
Novi Sad J. Math.
Vol. 36, No. 1, 2006, 115-140

DATABASE SCHEMA INTEGRATION PROCESS – A
METHODOLOGY AND ASPECTS OF ITS APPLYING

Ivan Luković1, Sonja Ristić2, Pavle Mogin3, Jelena Pavićević4

Abstract. The paper considers an original approach to the process
of integration of complex database schemas. Apart from the proposed
theoretical model of the approach, we also developed a CASE tool, named
IIS*Case (Integrated Information Systems*Case, R.6.0), which enables its
practical application.

The basis of the approach aimed at designing and integration of data-
base schemas and the ways of using IIS*Case are outlined. The main
functionalities for database schema integration embedded in a new ver-
sion of IIS*Case, which is developed in Java, are described.

IIS*Case supports conceptual modelling of a database schema, gener-
ating subschemas and their integration in a relational database schema in
3NF. It is based on a methodology of gradual integration of independently
designed subschemas into a database schema. The process of independent
subschema design may lead to collisions in expressing the real world con-
straints. IIS*Case uses specialized algorithms for checking the consistency
of constraints embedded in the database schema and subschemas. The
paper outlines the process of detecting collisions and possible designer’s
actions aimed at their resolving.

AMS Mathematics Subject Classification (2000):

Key words and phrases: Database Schema Design and Integration; Sub-
schema, Form Type, CASE tool, Formal consistency, IIS*Case

1. Introduction

The conceptual modelling of a database (db) schema is mainly based on the
Entity-Relationship (ER) model or Unified Modelling Language (UML) class
diagrams. Today, many software tools, which rely on these techniques, sup-
port: (i) conceptual design of db schemas, (ii) transformation of conceptual
db schemas into implementation (mainly relational) db schemas, and (iii) their
implementing under different DBMSs.

1Ph.D., Full Professor, University of Novi Sad, Faculty of Technical Sciences, Trg D.
Obradovića 6, 21000 Novi Sad, Serbia, e-mail: ivan@uns.ns.ac.yu, Office: +38121 4852445

2Ph.D., Assistant Professor, University of Novi Sad, Faculty of Technical Sciences, Trg D.
Obradovića 6, 21000 Novi Sad, Serbia, e-mail: sdristic@uns.ns.ac.yu

3Ph.D., Senior Lecturer, Victoria University of Wellington. P.O. Box 600, Wellington New
Zealand, e-mail: pmogin@mcs.vuw.ac.nz

4M.Sc. in Math., Internet Crna Gora d.o.o and University of Montenegro, Faculty of Sci-
ence, Bulevar Svetog Petra Cetinjskog 2, 81000 Podgorica, Montenegro, e-mail: jelenap@cg.yu



116 I. Luković, S. Ristić, P. Mogin, J. Pavićević

As it concerns the process of db schema design, generally, there are two
basic approaches: (a) the direct approach, and (b) the approach of a gradual
integration of external schemas [18].

In the direct approach, user requests are processed all at once and the whole
db schema is created directly. This approach may be appropriate in the cases
of designing small db schemas, but it is inappropriate in cases when a complex
db schema should be designed.

The second approach is used when the number and complexity of user re-
quests are beyond the designer’s power of perception. Design of a complex
db schema is based on a gradual integration of external schemas. An external
schema is a structure that, at the conceptual level, formally specifies user’s view
on a db schema. Each transaction program that supports a user request is based
on an external schema, which is associated to it. After being created, external
schemas are integrated into a conceptual db schema.

The use of the design methodologies based on the second approach and
techniques like ER modelling or UML, and also relational data model and the
appropriate CASE tools, requires an advanced designer’s knowledge and high
perception power. It is not an easy job, and sometimes with uncertain outcomes,
to find and educate the appropriate number of designers that possess these skills.
It may raise the risk of designing a db schema of poor quality.

Besides, these methods and techniques are often incomprehensible to end-
users. In practice, this may sometimes lead to problems in communication and
misunderstandings between designers and end-users. As a rule, misunderstand-
ings cause poor quality of the designed db schema because the ability to support
all the specified user requests will not be ensured. Usually, both designers and
end-users become aware of that too late, when the db schema is already imple-
mented.

Therefore, it is a challenge to provide an alternative approach and a CASE
tool, which may support an automated db schema design, so that it is based
on the concepts end-users are familiar with. A designer who understands and
follows the rules for creating design specifications imposed by such tool, would
be able to design db schemas quicker and easier, even if their complexity extends
beyond the limits of human perception.

IIS*Case (Integrated Information Systems*Case, R.6.0) is a tool that we
developed to support such an alternative approach. The main characteristics
of IIS*Case and the proposed approach have been already presented in [20, 22,
14]. We believe that the approach and IIS*Case may help in resolving or just
alleviating the aforementioned problems. The approach is tested on practical
examples and applied in some projects, in which the authors took part as project
team members.

This paper considers the approach to the process of integration of complex
db schemas that is supported by IIS*Case. It outlines the basis of the approach
methodology that is based on the so-called form type concept. The main func-
tionalities for db schema integration embedded in the new version of IIS*Case
(developed under Java environment) are presented. Despite that some origins,
ideas and similarities could be recognized in references of the other authors,



Database Schema Integration Process . . . 117

for example [3, 6, 8], by our current knowledge, the approach and CASE tool
presented here cannot be found in the same form elsewhere.

IIS*Case is designed to provide complete support for developing db schemas,
which are complex with regard to the number of concepts used, and to give an
intelligent support in the course of that process. IIS*Case supports:

• Conceptual modelling of external schemas,

• Automated design of the so-called relational database subschemas in the
3rd normal form,

• Automated integration of relational db schema from designed subschemas,
and

• Detecting and resolving the constraint collisions between a db schema and
a set of subschemas.

By integrating independently designed subschemas, IIS*Case produces the
first version of the db schema. The process of independent design of external
schemas may lead to collisions in expressing the real world constraints and
business rules. If the collisions exist, at least one subschema is formally not
consistent with the potential db schema. Programs made over an inconsistent
subschema do not guarantee safe database updates.

IIS*Case uses specialized algorithms to check the consistency of constraints
embedded in a db schema and the corresponding subschemas. Consistency
checking is performed for each constraint type separately. IIS*Case generates
two types of reports: reports on db schema design process and reports on de-
tected collisions. Resolving collisions may lead to producing a new version of
a db schema. The paper discusses the application of IIS*Case [19] in detecting
collisions, including the analysis of related reports and possible designer’s ac-
tions. Examples given in the paper illustrate how IIS*Case detects constraint
collisions.

Apart from Introduction, the paper consists of seven sections. In Section 2,
we discuss related work. In Section 3, a survey of our approach is given. In
Section 4, a concept of form type, subschema and db schema are introduced.
Section 5 is devoted to the constraint collisions. Section 6 gives an example of
applying IIS*Case in the process of detecting and resolving collisions between
designed subschemas. In Section 7 we give conclusions, while in Section 8 we
discuss further research and development.

2. Related Work

In our approach we assume that the form type concept may be used for con-
ceptual db schema design instead of ER data model. Thus, we concentrate on
creating procedures for generating relational db schema using the specifications
of form types, in order to widely utilize powerful mathematical formalisms rela-
tional data model is based on. Our main idea origins from the late 80’s. Some



118 I. Luković, S. Ristić, P. Mogin, J. Pavićević

of the references that reflect its developing and implementing are [9, 10, 13, 15,
16, 17, 18, 19, 23].

In [8], the authors present methods for the analysis and design of cooperative
object-oriented information systems. A model of information system is split into
several subsystems that can be handled more easily. Interrelationships existing
between such subsystems require that the development methods are applied co-
operatively. Cooperative tools, based on a powerful and user-friendly graphic
interface and working over a so-called Cooperative Data Dictionary (CDD), are
introduced. The concept of form in [8] is very similar to our concept of form
type. However, IIS*Case form type may be structured in a way to provide more
information about various types of relational db schema constraints. Besides, it
carries additional information about the embedded functionality of future trans-
action programs made over such a form type. A set of subschemas generated
by IIS*Case also contains information about database constraints and allow-
able database operations. Therefore, a subschema becomes a component of a
program specification. It contributes to the goal that such specifications may
be implemented in many different ways, under many, even technologically dif-
ferent, programming systems. It will enable implementing a code generator for
applying prototypes that are executable in different programming environments.

Since different users may create designs, conflicts may arise. The authors in
[8] distinguish structural and semantic incompatibilities between designs. Struc-
tural conflicts arise when the same attribute is included in different schemas
with different type and format definitions. Semantic conflicts are caused by
homonyms and synonyms. Detecting the conflicts is possible by a conflict man-
agement system in CDD and it takes place at the level of the designs created.
On the other hand, IIS*Case provides more powerful consistency control at the
level of generated relational subschemas that should be integrated into a unique
relational db schema. Apart from detecting homonyms, the process of consis-
tency checking identifies collisions for various constraint types. It is even able
to automatically resolve some of them.

In [24], the authors consider the problem of integrating heterogeneous legacy
databases. They introduce a formalism which provides a way for logical inte-
gration of heterogeneous databases, called EITH. It supports translation of db
schemas expressed in various data models (particularly ER) into a unified ab-
stract representation. The main idea of a unified representation of db schema
and application code appearing in [24] is also utilized in our methodological
approach, based on the concept of form type. However, unlike [24], our main
concern is the process of designing and integration of a unified db schema of an
information system.

3. A Survey of the Approach

Design of a complex db schema is based on a gradual integration of external
schemas. An external schema is a structure that, at the conceptual level, for-
mally specifies a user view on a db schema. The first step of a db schema design
process is designing separate external schema for each group of similar end users



Database Schema Integration Process . . . 119

business tasks. Each transaction program that supports a user request is based
on an external schema, which is associated to it. The modelling of the exter-
nal schemas is mainly based on the ER data model or UML class diagrams.
In contrast to some other approaches, in this approach that is supported by
IIS*Case, external schemas are expressed by sets of the form types. Form type
generalizes document types, i.e. screen forms that users utilize to communicate
with an information system. IIS*Case imposes strict structuring rules for form
types. Using this tool, a designer specifies screen forms of transaction programs
and, indirectly, creates an initial set of attributes and constraints. The main
motivation of introducing form type is using a concept that is more familiar to
end-users’ perception of information system, than it would be, for example, the
concepts of entity and relationship types in ER data model. On the other hand,
form type is a concept that is formal enough to precisely express all the rules
significant for structuring future db schema.

After being created, external schemas are integrated into a conceptual db
schema. Unfortunately, it is difficult and sometimes even impossible, to for-
malize the process of integration of the external schemas. The quality of the
resulting db schema highly depends on the designer’s knowledge and skillfulness.
In contrast to other data models, relational data model has much wider possibil-
ities to formalize and automate the process of integration of external schemas
in a single db schema. Database schema integration in IIS*Case is done at
the implementation level, where the db schema is expressed by relational data
model. A db schema is the result of the gradual integration of subschemas. A
subschema is obtained by expressing an external schema by concepts of the re-
lational data model. The integration of relational subschemas can be supported
by applying the synthesis algorithm [1, 18].

The process of independent design of external schemas may lead to colli-
sions in expressing the real world constraints and business rules. The integra-
tion process, which is supported by our approach and IIS*Case, is not a simple
unifying the generated subschemas. By integrating independently designed sub-
schemas, IIS*Case produces the first version of the db schema. This db schema
we call the potential database schema. If collisions are detected, at least one
subschema is formally inconsistent with the potential database schema. The
programs made over inconsistent subschemas do not guarantee safe database
updates. Two subschemas may be integrated only if they contain compatible
sets of constraints. Thus, the appropriate procedures for resolving possible col-
lisions, which arise as a result of independent modelling of subschemas, must be
applied. Db schema design is an iterative process, ending when all of the sub-
schemas are consistent with the potential db schema. The potential db schema
becomes a formal specification of an implementation db schema. The process
of detecting and resolving constraint collisions we call consolidation of the db
schema and subschemas.

Therefore, the db schema design of a complex information system in IIS*Case
is organized by decomposing it into application systems [19]. Application sys-
tem is a specification of one subsystem of the future information system and
initially contains a set of form types. During the automated process of design,



120 I. Luković, S. Ristić, P. Mogin, J. Pavićević

an implementation db schema is generated on the basis of the set of form types.
Therefore, the input specification of the application system is the set of form
types. The design process produces new specifications that become additional
components of the application system.

The set of all application systems of an information system is organized as
a tree structure. It is a project tree of the information system. Thus, each
application system may include one or more child application systems. All
child application systems of an application system are called its application
subsystems. Figure 1 depicts two different project trees in IIS*Case: ”Factory”
and ”Web Hosting”.

Figure 1: Project trees in IIS*Case

The db schema design supported by IIS*Case is an iterative process that
includes the following phases:

• Conceptual modelling of a set of form types (i.e. an external schema) for
each group of similar end-user business tasks,

• Generating a relational db schema of an application system with sub-
schemas that belong to its application subsystems, and



Database Schema Integration Process . . . 121

• Consolidation of the integrated schema and subschemas.

Figure 2 depicts phases of the db schema design process.

Figure 2: Phases of db schema design process

A designer is supported by IIS*Case to review or validate obtained results
after each step during the design. For example, the designer may review gen-
erated relation schemes and constraints, and check the compatibility with the
subschemas. If the designer is not satisfied with generated results, or there are
some incompatibilities, he or she can go back one or more steps, make changes
on form types and repeat the process.

4. Subschema Design

The input specification of the process of generating db schema of one appli-
cation system, supported by IIS*Case, is the union of sets of form types of a
chosen application system and all its application subsystems.



122 I. Luković, S. Ristić, P. Mogin, J. Pavićević

A form type is a named tree structure, whose nodes are called component
types. Each component type is identified by its name in the scope of the form
type, and has nonempty sets of attributes and keys, and a set of unique con-
straints that may be empty. Besides, to each component type must be associated
a set of allowed database operations. It must be a nonempty subset of the set
of ”standard” operations {retrieve, insert, update, delete}. Each attribute of a
component type is chosen from the set of all information system attributes. The
attributes are globally identified only by their names. IIS*Case imposes strict
rules for specifying attributes and their domains.

Example 1 Figure 4 shows the structure of a form type F, which generalizes
a screen form from Figure 3. The form type consists of one component type:
OP, which is graphically represented by rectangle. The set of component type
attributes are also shown. Attributes underlined with solid lines indicate com-
ponent type keys. A form for specifying form types in IIS*Case is presented in
Figure 5.

Operating Plans
Identification From Date Until Date

Figure 3: An example of a screen form

F

OP
IdOplan, From, Until

Figure 4: Form type

Figure 5: IIS*Case specification of a form type OP (Operating plan)



Database Schema Integration Process . . . 123

The process of generating db schema of one application system, supported
by IIS*Case, consists of the following five steps:

• Generating a set of relation schemes by the synthesis algorithm [1, 18, 19],

• Generating the closure graph [19],

• Selecting candidates for primary keys [18, 19],

• Propagating primary keys [18, 19], and

• Generating interrelation constraints [18, 19].

All the steps are executed in the specified order, on a designer’s demand.
Figure 6 represents the screen form of IIS*Case by means of which the designer
controls the process of db schema generation for a chosen application system.

Figure 6: IIS*Case form for controlling the process of generating a db schema

In this way, a db schema of a chosen application system is generated. If
the application system is at the same time a subsystem of another application
system, then the generated db schema becomes a subschema. Such subschema
has to be subjected to the integration process with other subschemas of the
same parent application system.

Formally, a subschema is a named pair Pk(Sk, Ik), where Pk is a subschema
name, Sk is a nonempty set of relation schemes, and Ik is a set of interrelation
constraints. The set of relation schemes of a subschema Pk is:

Sk =
{
Nk

i (Rk
i , Ck

i , Kp(Rk
i ), Role(Pk, Nk

i ), Mod(Pk, Nk
i ),

Sr(Pk, Nk
i ), LKk

i ) | i ∈ {1, . . . , n}} ,

where Nk
i is a scheme name, Rk

i is an attribute set, Ck
i is a specification of

relation constraints of the form (Kk
i , τ (Nk

i ), Uniq(Nk
i )), where Kk

i is a set of



124 I. Luković, S. Ristić, P. Mogin, J. Pavićević

keys, τ(Nk
i ) will be called tuple integrity constraint, and Uniq(Nk

i ) is a (pos-
sible empty) set of uniqueness constraints Unique(Nk

i , Xkm
i ), where Xkm

i is a
proper subset of Rk

i , which does not contain any key from Kk
i . A uniqueness

constraint Unique(Nk
i , Xkm

i ) means that each non null value of Xkm
i must be

unique in a relation over Nk
i . The tuple integrity constraint τ(Nk

i ) is a pair
τ(Nk

i ) = ({τ(Nk
i , A)|A ∈ Rk

i }, Con(Nk
i )), whose first component contains at-

tribute domain constraints τ(Nk
i , A) of each attribute A ∈ Rk

i . Each τ(Nk
i , A)

is of the form τ(Nk
i , A) = (Dom(Nk

i , A), Null(Nk
i , A)), where Dom(Nk

i , A) is
a domain constraint of attribute A ∈ Rk

i and Null(Nk
i , A) ∈ {⊥, T} is a null-

value constraint of A ∈ Rk
i . The second component of τ(Nk

i ), Con(Nk
i ) is a

logical expression defined over the attributes from Rk
i and their domain values.

It must be satisfied by each tuple from an instance over Nk
i , whose first compo-

nent contains attribute domain constraints of each attribute A ∈ Rk
i . Kp(Rk

i ) is
a primary key. The detailed explanation of the relation constraint specifications
is beyond the scope of the paper, and can be found in [15].

Role(Pk, Nk
i ) is a set of relation scheme roles and it defines the operations

that may be performed on an instance of the relation scheme Nk
i . Only these

operations may be built into a transaction program made using the concepts of
a subschema Pk. A set of relation scheme roles is a nonempty set, for which
Role(Pk, Nk

i ) ⊆ {r, i, m, d} holds, where: r stands for data reading, i.e. refer-
encing, i for insert, m for modification and d for data deleting.

A subschema Pk is intended for database querying only if (∀Nk
i ∈ Sk)

(Role(Pk, Nk
i ) = {r}) holds. Otherwise, it is intended for updating, and query-

ing.
The set Mod(Pk, Nk

i ) contains those attributes of the relation scheme Nk
i that

may be modified. If m ∈ Role(Pk, Nk
i ), then Mod(Pk, Nk

i ) must not equal ∅.
For each Nk

i ∈ Sk the db schema must have at least one relation scheme that
contains the attribute set of Nk

i . One of such relation schemes is pronounced
as the corresponding relation scheme forNk

i . Often, there is only one relation
scheme with the given property. However, if there are more, IIS*Case will
choose the one with the maximum set of attributes. Sr(Pk, Nk

i ) denotes the
corresponding relation scheme for Nk

i .
Some of the relation scheme keys may be pronounced as local keys. If X ∈

LKk
i then each value of X must be unique and not null in a relation over Nk

i ,
belonging to the instance of the subschema Pk. At the same time, in a relation
over N = Sr(Pk, Nk

i ), belonging to the db instance, a value of X may be null,
but each non-null value of X must be unique.

Named 7-tuple Nk
i (Rk

i , Ck
i ,Kp(Rk

i ), Role(Pk, Nk
i ), Mod(Pk, Nk

i ), Sr(Pk, Nk
i ),

LKk
i ) is the specification of the subschema relation scheme. In the following

text an abbreviated notation Nk
i (Rk

i , Kk
i ), where Rk

i is the attribute set and
Kk

i is the set of keys, will be used when it is appropriate.
The set of interrelation constraints Ik

i may contain various types of con-
straints such as: basic and extended referential integrity constraints, referential
integrity constraints based on non-trivial inclusion dependencies, inverse ref-
erential integrity constraints, basic and those based on non-trivial inclusion
dependencies, etc.



Database Schema Integration Process . . . 125

A subschema is a formal and abstract definition of data, constraints, and
database update activities that are needed to make a transaction program. A
transaction program issues query and update commands that are executed by a
DBMS against a database instance. That is the main reason why Role(Pk, Nk

i ),
Mod(Pk, Nk

i ), Sr(Pk, Nk
i ) and LKk

i are parts of the relation scheme specifica-
tion in the subschema.

On the other hand, the relation scheme specification in a db schema does not
contain Role(Pk, Nk

i ), Mod(Pk, Nk
i ), Sr(Pk, Nk

i ) and LKk
i . Thus, a relational

db schema is a pair (S, I), where S is a set of relation schemes and I is a set
of interrelation constraints. I may contain the same types of constraints as Ik

i

does. Each relation scheme from S is a named triple: N(R,C, Kp(R)), where
components R, C and Kp(R) have the same meaning as Rk

i , Ck
i and Kp(Rk

i ),
respectively. Analogously, the abbreviation N(R, K) will also be used whenever
it is appropriate.

5. Collisions of Constraints

The process of simultaneous and independent design of each subschema may
lead to the collisions in expressing the real system constraints and business rules,
in the different subschemas. If the collisions between the different subschemas
exist, then some of the subschemas are not consistent with the potential database
schema in a formal sense. Consequently, the programs made over the inconsis-
tent subschemas do not allow safe database updates, i.e. their using may lead
to logically incorrect database updates. Accordingly, such a potential schema
must not be considered as a resulting database schema, after the integration of
the set of subschemas. The problem of safe database updates is discussed in
[21]. In the following text, we give only an explanation of the notion of a safe
database update.

A subschema is a description of the data of a relatively small part of the
database. Each relation scheme of a subschema may be considered as a view on
a single database relation scheme. Subschema instances are not materialized.
A subschema instance may be obtained as a result of the applying appropriate
join, select and project operations on a database instance.

A transaction program issues queries and updates that are executed by a
database management system (DBMS). Let Tk be a transaction program based
on subschema concepts, and let T be a transaction program that is equivalent
to Tk, but based on database schema concepts. To consider database updates
initiated by Tk as safe updates, the subschema and the database schema should
satisfy the following two conditions at the abstraction level of instances.

1. A unique (hypothetical) subschema instance, named the corresponding
subschema instance, may be produced by applying the appropriate rela-
tional join, project and select operations on a database schema instance;
and

2. If an update of a hypothetical subschema instance issued by Tk would be
successful, then T must be committed by DBMS.



126 I. Luković, S. Ristić, P. Mogin, J. Pavićević

If a subschema is intended for queries only, it has to satisfy only Condition
1.

In the paper, the aforementioned conditions are called the principles of a
database update using subschema concept. A subschema that satisfies these
conditions is said to be consistent with the corresponding database schema. Let
P be the set of subschemas and let the potential database schema be the result
of the integration of subschemas from P. The potential database schema, which
is consistent with all of the subschemas from P, may be declared as a database
schema.

A subschema and a database schema are formally consistent if:

C1. The set of attributes of each subschema relation scheme is a subset of the
attribute set of a corresponding database relation scheme;

C2. Each set of attributes Xwith a unique value property (as defined in [15]
and [23]) in a subschema relation scheme has the same property in the
corresponding database relation scheme; and

C3. All the constraints that can be inferred from the database schema and
that are relevant for the subschema are embedded into it.

A constraint o is embedded into a subschema Pk if it can be inferred from
the subschema set of contraints Ok, which is denoted by the implication Ok ² o.

The first and the second condition are expressed in a formal way in [23].
Satisfying these two conditions is a prerequisite for the validation of the third
condition, which is expressed by the logical implication:

(1) Ok ² Or
Pk,

where Ok is the set of all constraints of the subschema Pk, and Or
Pk is the set

of all database schema constraints that are relevant for Pk.
A database schema constraint o should belong to the set of relevant con-

straints for the subschema Pk, if the operation that might violate o is allowed
in Pk. The operations that might violate some constraint are called critical
operations.

There are two kinds of relevant constraints:

• The includible constraints, denoted by Ini(O,Pk); and
• The extending constraints, denoted by Exi(O,Pk),

where O is the set of all constraints of the database schema.
Suppose a database schema constraint o is relevant for the subschema Pk

that satisfies conditions C1 and C2.
The constraint o belongs to Ini(O,Pk) if it can be expressed using the con-

cepts of subschema Pk.
A constraint o belongs to Exi(O,Pk) if and only if it is relevant for Pk, and

o /∈ Ini(O, Pk) holds.
A database constraint o is potentially inconsistent if it is relevant for at least

one subschema Pk and:



Database Schema Integration Process . . . 127

• it cannot be inferred from the set of subschema constraints Ok, i.e. ¬(Ok ²
o) holds, or

• it cannot be expressed using the concepts of the subschema Pk, i.e. o ∈
Exi(O,Pk) holds.

Described constraint inconsistencies are called constraint collisions. They
must be resolved since programs made over an inconsistent subschema do not
guarantee safe database updates [21].

For each potentially inconsistent constraint, the designer has to decide whether
it should be embedded into the db schema.

If the decision is positive, the potentially inconsistent constraint must be
embedded into all the subschemas for which it is relevant.

Otherwise, a potentially inconsistent constraint must not be embedded into
the set of database constraints. It must be emphasized that subschema con-
straints may be stronger, but not weaker than the corresponding database con-
straints. Consequently, some subschema constraints may not be embedded into
the db schema.

A subschema constraint is considered as locally valid if it is embedded into a
subschema, but it must not be embedded into the database schema. Subschema
constraints that are embedded into a database schema are considered as globally
valid.

Let us consider a potentially inconsistent constraint and the subschema into
which it has already been embedded as a relevant one. During the process of
collision resolving, a designer may decide between the following two alternatives:

• A potentially inconsistent constraint may be excluded from the subschema;
or

• It may be pronounced as a locally valid constraint of the subschema.

In the first step of the integration process, all constraints of the subschema
may be pronounced as globally valid. Some of them may be pronounced as
locally valid in the subsequent iterations.

There are three possible relationships between a subschema Pk and a poten-
tially inconsistent database constraint o.

• A potentially inconsistent constraint o is not relevant for Pk, and con-
sequently o does not induce inconsistency between Pk and the database
schema. The designer does not need to redesign the subschema Pk, but
probably needs to redesign another subschema.

• A potentially inconsistent constraint o is relevant for Pk, but it is not
embedded into the set of constraints of Pk. Pk is potentially inconsistent
and the designer may redesign it by embedding o into its set of constraints
or by excluding critical operations from Pk.

• A potentially inconsistent constraint o is relevant for Pk and it is embed-
ded into the set of constraints of Pk, but there is another subschema Pl,
for which o is also relevant, but not embedded into it. Pk has ”introduced”



128 I. Luković, S. Ristić, P. Mogin, J. Pavićević

o into the set of database constraints. Accordingly, Pk is potentially in-
consistent. The designer may redesign it by excluding o from its set of
constraints or by pronouncing o as a locally valid constraint for the sub-
schema Pk.

IIS*Case uses specialized algorithms to check the consistency of constraints
embedded in a database schema and the corresponding subschemas. Consis-
tency checking is performed for each constraint type separately. IIS*Case de-
tects collisions of: attribute sets, key and unique constraints, null-value con-
straints, and referential integrity constraints. It generates the reports on de-
tected collisions. Resolving collisions may lead to producing a new version of a
db schema. In the following section we are going to demonstrate the application
of IIS*Case in detecting collisions, together with an analysis of related reports
and possible designer’s actions.

6. Detecting and Resolving Collisions of Constraints
In IIS*Case

We use a case study based on an imaginary production system to illustrate
the application of IIS*Case. The example is purposely simplified, to present
clearly the process of detecting and resolving constraint collisions.

We identified four groups of similar user requests:

• Personnel – insert/update/delete details of staff members;
• Working Units (WU) – insert/update/delete details of working units and

update some details of staff members working in the particular WU;
• Work Orders (WO) – insert/update/delete the details of working orders

and display some details of staff member who launched WOs; and
• Operating Plans (OP) – insert/update/delete the details of operating

plans containing the work orders that should be accomplished during a
time period.

For each of these groups, a set of form types is designed. Figures 7–9 repre-
sents some of the form types, designed in IIS*Case. Figure 5 contains the form
type OP from the application system OPERATING PLANS.

For each group of user requests, IIS*Case maps form types into a relational
subschema by inferring attributes and constraints from form types and embed-
ding them into the relational subschema. It also generates the appropriate re-
ports of db schema design progress. In this way, we get four subschemas: PER-
SONNEL, WORKING UNIT, WORK ORDERS, and OPERATING PLANS.
In the following text, an abbreviation N(R, K, Uniq(N)) is used in their repre-
sentation.

PERSONNEL

• Staff{{IdWU, SurN, DatB, Addr, JMBG, Name}, {JMBG}, {}},
• WU{{WRoom, IdWU, NamWU, ManagWU}, {IdWU}, {}},



Database Schema Integration Process . . . 129

Figure 7: Form type Staff from the application system PERSONNEL

Figure 8: Form type WU from the application system WORKING UNIT

• WU[ManagWU] ⊆ Staff[JMBG],

• Staff[IdWU] ⊆ WU[IdWU].

WORKING UNIT

• WU{{WRoom, IdWU, NamWU, ManagWU}, {IdWU}, {NamWU}},
• Staff{{IdWU, SurN, DatB, Addr, JMBG, Name, School, IdS, Manag, Cel-

Tel},
{IdWU+IdS, JMBG}, {}},

• WU[ManagWU] ⊆ Staff[JMBG],

• Staff[IdWU] ⊆ WU[IdWU],

• Staff[Manag] ⊆ Staff[JMBG].

WORK ORDERS

• WO{{IdPr, DatWO, Amount, IdWO, JMBG}, {IdWO}, {}},



130 I. Luković, S. Ristić, P. Mogin, J. Pavićević

Figure 9: Form type WO from the application system WORKING ORDERS

• Staff{{SurN, JMBG, Name}, {JMBG}, {}},
• WO[JMBG] ⊆ Staff[JMBG].

OPERATING PLANS

• WO{{SurN, IdWO, Name, IdOplan}, {IdWO}, {}},
• OP{{From, Until, IdOplan}, {IdOplan}, {}},
• WO[IdOplan] ⊆ OP[IdOplan].

IIS*Case produces the first version of a db schema by integrating indepen-
dently designed subschemas. The order of integration is irrelevant. It is even
possible to integrate all the subschemas at once. We believe that the order of
integration, described in the paper, enables gradual and clear presentation of
the detection and resolving of constraint collisions.

IIS*Case uses specialized algorithms for checking the consistency of con-
straints embedded in the db schema and the subschemas. Figure 9 represents
the screen form of IIS*Case by means of the designer controls the process of
consistency checking for a chosen application system. The consistency check-
ing is performed for each constraint type separately. The order of consistency
checking with respect to the constraint type is relevant. Consistency of a set of
constraints of a given type may be a prerequisite for the consistency validation
of another constraint type. IIS*Case performs the consistency checking by im-
posing the following order: the attribute sets, the key and unique constraints,
the null value constraints, and finally the referential integrity constraints. The
red cross in Figure 9 indicates that the algorithm detected collisions during the
consistency checking of the attribute sets. The consistency checking for the rest
of the constraints can not be performed, while the detected collisions are not
resolved. The hyperlink on the form leads to the appropriate report, containing
the detail description of all collisions. The reports also contain the explanations,
how to interpret them. The structure of these reports for different constraint
types will be presented in the following subsections.



Database Schema Integration Process . . . 131

Figure 10: IIS*Case form for controlling the process of consistency checking

6.1. Collision of the Sets of Attributes

Let Pkbe a subschema integrated into a database schema, and let Nk be one
of relation schemes in Pk. The database schema must have at least one relation
schema that contains the attribute set of Nk. One of such relation schemes is
pronounced as the corresponding relation scheme for Nk. Often, there is only
one relation scheme with the given property. However, if there are more of them,
IIS*Case will choose the one with the maximum set of attributes.

Suppose we decided to integrate subschemas WORKORDERS and OPER-
ATING PLANS first. Using IIS*Case, we make a new application system
PLANING, with two child application systems containing the starting sub-
schemas. Here is the new database schema PLANING:

• OP{{From, Until, IdOplan}, {IdOplan}, {}}
• WO{{IdPr, DatWO, Amount, IdWO, JMBG, IdOPlan}, {IdWO}, {}}
• Staff{{SurN, JMBG, Name},{JMBG}, {}}
• WO[IdOplan] ⊆ OP[IdOplan]

• WO[JMBG] ⊆ Staff[JMBG].

After the integration, the analysis of collisions in the obtained db schema
is performed. In the first step, the attribute set collisions are detected. The
first part of the appropriate report is shown in Figure 10. Apart from this, the
Database Schema Collision Report has two other parts: Rule and Example.

The rule for the attribute set collision:
Each relation scheme from child application system must have a corresponding
relation scheme in the parent application system, such that its attribute set is
a subset of the attribute set of the corresponding scheme.



132 I. Luković, S. Ristić, P. Mogin, J. Pavićević

Figure 11: Report on attribute set collisions

Example:

Notation remarks:
N(R, K) denotes the relation scheme N with the set of attributes R and the
set of keys K
S1 is a child application system of an application system S.
S1 : N1({A,C}, {A})
S: N2({A,B}, {A}), N3({B,C}, {B})
Collision:
N1 from S1 has no corresponding relation scheme in S because {A,C} is
not a subset of {A,B} or {B, C}.

Relation scheme WO from the subschema OPERATING PLANS does not
have a corresponding relation scheme in the database schema PLANING. In or-
der to resolve the collision, the designer may replace attributes SurN and Name,
with the attribute JMBG. The replacement should be made on the form type
WO (Working order), which was used to generate the subschema OPERAT-
ING PLANS.

6.2. Collisoins of Key, Unique and Null-Value Constraints

Now, we integrate the subschemas WORKING UNIT and PERSONNEL,
and obtain a potential database schema ADMINISTRATION:

• WU{{WRoom, IdWU, NamWU, ManagWU}, {IdWU}, {NamWU}},
• Staff{{IdWU, SurN, DatB, Addr, JMBG, Name, School, IdS, Manag, Cel-

Tel}, {IdWU+IdS, JMBG}, {}},
• WU[ManagWU] ⊆ Staff[JMBG],



Database Schema Integration Process . . . 133

• Staff[IdWU] ⊆ WU[IdWU],

• Staff[Manag] ⊆ Staff[JMBG]

The analysis of attribute set collisions finishes successfully. However, colli-
sions of key constraints are detected. The first part of the appropriate report is
shown in Figure 11. The other two parts have the form:

The rule for the key collision:

Suppose there is a relation scheme N1 in the child application system S1, for
which N2 is the corresponding relation scheme in the parent application system
S. A key X from N2 must be included in the relation scheme N1 if some of the
attributes from X belong to the attribute set of N1 and insert or modify these
attributes, is allowed in N1.

Figure 12: Report on key collisions

Example:

Notation remarks:
- N(R, K) denotes the relation scheme N with the set of attributes R and the
set of keys K.
- Key(N,X) denotes that X is a key of N.
- Role(N) denotes a set of database operations that are allowed in a relation
instance over N.
- Mod(N) denotes a set of attributes from R that are modifiable in a relation
instance over N.
S1, S2 are the child application systems of the application system S.
S1: N1({A,B, C,E}, {A})

Role(N1) = {r, i, m}, // Allowed operations: read, insert and modify
Mod(N1) = {C} // Modifiable attribute: C

S2 : N2({A,B,C, D, E}, {A,CD})
S : N3({A,B, C, D,E}, {A, CD})



134 I. Luković, S. Ristić, P. Mogin, J. Pavićević

Collision:
N3 is the corresponding relation scheme for N1 and N2. The constraint
Key(N1, CD) is not included in N1 but it must be, because:

- The attribute C is included in both N1 and N3,
- Insert or modify of C is allowed in N1, and
- There is the constraint Key(N3, CD).

Accordingly, the attribute D must be included in N1.

We change the subschema PERSONNEL by adding the attribute IdS and
an additional key IdWU+IdS into the form type Staff. After these changes, the
analysis of key collisions finishes successfully.

In the next step, unique constraint collisions are detected. The first part of
the appropriate report is shown in Figure 12. Because the third part (example)
is analogous to the example for the key collision, it is omitted here. The second
part of the report is of the following form.

Figure 13: Report on unique constraint collisions

The rule for the unique constraint collision

Suppose there is a relation scheme N1 in a child application system S1,
for which N2 is the corresponding relation scheme in the parent application
system S. A unique constraint X from N2 must be included in the relation
scheme N1 if:
- some of the attributes from X belong to the attribute set of N1, insert/
modify of these attributes in N1 is allowed, and
- X is not a key of N1.

In this case, the collision is resolved by embedding a unique constraint for
the attribute NamWU in the form type WU from the application system PER-
SONNEL.

In the fourth step, we analyze null-value constraints. All detected collisions
of null-value constraints are automatically resolved. The appropriate report
contains the list of the changes made (Figure 14). Like the others collision



Database Schema Integration Process . . . 135

reports, it contains a rule and an example parts.

Figure 14: Report on NULL constraint collisions

The rule for the null value collision:
A not-null attribute A of a relation scheme N1 will be changed into a nullable
one, if there exists a relation scheme N2 in a child application system for wich
N1 is the corresponding scheme and A in N2 is nullable.

Example:

Notation remarks:
N(R, K, ) denotes the relation scheme with the set of attributes R and the set
of keys K
S1 is a child application system of the application system S.
S1 : N2({A,B}, {B}),

Null(N2, A) = True // Nulls for A in N2 are allowed
S : N1({A,B}, {B})

Null(N1, A) = False // Nulls for A in N1 are not allowed

Collision:
The attribute A must be nullable in N1 because it is nullable in N2 and N1

is the corresponding scheme for N2.

Automatic Correction Method:
A in N1 will be changed into a nullable attribute (Null(N1, A) = True).

6.3. Collisions of Referential Integrity Constraints

The final step is the consistency analysis of the referential integrity con-
straints. After detecting collisions, IIS*Case produces an appropriate report
(Figure 15). The rule and examples for this type of constraint are rather com-
plex.



136 I. Luković, S. Ristić, P. Mogin, J. Pavićević

Figure 15: Report on referential integrity collisions

The rule for the referential integrity collision:

Suppose there is a referential constraint RC : N1[X] ⊆ N2[Y ] in the applica-
tion system S and there is a relation scheme N3 in a child application system
S1, for which N1 or N2 is the corresponding relation scheme. RC must be
included in S1 if:
- N1 is the corresponding scheme for N3 and insert or modify operations on
X are allowed in N3 ; or
- N2 is the corresponding for N3 and delete is allowed in N3.

Example 1:

S1 : N1({A,B}, {A}),
Role(N1) = {r, i,m}
Mod(N1) = {B}

S : N2({A,B}, {A}), N3({B,C, D}, {B})
RC : N2[B] ⊆ N3[B]

Collision:
Referential constraint RC must be included in S1 because N2 is the corre-
sponding relation scheme for N1 and insert or modify of B is allowed in N1.
N3 is a missing relation scheme. It is not included in S1 but it should be.

Example 2:

S1 : N4({B, C}, {B})
Role(N4) = {r, d}

S: N2({A,B}, {A}), N3({B,C, D}, {B})
RC : N2[B] ⊆ N3[B]

Collision:
Referential constraint RC must be included in S1 because N3 is the corre-
sponding relation scheme for N4 and delete is allowed in N4.
N2 is a missing relation scheme. It is not included in S1 but it should be.



Database Schema Integration Process . . . 137

More examples of collisions may be found in [19].
In this case the collision is resolved by adding the attribute Manag in the

form type Staff of the application PERSONNEL. After this change, referential
integrity collision analysis is successfully finished.

Finally, the potential database schema can be pronounced as a db schema
ADMINISTRATION. We should emphasize that during the consolidation process
the designers are changing the structure of application systems and the sets of
form types (i.e. external schemas). Afterwards, IIS*Case generates subschemas
and integrates them into a db schema. Therefore, after the consolidation process
is successfully finished, we obtain the consistent set of subschemas and the con-
sistent sets of form types. IIS*Case consolidates not only the attribute sets and
the constraint sets, but also the sets of allowed operations and modifiable at-
tributes. Form types carry additional information about transaction programs
and their screen forms. Consequently, transaction programs generated over such
form types will be in accordance with the designed db schema.

7. Conclusion

The form type concept is semantically rich enough to enable specifying such
an initial set of constraints, which makes it possible to generate an implemen-
tation database schema automatically.

Design of external schemas, relying on high-level abstract data models, facil-
itates significantly identification of attribute and constraint sets. The presented
approach is based on the form type data model. From the designer’s point of
view, the form type data model offers a simple way for defining the initial set of
attributes and constraints. By the knowledge of the authors, this is an original
approach, which cannot be found in the same form in similar tools.

IIS*Case is developed on the basis of the results of the theoretical researches
presented in [9, 16, 19, 23]. The principles of a database update using subschema
concepts are introduced in [23] at the abstraction level of instances to express
the fact that a subschema and the corresponding database schema must satisfy
certain conditions to allow safe database updates using a program made in ac-
cordance with subschema concepts. The conditions of the formal subschema and
database schema consistency are introduced at the schema abstraction level, as
well. It is shown that formal consistency implies database update principles,
which leads to the conclusion that a db schema design by integrating inde-
pendently designed subschemas should adhere to formal consistency conditions.
Therefore, detecting and resolving subschema collisions is an important part of
IIS*Case. Our approach is specific because the collisions are not detected be-
tween different subschemas, but between a db schema and a set of subschemas,
since the integration process is not just a process of unifying the subschemas. It
is not rare case that the process of detecting and resolving collisions helps the
designer to recognize new database constraints, which have not been previously
identified.

The process of the detection of collisions is fully automated by IIS*Case for
the most important constraint types. It makes considerably easier the process



138 I. Luković, S. Ristić, P. Mogin, J. Pavićević

of collision resolving. Some of the collisions can even be resolved automatically,
whereas the most of them the designers must resolve themselves at the con-
ceptual level. Despite that, IIS*Case enables designers to work together and
cooperate so as to reach the most appropriate solutions.

A designer may devote his or her time and power to the analysis and mod-
elling business processes and rules. The database design of even complex in-
formation systems may be an easier task if it was based on this approach and
IIS*Case, because the process of modelling is raised to the level which is closer
to a user without an advanced knowledge of the database design.

8. Further Research and Development

At the time being, IIS*Case R.6.0 produces a formal specification of an
implementation database schema as its final result. Further research and devel-
opment efforts will be oriented towards extending functionality of IIS*Case to
support complete development of an information system. Accordingly, we are
planning or already working on:

• Implementation of a SQL generator,

• Visualisation of form types,

• Implementation of an application generator,

• Further improving integration and consolidation algorithms, etc.

SQL generator will enable generating SQL specifications of a database schema
for different DBMSs.

One of the goals is to provide visual design and specification of form types
by using a graphical editor, flexible enough for modelling user forms of varying
functionality.

Form types, apart from constraints that make a basis for the database
schema design, carry additional information about transaction programs and
their screen forms. This enables one to implement a code generator within
IIS*Case, which will be able to generate transaction programs. Such processes
already exist and are specified in [9], where the problem of formalizing and gen-
erating programming specifications and applications of an information system
based on XML technology, is discussed. These processes should be improved
and implemented in IIS*Case R.6.0.

References

[1] Beeri C., Bernstein P. A., Computational Problems Related to the Design of
Normal Form Relational Schemas. ACM Transactions on Database Systems Vol.
4 No. 1 March 1979, pp. 30-59.

[2] Casanova M. A., Fagin R., Papadimitriou C. H., Inclusion Dependencies and
Their Interaction with Functional Dependencies. Journal of Computer and Sys-
tem Sciences, Vol. 28 No. 1 Feb. 1984, pp. 29 - 59.



Database Schema Integration Process . . . 139

[3] Choobinch J., Mannio V. M., Nunamaker F. J., Konsynski R. B., An Expert
Database Design System Based on Analysis of Forms. IEEE Transactions on
Software Engineering, Vol. 14, No. 2 Feb. 1988, pp. 242-253.

[4] Date C. J., Composite Foreign Keys and Nulls. In C.J. Date and H. Darwen
Relational Database Writings 1989-1991, Addison-Wesley Publishing Company,
Reading, Massachusetts, 1992.

[5] Date C. J., Darwen H., Foundation for Object/Relational Databases: The Third
Manifesto. Addison-Wesley Professional, 1998.

[6] Diet J., Lochovsky F., Interactive Specification and Integration of User Views
Using Forms. Proceedings of the Eight International Conference on Entity-
Relationship Approach Toronto, Canada 18-20. October 1989, pp. 171-185.

[7] Diedrich I., Milton J., New Methods and Fast Algorithms for Database Normal-
ization. ACM Transactions on Database Systems Vol. 13 No. 3 Sept. 1988, pp.
339-365.

[8] Gálvez S., Guevara A., Caro J. L., Gómez I., Aguayo A., Collaboration Tech-
niques to Design a Database. Universidad de Málaga, Spain, 2004.

[9] Govedarica M., An Automated Development of Information System Application
Prototypes. PhD Thesis, University of Novi Sad, Faculty of Technical Sciences,
Novi Sad, Serbia and Montenegro, 2002.

[10] Govedarica M., Lukovic I., Mogin P., Generating XML Based Specifications of
Information Systems. Computer Science and Information Systems (ComSIS),
Belgrade, Serbia and Montenegro, Vol. 1, No. 1 2004, pp. 117-140.

[11] Honeyman P., Scoire, E., New Characterization of Independence, Proceedings of
ACM SIGMOD. San Jose, California, USA, 1983, pp. 92-96.

[12] Kambayashi Y., Tanaka K., Yajima S., Problems of Relational Database Design.
In: Data Base Design Techniques I, Edited by Yao S, B, et al., Lecture Notes
in Computer Science, Springer Verlag, Berlin, 1982, pp. 172-218.

[13] Luković I., Govedarica M., Mogin P., Ristić S., The Structure of A Subschema
and Its XML Specification. Journal of Information and Organizational Sciences
(JIOS), Varazdin, Croatia, Vol. 26, No. 1-2, 2002, pp. 69-85.

[14] Luković I, Mogin P, Pavićević J, Ristić S, An Automated Design and Integration
of Database Schemas. Conference devoted to 25th anniversary of Faculty of
Science at University of Montenegro Contemporary Mathematics, Physics and
Biology, September 8-9, 2005, Podgorica, Serbia and Montenegro, Invited paper

[15] Luković I., Ristić S., Mogin P., On The Formal Specification of Database Schema
Constraints. 1stSerbian-Hungarian Joint Symposium on Intelligent System SISY
2003, September 19-20, 2003, Subotica, Serbia and Montenegro, Proceedings, pp.
125-136.

[16] Luković I., Ristić S., Mogin P., A Methodology of a Database Schema Design
Using the Subschemas. IEEE International Conference on Computational Cy-
bernetics, Siofok, Hungary, August 29-31, 2003, Proceedings in CD ROM.

[17] Mogin P., Luković I., A Prototyping CASE Tool. XXVIII International Sympo-
sium on Automotive Technology and Automation, Stuttgart, Germany, Septem-
ber 18-22, 1995, Proceedings for the Dedicated Conference on Rapid Prototyping
in the Automotive Industries, pp. 261-268.



140 I. Luković, S. Ristić, P. Mogin, J. Pavićević

[18] Mogin P., Luković I., Govedarica M., Database Design Principles, 2nd Edition.
University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia and
Montenegro, 2004.

[19] Pavićević J., Development of A CASE Tool for Automated Design and Integration
of Database Schemas. M.Sc. Dissertation, University of Montenegro, Faculty of
Science, Podgorica, Serbia and Montenegro, 2005.

[20] Pavićević J., Luković I., Mogin P., Ristić S., IIS*Case – A tool For Automated
Design and Integration of Database Schemas. 13th Scientific Conference on In-
dustrial Systems IS’05, Herceg Novi, September 07 - 09, 2005, Proceedings pp.
321-330.

[21] Ristić S., Luković I., Mogin P., Specifying Database Updates Using a Subschema.
7th IEEE International Conference on Intelligent Engineering Systems INES 2003,
Assiut-Luxor, Egypt, 4-6 March, 2003, Proceedings Vol. 1, pp. 203-212, ISBN
977-246-048-3.

[22] Ristić S., Luković I., Mogin P., Pavićević J., Integrating a Database Schema Using
IIS*Case Tool. 13th Scientific Conference on Industrial Systems IS’05, Herceg
Novi, September 07 - 09, 2005, Proceedings pp. 331-340.

[23] Ristić S., Research of Subschema Consolidation Problem. PhD Thesis, University
of Novi Sad, Faculty of Economics, Subotica, Serbia and Montenegro, 2003.

[24] Schmalz M. S., Hammer J., Wu M., Topsakal O., EITH – A Unifying Repre-
sentation for Database Schema and Application Code in Enterprise Knowledge
Extraction. Proceedings of the 22ndInternational Conference on Conceptual Mod-
eling, Chicago, IL, November 2003.

Received by the editors February 21, 2006


