17) g=A~Ydiv f € BMO(RY) and H=A"teurl | € BMO (RY)" .

Here g and H are defined respectively by

. — . -
(1.8) g = jggloogj, gj = A" div (sajf),
(1.9) H = jEElOOHj, H; = A teurl (goj?),

in terms of the convergence in the weak-*topology of BMO (]Rd). The above
limits do not depend on the choice of p;.

Moreover,

(1.10) Vg = lim Vg, Div H = lim DivH; in D' (RY)),

j—+o0 j—+oo
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(1.11)  curl (Vg) =0, div (Div H) =0, Ag=div f, AH = cul f.

The proof of Theorem 1 is rather delicate. We shall need several lemmas for
proving some a priori estimates.

Lemma 1. Let 7) € D' (RY). If (1.5) holds, then we have
(1.12) |aiv 7 | <clQb
. 10 L < 2
TaN(a)

for every cube Q in R? with C' independent of Q.

Proof. The proof of this fact is straightforward. Let v € D (Q) be given and
let u be a function in D (Q) such that w = 1 on supp v. Then the following

estimate is valid :
(790} =[(aiv 7.0)

C(d) ||VU||L2(Rd) ||VU||L2(Q) :

‘<?,HVU —vVU>‘

IN

Taking the infinimum over all such u on the right-hand side, we get

’<div 7,v>‘ < C eap (Q) Vo]l 120

where the capacity of a compact set e C R? cap(.) is defined by ([7], sect.
11.15), (see also [1]) :

cap (e) = inf{||u||i{1(Rd) cueD(RY), u>1 on e}.

Since for a cube Q in R?,
_z2
cap (Q) =~ [Q|""

the proof of lemma is complete. O

In order to prove our main result, the following lemma will be used.

Lemma 2. Let 7 e D' (RY). If (1.5) holds, we then have
1.13 7). <clo
(1.13) |71,y <€l

for every cube Q in R? with C independent of Q.

Proof. Let @Q* be the cube with the same center as @@ but with the side lenght
twice as long. Suppose that v € D (Q) and let ¢ be a C* function taking values
in [0, 1] with support in @* and so that ¢ =1 on Q. Let us set u = (; — a;) ¢
(i =1, d), where a = (a;) is the center of ). Then it is easy to see that

1
IVullp2ge) < Vullp2g) < C1QI7.
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Next note that for such u and v

<?,EVU—UVE> = <f V (av —2vVu>

— (v Foaw) -2(7,0va)

= <d1v £z —ay v> 2(fi,v)

Concerning <div 7, (z; — ay) v>, we observe that by using (1.12), the Poincaré

inequality with v replaced by (z; — a;) v

(v 7@ —av)| < CIOPTH V(@ = ai)vlll ey
< IR (Iollag + s = @) Vol 2 )
< ClRIF* (21017 V0] 2y + s — a:) Voll o) )
< ClQI? IVl 2y, VW ED(Q).

Since for every i = 1,

)

— L =
21(fi,v)] < ’<f7HVv—vVH>’+‘<d1v f,(aci—ai)v>‘
< ClVullpzpg) VUl 20y + ClQIZ VYl 12
< ClQl® HVUHH(Q)a
and we can conclude. O

For a fixed cube @ in R?, we denote by {w, };’;0 a smooth partition of unity
associated with Q, i.e., fix wg € D (2Q) with the propertiesw; € D (2771Q\2771Q),
j > 1 so that

(1.14) 0<wj(z) <1, |Vw@)|<C(21Q) ", jeN

where [ (Q) denotes the side lenght of @ and C depends only on d. Finally, we

have for all = € R,
> wilw) =
=0

In the following R; (resp. Rim = f&ﬁmAfl) (i,m =1,...,d) denotes the
Riesz transforms (resp. the double Riesz transforms) on R (see [9]) which are
given respectively up to a constant multiple by

(xi _yi) ‘.T—y|2 _d_l(xi _yi)(xm _ym>
d’ K’i;m(x - y) = d+2 :
|z =y |z -yl

Ki(x —y) =

From this we derive
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Lemma 3. The following estimates hold.

(i) For everyv € D(Q) and j >0
(1.15)

|V (w;00m A 0) < C27048) | V0] gy, im=1,.0d

HL?(ngQ)

where C' depends only on d.
(i) For every v € D(Q) such that /vdcv =0andj>2
Q

(1.16)

HV (wjaiAilv)Hp(zHlQ) < C27j(1+g) |Q|7% ”vv”Ll(Q) , i=1,...,d

where C' depends only on d.

Proof. To prove (1.15), let v € D(Q) and let a = ag be the center of ) and
p =1(Q) its side lenght. For j = 0, 1, it follows from Poincaré’ s inequality, the
boundedness of R;,, on L? (R?), that

V (w;0;0, A" v
IV (w; )

IN

[Vw; (0:0mA™0)|| 12301
+ [|w; 030 (AT1V0)

||L2(2J'+1Q)
|22 2i10)
C (p_l HRi,mv”Lz(Rd) + ||Ri,mvv||L‘2(]Rd)>

C (b7 ol 2y + 190l 2()
C”VUHLZ(Q)'

IN

IN

IN

On the other hand, we have for j > 2,

(1.17) Ko —y) - Ko —a) < c@¥=d
|z — yl
y—a

1) Kl =)~ Kinr o <

if |y —a| < R, |y — a| > 2R. Using the preceding estimates with R = ¢(d)27p,
we see that for x € 2771Q\2/71Q :

|0:0m A" ()| = /(Kz(ac —y) — K;(x — a)) Onv(y)dy

Q
< /|Ki<x—y>—m@—a)uw(y)my
Q

IA

Cc279dptd Vol 1o
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V0.0,8710(@)| = | [ (Kinle =) = Kimlz = @) 9 Vols)dy

Q
< / Kim(z — y) — K (@ — a)| [Vo(y)| dy
Q

IN

02—j(d+1)p—d ||VU||L1(Q) )
Hence,

Hv (wjaiamAil'U) ||ij' (8i8mA’1v)HL2(2j+lQ)
+ ||wj8i8m (A’1Vv)

lr2ing) <

||L2(2J'+1Q)

IN

027 p=4 | Vo) 1 g

IN

C27 (49 |90 12y

which gives (1.15).
The proof of (1.16) for j > 2, provided /vdx = 0, is similar to that of (1.15).

Q
Using the estimates (1.17) and (1.18) we deduce that for z € 27H1Q\2771Q,

|V (w;0 A7) ()| < | Vwj(@)] |giA™ v(@)| + | wi(z)] [VOA™ v ()|
< o2t [[Gile =) - Gl o)l dy
Q
d
403 [ 1Gim(@ =)~ Ginl@)l )] dy
m=1 Q
<

c2 10 01Q [ futy)]dy.
Q

This yields

|V (@it 0) 2oy < C27 0 IR V0l (g

This completes the proof. O

If we want to prepare the scaling argument, we consider a function ¢ €
D (]Rd) with the properties

0<p<1, o) =1 i lo] <1, p@)=0 if |z[>2,
and define the functions

¢, €D(RY), ¢;(x)=p('z), zeR: jeN
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It follows that

lim p;(z) =1 forallz € RY,
J—+oo

and setting
Bj = {SC € Rd : |l“ < ]}, Gj = B2j\Bj,

we get Supp Ve, C Gj, Supp ¢; € B;, j € N.
With these notations we obtain

N
Lemma 4. Let f € D' (R?). Then, we have
o/ 7| .- =ClaP
A P ’

for every cube Q in R? where C' does not depend on Q.

Proof. The proof is straightforward. By using (1.13) with ? replaced by
=
®; [ we obtain

(1.19) i 7] -1, <€l

for every cube @ where C' does not depend on @ and j. This is a consequence
of the inequality

|| (ij) UHLQ(Rd) < C(d) ”vv”L?(Rd)

forveD (Rd), which follows from Poincaré’ s inequality. O

Remark 1. We observe that g; and H; given respectively by (1.8) and (1.9)
-1
are well-defined in the distributional sense. Moreover, by (1.19), g0j7 €eH (Q)
2
and hence g; € L? (Rd), H;eL? (Rd)d .

Next, we have to show that the following lemma.
—
Lemma 5. Let f € D' (R?). Then

(1.20) ‘

0:0n7 (0,7 )|+ o < C I

for alli,m =1,2,....d with a constant C independent of the cube @ and j.

Proof. We know already that 0;0,, A~! (g@?) is well-defined in D’ (Rd)‘ Then

<8i8mA*1 (%7) 7> - <<pj7’,Aflaiam7> - i <¢j7’,ij*1aiam7>,

J=0
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for every v € D (Q), where the sum on the right contains only a finite number
of non-zero terms. Therefore, it follows from (1.19), statement (i) of Lemma 3,
and Schwarz inequality,

hE

(5737007 = 3|58 0007)

<.

IA
M8 %

7% |Q|2 ||V w;0i0m A~ 1_) HL2 (2i+1Q)
7=0

< 0y 2P 20 |Vl
7=0
1
< ClRPE VYl 2oy »
which proves (1.20). In particular,

IVl ;- <ClQl*, |D(H <ClQP?.

" = M o)

From this, we deduce immediately

Corollary 1. Let 7) e D' (RY). If (1.5) is satisfied, then

IN

Vgl o <€ QI

<ClQl*,

lg; —mq (9j)||L2(Q)
1 —mq (Hj)llp2q) = D (H)ll -

G

A

‘@

where mq (g;) (resp. mq (H;)) denotes the mean value of g; (resp. H;) over Q
and C does not depend on @ and j. Hence

Sljl_p 19l Baro(ray < o© and Slj‘_p ||HJ'”BMO(Rd)d2 < 00

We claim that both {g;} and {H;} converge in the weak-*topology of BMO

2
repectively to f € BMO (Rd) and H € BMO (Rd)d defined up to an additive
constant. We will deduce that

Ag = div ? and AH = curl 7 in the distributional sense

and set
— —
g=A"1div f and H=A"lcurl f.

Proof. Since {g;} is uniformly bounded in the BMO—norm, it is enough to
verify that it forms a Cauchy sequence in the weak-*topology of BM O on a dense
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family of C§°—functions in H* (Rd). Suppose that v € D(Q) and /vdm =0.

Q
Then one can easily check that
- -1
(gn — gm) V| < Y ‘<(@n—<ﬁm) frwiVA U> ;
R Jj=no
where ng — +00 as m,n — +oo. By (1.19), it follows that
TLw; VAT < 2% |Q|F ||V (w,; VA
(@n - me) f y Wi v >c |Q‘ H (wj U)HLQ(Q_;‘Q) .

By statement (i¢) of Lemma 3,

(1.21) ||V (w;VA~10) )< C27 1048 Q177 ull gy 4 = o,

[P

where C' does not depend on j, @ and v. Thus, we get
— . .
(60 = 0) Tos¥ (A710))| < €277 ol 420

and consequently

S [{n = 0m) Trws¥ (A7) < Cllollzagy 3277, 5 2 mo.

j=no j>no

Using the preceding inequalities and letting m,n — +o00 so that ng — 400, it
follows that {g;} is a Cauchy sequence in the weak-*topology of BMO which
implies in particular,

(1.22) _ liﬂ_n g;vdx = /g@dx, veD (Rd) , /vda: =0,
S R4 R4 R
where g € BMO (Rd). ]

Furthermore, we have

Lemma 6. The limit in (1.22) does not depend on the choice of the cut-off
Junctions ;.

Proof. To prove this lemma, we show that for every v € D (Q) and / vdx = 0,
Q

(1.23) /g@dx =— Z <7)7ij (A_lv)> .

R j=0
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which will imply the assertion. By (1.13) and statement (i) of Lemma 3, it
follows immediately that

Z ’<7,wjv (A_lv)>‘ < C Z ok ‘Q|% HV (WJ'VA_IU)HB(QJQ)
jzm i>m
< CHUHLl(Q) Z 277,

j=m

for every m > 1. Moreover, by (1.19) a similar estimate holds with <pj7 in

place of 7 and C does not depend on m and j.
= —
Clearly, (1.23) holds with f replaced by ¢; f and for j large,

Z <7)»ij(A_lv)>: Z <<pj7),ij(A_lv)>.

0<j<m 0<j<m

By picking m and j large enough, and taking into account the above estimates
together with (1.22), we arrive at (1.23).
We observe that (1.23) with div v in place of v yields

(1.24) (Vg, ) = —/g div vdz =Y <?,wjv (A~ div 7)> ,

R 720

for every v € D (Rd) supported on a cube ). Furthermore, we have Vg €
D (R and
: . ’ d\d . / d d?
Vg = ‘llril Vg; in D' (R?)", cul (Vg) =0, in D' (R?)" .
Jj—+oo

Moreover, for every v € D (Rd),

. . — e d
(Ag,v) = lim (g;, Av) = — lim <g0jf,Vv> = f<f,Vv>,
Jj—-+oo Jj—-+oo
—
which gives Ag =div f in D' (R?).
In a completely analogous fashion, one verifies that H; — H in the weak-
*topology of BMO,

Div H = lim Div H; in D' (R%)*,

2
and AH —curl f in D' (RY)", div (Div H) = 0. Moreover, H is a skew-
symmetric matrix field since H; is skew-symmetric for every j. O

We are in a position to establish decomposition (1.6) for vector fields which
obey (1.5).
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Proof. Let us set @ = Vg and ﬁ =Div H. Using a standard decomposition
ad
forveD (R )

(1.25) v =V (A7'div ¥) +Div (A" ewrl V),
we deduce
(Vg;, T) = —{g;,div T) = (¢, ],V (A \div T))
= <<pj7,?> - <¢j7,Div (A curl 7)>.

Hence,
(a,v) = lim (Vg;,?)
Jj—-+oo
= jEI—‘,I-loo <(pj7, 7> - jgglm <<pj7, Div (Aflcurl 7)>
- <_’,7> — lim (Div H;,¥)
j—+o0

= (7.7)-(5.7).
This completes the proof. O
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