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FIXED POINT THEOREMS IN D-METRIC SPACE
THROUGH SEMI-COMPATIBILITY

Bijendra Singh1, Shobha Jain2, Shishir Jain3

Abstract. The objective of this paper is to introduce the notion of
semi-compatible maps in D-metric spaces and deduce fixed point theorems
through semi-compatibility using orbital concept, which improve extend
and generalize the results of Ume and Kim [8], Rhoades [7] and Dhage et.
al [6]. All the results of this paper are new.
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1. Introduction

Generalizing the notion of metric space, Dhage [3] introduced D-metric space
and proved the existence of a unique fixed point of a self-map satisfying a
contractive condition. Rhoades [7] generalized Dhage’s contractive condition by
increasing the number of factors and proved the existence of a unique fixed point
of a self-map in a D-metric space. Recently, Ume and Kim [8] have introduced
the notion of D-compatible maps in a D-metric space and proved the existence
of a unique common fixed point of a pair of D-compatible self maps satisfying
the contraction of [7].

In [2] Cho, Sharma and Sahu introduced the concept of semi-compatible
maps in d-topological spaces. They define a pair of self-maps (S, T) to be semi-
compatible if two conditions (i)Sy = Ty implies STy = TSy (ii) {Sxn} →
x, {Txn} → x implies STxn → Tx, as n → ∞ , hold. However, (ii) implies
(i), taking xn = y and x = Ty = Sy. So, in D-metric space, we define the
semi-compatibility of the pair (S, T) by condition (ii) only.

The second section of this paper formulates the definition of a semi-compa-
tible pair of self-maps in a D-metric space and discusses its relationship with a
D-compatible pair of self-maps with an example. While doing so, we observe
that, if T is continuous, then (S, T) is D-compatible implies (S, T) is semi-
compatible. However, the semi-compatibility of the pair of (S, T) does not
imply its D-compatibility, even if T is continuous (example 2.1). Hence it is
necessary to discuss the existence of common fixed points of semi-compatible
pair of self-maps in fixed point theory.
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In the light of above observations we establish two fixed point theorems in
the third section, which generalize, extend and improve the results of [6], [7]
and [8]. Moreover, these theorems restrict the domain of x, y and also that of
boundedness and completeness considerably. Further, corollary 3.4 of our main
result improves and corrects the result of Dhage et al. [6].

2. Preliminaries

Throughout this paper we use the symbols and basic definitions of Dhage
[3]. In what follows, (X, D) will denote a D-metric space and N stands for the
set of all natural numbers.

Definition 2.1. Let X be a non-empty set and D : X×X×X → R+(the set
of non-negative real numbers). The pair (X, D) is said to be a D-metric space
if,

(D-1) D(x, y, z) = 0 if and only if x = y = z;
(D-2) D(x, y, z) = D(y, x, z) = D(z, y, x) = · · · ;
(D-3) D(x, y, z) ≤ D(x, y, a) + D(x, a, z) + D(a, y, z),∀x, y, z, a ∈ X.

Definition 2.2. Let (X, D) be a D-metric space and S be a non-empty subset
of X. We define the diameter of S as

δd(S) = Sup{D(x, y, z) : x, y, z ∈ S}.

Definition 2.3. ([9]) Let T be a multi-valued map on D-metric space (X, D).
Let x0 ∈ X. A sequence {xn} in X is said to be an orbit of T at x0 denoted
by O(T, x0) if xn−1 ∈ Tn−1(x0), i. e. xn ∈ Txn−1,∀n ∈ N. An orbit O(T, x0)
is said to be bounded if its diameter is finite. It is said to be complete if every
Cauchy sequence in it converges to some point of X.

Definition 2.4. ([3]) A sequence {xn} in a D-metric space is said to converge
to a point x ∈ X if for ε > 0, there exists a positive integer n0 such that
D(xn, xm, x) < ε, ∀n,m > n0.

Definition 2.5. ([3]) A sequence {xn} is said to be a D-Cauchy sequence in X
if for each ε > 0, there exists a positive integer n0 such that D(xn, xn+p, xn+p+t)
< ε, ∀n > n0, ∀p, t ∈ N.

Definition 2.6. ([8]) A pair (S, T ) of self-maps on a D-metric space (X, D) is
said to be D-compatible if for all x, y and z ∈ X and for some α ∈ (0,∞)

(2.1) D(STx, STy, TSz) ≤ αD(Tx, Ty, Sz)

Definition 2.7. A pair (S, T ) of self-mappings of a D-metric space is said to
be semi-compatible if limn→∞STxn = Tx, whenever {xn} is a sequence in X
such that limn→∞Txn = limn→∞Sxn = x. In other words, a pair of self-
maps (S, T) is said to be semi-compatible if limn→∞D(Sxn, Sxn+p, x) = 0 and
limn→∞D(Txn, Txn+p, x) = 0 imply limn→∞D(STxn, STxn+p, Tx) = 0.
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Proposition 2.1. Let (S, T ) be a D-compatible pair of self maps on a D-metric
space (X, D) and T be continuous. Then the pair (S, T ) is semi-compatible.

Proof. Let {Sxn} → u, {Txn} → u. To show STxn → Tu. As T is continuous,
TSxn → Tu. As (S, T ) is D-compatible, for some α ∈ (0,∞)

D(STx, STy, TSz) ≤ αD(Tx, Ty, Sz), ∀x, y, z ∈ X.

Putting x = xn, y = xn+p and z = xn in above condition, we get

D(STxn, STxn+p, TSxn) ≤ αD(Txn, Txn+p, Sxn),

which implies limn→∞D(STxn, STxn+p, Tu) = 0. Therefore limn→∞STxn =
Tu. Hence (S, T ) is semi-compatible. 2

Remark 2.1. In the following example we observe that,
(i) The pair of self-maps (S, T ) is semi-compatible yet it is not D-compatible

even though T is continuous.
(ii) The pair (S, T ) is semi-compatible but (T, S) is not semi-compatible.
(iii) ST = TS, still (T, S) is not semi-compatible.

Example 2.1. Let (X,D) be a D-metric space with X = R+, and let D :
X ×X ×X → R+ be defined as

D(x, y, z) = Max{|x− y| , |y − z| , |z − x|}, ∀x, y, z ∈ X.

Define self-maps S and T on X as follows: Sx = 0, if x > 0, and S(0) = 1,
Tx = x, ∀x ∈ R+, and xn = 1

n . Then Sxn, Txn → 0 as n →∞.
(i) Now,
STxn = Sxn → 0 = T (0) i.e. STxn → T (0).
Also as T = I, for any sequence {xn} such that {Sxn} → u and {Txn} → u,

as n →∞, {STxn} = {Sxn} → u(= Tu) i. e. STxn → Tu. Therefore (S, T ) is
semi-compatible.

Further as T = I, T is continuous.
Taking x = 0, y = 0 and z = 1 in (2.1) we get,
D(1, 1, 0) ≤ αD(0, 0, 0), ∀α ∈ (0,∞), which is not true. Hence (S, T ) is not

D-compatible.
(ii) Now, Sxn, Txn → 0 as n → ∞, TSxn = T (0) → 0 6= S(0). Therefore

(T, S) is not semi-compatible. By (i), STxn → T (0). Therefore (S, T ) is semi-
compatible.

(iii) Also, we note that as T = I, ST = TS. Thus (S, T ) is commuting yet
(T, S) is not semi-compatible.

Proposition 2.2. Let S and T be two self-maps of a D-metric space (X,D)
such that S(X) ⊆ T (X). For x0 ∈ X define sequences {xn} and {yn} in X by
Sxn−1 = Txn = yn, ∀n ∈ N. Then

• O(T−1S, x0) = {x0, x1, x2, · · · , xn, · · · },
• O(ST−1, Sx0) = {y1, y2, y3, , · · · , yn, · · · }.
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Proof. As Sx0 = Tx1 implies x1 ∈ T−1Sx0 and Sx1 = Tx2 gives x2 ∈
T−1Sx1 = (T−1S)2x0. Similarly, Sxn−1 = Txn gives xn ∈ T−1Sxn−1 =
(T−1S)nx0. Again,

y1 = Sx0, y2 = Sx1 ∈ S(T−1Sx0) = (ST−1)Sx0,
y3 = Sx2 ∈ S(T−1ST−1Sx0) = (ST−1)2Sx0.

· · ·
Similarly, yn ∈ (ST−1)n−1Sx0. 2

In [5] Dhage introduces the following family of functions:
Let Φ denote the class of all functions φ : R+ → R+ satisfying:

• φ is continuous;
• φ is non-decreasing;
• φ(t) < t, for t > 0;
• ∑n=1

∞ φn(t) < ∞, ∀t ∈ R+.
Before proving the main results we need the following lemmas :

Lemma 2.1. ([5]) Let {xn} ⊆ X be bounded with D-bound M satisfying

D(xn, xn+1, xm) ≤ φn(M), ∀ m > n + 1,

where φ ∈ Φ. Then {xn} is a D-Cauchy sequence in X.

Lemma 2.2. Let S and T be two self-maps of a D-metric space (X, D) such
that:

(I) S(X) ⊆ T (X);
(II) Some orbit {yn} = O(ST−1, Sx0) is bounded;
(III) For all x, y, z ∈ O(T−1S, x0) and for some φ ∈ Φ

D(Sx, Sy, Sz) ≤ φMax

{
D(Tx, Ty, Tz), D(Sx, Tx, Tz), D(Sy, Ty, Tz),
D(Sx, Ty, Tz), D(Sy, Tx, Tz)

}
.

Then {yn} is a D-Cauchy sequence in O(ST−1, Sx0).

Proof. Let x0 ∈ X. As S(X) ⊆ T (X), we can define sequences {xn} and
{yn} in X by Sxn−1 = Txn = yn,∀n ∈ N. Then

D(yn, yn+1, yn+p) = D(Sxn−1, Sxn, Sxn+p−1),

≤ φMax

{
D(yn, yn−1, yn+p−1), D(yn−1, yn, yn+p−1), D(yn+1, yn, yn+p−1),
D(yn, yn, yn+p−1), D(yn−1, yn+1, yn+p−1)

}

i.e.
(2.2)

D(yn, yn+1, yn+p) ≤ φMax

{
D(yn, yn−1, yn+p−1), D(yn+1, yn, yn+p−1),
D(yn, yn, yn+p−1), D(yn−1, yn+1, yn+p−1)

}

Again
(2.3)

D(yn−1, yn, yn+p−1) ≤ φMax

{
D(yn−2, yn−1, yn+p−2), D(yn−1, yn, yn+p−2),
D(yn−1, yn−1, yn+p−2), D(yn, yn−2, yn+p−2)

}
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(2.4)

D(yn+1, yn, yn+p−1) ≤ φMax





D(yn, yn−1, yn+p−2), D(yn+1, yn, yn+p−2),
D(yn, yn−1, yn+p−2), D(yn−1, yn+1, yn+p−2),
D(yn, yn, yn+p−2)





(2.5)
D(yn, yn, yn+p−1) ≤ φMax {D(yn−1, yn−1, yn+p−2), D(yn, yn−1, yn+p−2)}

(2.6)

D(yn−1, yn+1, yn+p−1) ≤ φMax





D(yn−2, yn, yn+p−2), D(yn−1, yn−2, yn+p−2),
D(yn+1, yn, yn+p−2), D(yn−1, yn, yn+p−2),
D(yn−2, yn+1, yn+p−2)





Substituting (2.3)-(2.6) into (2.2) we get,

D(yn, yn+1, yn+p) ≤ φ2Maxa,b,c{D(ya, yb, yc)},

for all a, b, c such that n− 2 ≤ a ≤ n, n− 1 ≤ b ≤ n + 1, c = n + p− 1.
Continuing this process it follows that

(2.7) D(yn, yn+1, yn+p) ≤ φnMaxa,b,c{D(ya, yb, yc)},

for all a, b, c such that 0 ≤ a ≤ n, 1 ≤ b ≤ n + 1, c = p. Let M be the bound of
O(ST−1, Sx0). Then it follows from (2.7) that

D(yn, yn+1, yn+p) ≤ φn(M).

Therefore, by Lemma 2.1, {yn} is a D-Cauchy sequence in O(ST−1, Sx0). 2

3. Main results

Theorem 3.1. Let S and T be self-maps of a D-metric space (X,D) such that
(3.11) S(X) ⊆ T (X);
(3.12) The pair (S, T ) is semi-compatible and T is continuous;
(3.13) For some x0 ∈ X, some orbit {yn} = O(ST−1, Sx0) is bounded and

complete;
(3.14) For some φ ∈ Φ and for all x, y ∈ O(T−1S, x0) ∪ O(ST−1, Sx0) and

for all z ∈ X

D(Sx, Sy, Sz) ≤ φMax

{
D(Tx, Ty, Tz), D(Sx, Tx, Tz), D(Sy, Ty, Tz),
D(Sx, Ty, Tz), D(Sy, Tx, Tz)

}
.

Then S and T have a unique common fixed point in X.

Proof. For x0 ∈ X, construct sequences {xn} and {yn} in X as Sxn−1 = Txn =
yn, ∀n ∈ N. Then by Lemma 2.2, {yn} is a D-Cauchy sequence in O(ST−1, Sx0),
which is complete. Therefore,

(3.1) yn(= Txn = Sxn−1) → u ∈ X
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As T is continuous and (S, T ) is semi-compatible we get,

(3.2) T 2xn → Tu, STxn → Tu

Step 1: Putting x = Txn, y = Txn and z = u in (3.14) we get

D(STxn, STxn, Su) ≤ φMax





D(TTxn, TTxn, Tu), D(STxn, TTxn, Tu)
D(STxn, TTxn, Tu), D(STxn, TTxn, Tu),
D(STxn, TTxn, Tu)



 .

Taking limit as n →∞ , using (3.2) we get,

D(Tu, Tu, Su) = 0,

which gives

(3.3) Tu = Su.

Step 2: Putting x = xn, y = xn and z = u in (3.14) we get,

D(Sxn, Sxn, Su) ≤ φMax





D(Txn, Txn, Tu), D(Sxn, Txn, Tu),
D(Sxn, Txn, Tu), D(Sxn, Txn, Tu),
D(Sxn, Txn, Tu)



 .

Letting n →∞ using (3.1) and (3.3) we get,

D(u, u, Su) ≤ φ{D(u, u, Su)} < D(u, u, Su), if D(u, u, Su) > 0,

which is a contradiction. Therefore D(u, u, Su) = 0, which gives u = Su. Hence
u = Su = Tu i.e. u is a common fixed point of S and T .

Step 3: (Uniqueness) Let w be another common fixed point of S and T , then
w = Sw = Tw. Putting x = xn, y = xn and z = w in (3.14) we get,

D(Sxn, Sxn, Sw) ≤ φMax





D(Txn, Txn, Tw), D(Sxn, Txn, Tw),
D(Sxn, Txn, Tw), D(Sxn, Txn, Tw),
D(Sxn, Txn, Tw)



 .

Taking limit as n →∞ we get,

D(u, u, w) ≤ φ{D(u, u, w)} < D(u, u, w), if D(u, u, w) > 0,

which is a contradiction. Therefore D(u, u, w) = 0, which gives u = w. Hence u
is the unique common fixed point of S and T. 2

Remark 3.1. By (i) of Remark (2.1) it follows that there are semi-compatible
maps (S, T ) which are not D-compatible even if T is continuous. The above the-
orem investigates the common fixed points of such semi-compatible maps (S, T )
in D-metric spaces.
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In [8], Ume and Kim have proved the following result using contraction of
Rhoades [7] :

Corollary 3.1. ([8]) Let X be a complete D-metric space and S and T be self
maps on X satisfying :

• δd(OS(Tx0)) < ∞;
• S(X) ⊆ T (X);
• The pair (S, T ) is D-compatible and T is continuous;
• For some q ∈ [0, 1) and for all x, y, z ∈ X,

D(Sx, Sy, Sz) ≤ qMax

{
D(Tx, Ty, Tz), D(Sx, Tx, Tz), D(Sy, Ty, Tz),
D(Sx, Ty, Tz), D(Sy, Tx, Tz)

}
.

Then S and T have a unique common fixed point.

The following corollary is a generalization of it.

Corollary 3.2. Let S and T be self-maps of a D-metric space (X,D) satisfying
(3.11), (3.13), (3.14) and
(3.31) The pair (S, T ) is D-compatible and T is continuous.

Then S and T have a unique common fixed point in X.

Proof. Result follows by using Theorem 3.1 and proposition 2.1. 2

Remark 3.2. The above result of [8] is a particular case of Corollary 3.2.

The following theorem is a counterpart of Theorem 3.1, in which the con-
tinuity of S is assumed instead of that of T. This also improves the result of
[8].

Theorem 3.2. Let S and T be self-maps of a D-metric space (X,D) satisfying
(3.11), (3.13) and

(3.51) The pair (S, T ) is semi-compatible and S is continuous.
(3.52) For some φ ∈ Φ, for all x, y ∈ O(T−1S, x0), z ∈ X,

D(Sx, Sy, Sz) ≤ φMax

{
D(Tx, Ty, Tz), D(Sx, Tx, Tz), D(Sy, Ty, Tz),
D(Sx, Ty, Tz), D(Sy, Tx, Tz)

}
.

Then the self-maps S and T have a unique common fixed point.

Proof. For x0 ∈ X, construct sequences {xn} and {yn} in X as in proof of
theorem 3.1.Therefore (3.1) holds. As S is continuous we get STxn → Su, and
as(S, T ) is semi-compatible we get

STxn → Tu.

As the limit of a sequence is unique we get Su = Tu and the rest of the proof
follows from steps 2 and 3 of Theorem 3.1. 2
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Remark 3.3. The above theorem is an improvement of Theorem 3.1 and also
of the result of [8]. It (in view of 3.51) also underlines the exclusive importance
of semi-compatibility in fixed point theory.

In [7] Rhoades has proved the following:
Theorem 1 [7]: Let X be a complete and bounded D-metric space and let S be
a self-map of X satisfying

D(Sx, Sy, Sz) ≤ qMax

{
D(x, y, z), D(Sx, x, z), D(Sy, y, z),
D(Sx, y, z), D(x, Sy, z)

}

for all x, y, z ∈ X and for 0 ≤ q < 1. Then S has a unique fixed point p in X
and S is continuous at p .

The following corollary improves and generalizes it by restricting the domains
of boundedness, completeness and that of variables x and y to same orbit only.

Corollary 3.3. Let S be a self map of a D-metric spaces (X, D) satisfying
(3.71) For x0 ∈ X, an orbit O(S, x0) is bounded and complete;
(3.72) For some 0 ≤ q < 1, for all x, y ∈ O(S, x0) and z ∈ X,

D(Sx, Sy, Sz) ≤ qMax

{
D(x, y, z), D(Sx, x, z), D(Sy, y, z)
D(Sx, y, z), D(x, Sy, z)

}
.

Then S has a unique fixed point.

Proof. Result follows from Theorem 3.1 by taking T = I and φ = q(< 1)
then (3.11) and (3.12) are trivially satisfied and in this case O(T−1S, x0) ∪
O(ST−1, Sx0) = O(S, x0). 2

In [6] Dhage et. al prove the following:

Theorem 3.3. ([6]) Let (X, D) be a D-metric space and S be a self map of
X. Suppose that there exists x0 ∈ X such that O(S, x0) is D-bounded and S is
orbitally complete. Suppose also that S satisfies

D(Sx, Sy, Sz) ≤ λMax{D(x, y, z), D(x, Sx, z)}, ∀x, y, z ∈ O(S, x0),

for some 0 ≤ λ < 1. Then S has a unique fixed point in X.

The following corollary improves, corrects and generalizes this result.

Corollary 3.4. Let X be a D-metric space and S be a self-map on X satisfying
(3.61) and

(3.81) D(Sx, Sy, Sz) ≤ λMax{D(x, y, z), D(x, Sx, z)},
∀x, y ∈ O(S, x0), ∀z ∈ X. Then S has a unique fixed point.

Proof. Result follows from Corollary 3.3 by taking the maximum of first two
factors in place of five factors of (3.72). 2
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Remark 3.4. The above corollary improves the result of [6] in which x, y and z
are taken in O(S, x0) in the contractive condition whereas in the above corollary
the domain of x, y is just the orbit O(S, x0), not its closure. Also, the domain
of z is the whole space X not O(S, x0), for otherwise the uniqueness of the fixed
point does not follow. This is the correction required in [6].
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