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THE HOLOMORPHIC BISECTIONAL CURVATURE
OF THE COMPLEX FINSLER SPACES

Nicoleta Aldea!l

Abstract. The notion of holomorphic bisectional curvature for a com-
plex Finsler space (M, F) is defined with respect to the Chern complex
linear connection on the pull-back tangent bundle. By means of holomor-
phic curvature and holomorphic flag curvature of a complex Finsler space,
a special approach is emloyed to obtain the characterizations of the holo-
morphic bisectional curvature. For the class of generalized Einstein com-
plex Finsler spaces some results concerning the holomorphic bisectional
curvature are also given.
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1. Introduction

In complex Finsler geometry, it is systematically used the concept of holo-
morphic curvature in direction 7, briefly holomorphic curvature, [1]. In a previ-
ous paper, [3], we started to study the holomorphic curvature of complex Finsler
spaces with respect to the Chern complex linear connection, briefly Chern (c.l.c),
on the holomorphic pull-back tangent bundle 7*(7"M). Our goal was to deter-
mine the conditions in which a complex Finsler metric has constant holomorphic
curvature. We solved this problem for a special class of complex Finsler spaces,
called by us generalized Einstein, briefly (¢.E.). In another paper [4], we gave a
generalization of the holomorphic curvature of the complex Finsler spaces which
we called holomorphic flag curvature. But, the holomorphic flag curvature is
not the corespondent of the holomorphic bisectional curvature from Hermitian
geometry in complex Finsler geometry.

Our objective is to give a characterization of the holomorphic bisectional
curvature of a complex Finsler space. The second section of the present pa-
per is devoted to the notion of holomorphic bisectional curvature for such a
space. We determine the link between the holomorphic bisectional curvature
and two kinds of curvature: holomorphic curvature and holomorphic flag cur-
vature (Proposition 2.3, 2.5). We prove a necessarily and sufficient condition
that a complex Finsler space has constant holomorphic bisectional curvature,
(Proposition 2.6). In the last section, a special approach is employed to del with
the holomorphic bisectional curvature of the (g.E.) complex Finsler spaces.
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We establish some inequalities between the three kinds of curvature (Propo-
sition 3.2, Corollary 3.3). Moreover, we show that the holomorphic bisectional
curvature of the Kobayashi metric is < —2.

This section is concerned with recalling the basic notions which are needed;
for more information see [1, 8, 3, 4].

Let M be a complex manifold, dimg M = n, and 7'M the holomorphic
tangent bundle in which as a complex manifold the local coordinates will be
denoted by (2*,7%). The complexified tangent bundle of 7'M is decomposed in
Te(T'M)=T'"(T'M) e T"(T'M).

Considering the restriction of the projection to T'M = T’ M\ {0}, for pulling
the holomorphic tangent bundle 7'M back, we obtain a holomorphic tangent
bundle 7’ : 7*(T'M) — T'M, called the pull-back tangent bundle over the slit

T'M. We denote by {%*, %*}7 and by {dz*k, dE*k}, the local frame and its
dual.

Let V(IT'M) = kerm, C T'(T"M) be the vertical bundle, locally spanned
by {%}. A complex nonlinear connection, briefly (c.n.c.), determines a supple-
mentary complex subbundle to V(T"M) in T"(T"M), i.e. T'(T'M) = H(T'M) &
V(‘T’M). The adapted frames of the (c.n.c.) is % = 6(2’“ - Ng%, where
Nj (z,n) are the coefficients of the (c.n.c.). Further on, we shall use the abbre-
viations §; = %, 0; = 8%1., 0; = %, o a%“ and theirs conjugates ([1], [2],
[8])-

On T'M let g;; = 8778?78%] be the fundamental metric tensor of a complex
Finsler space (M,F? = L). The isomorphism between 7*(7’M) and T'M
induces an isomorphism of 7*(TcM) and TcM. Thus, g;; defines an Her-
mitian metric structure G(z,n) = ngdz*j ® dz**on 7*(Tc M), with respect
to the natural complex structure. Further, the Hermitian metric structure
G on 7*(T'M) induces a Hermitian inner product h(x,~) := ReG(x,7) and

Re kg
the angle cos(x7y) = W,

[IXI1? = I[XII* = G(x. %), see [3].

On the other hand, H(T'M) and 7*(T"M) are isomorphic. Therefore the
structures on 7 (T M) can be pulled-back to H(T'M) & H(T'M). By this
isomorphism the natural cobasis dz*7 is identified with dz7. In view of this
construction the pull-back tangent bundle 7*(7'M) admits a unique complex
linear connection V, called the Chern (e.l.c.), which is metric with respect to G

and of (1,0)— type, [3]:

for any x,v the sections on 7*(7"M), where

(1.1) wi(z,n) = Li(z,n)dz" + Cly(z,m)on";
i i 09jm i i 09jm
ik = 9 5ok ) Cjk =9 5777’“

The Chern (c.l.c.) on 7* (T’ M) determines the Chern-Finsler (c.n.c.) on T' M,
CF
with the coefficients Nj= g

mi 095

ik n?, and its local coefficients of torsion and
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curvature are

(1.2) T;k = L;‘k - ?q ;
R;ﬁk :o=—0pL5, — 67 (Ny) T :;‘Ek = =070, = :Zﬁj;
Phon + = =OLjr = Og(NL)Chi 5 S = —05Ch = Sy
The Riemann type tensor
(1.3) RW,Z,X,Y) :=G(R(X,Y)W,Z)
has the properties:
7 i i) v kTN
(14)  RW.ZXY) = WZXY Rgp Rig= R0
R = —Bigm. = Bk = By
If R;‘ﬁ/c = R;gﬁj then Rz5 = Rizq = Ry

According to [1] the complex Finsler space (M, F) is strongly Kdhler iff
T;k = 0, Kahler iff T;knj = 0 and weakly Kdhler iff gﬂT;knjﬁl = 0. Note that
for a complex Finsler metric which comes from a Hermitian metric on M, so-
called purely Hermitian metric in [8], i.e. 95 = gﬁ(z), the three kinds of K&hler
spaces coincide, [11].

We consider z € M and n € T. M, n # 0. A flag is given by the tangent vector
field n, called flagpole, and another transversal vector field x. The holomorphic
flag curvature of F' along of the flag (7, x), with respect to the Chern (c.l.c.), is

([4])

R ’77 ai +R ,77 ,7
(1.5) Kr(2m,x) = (1%, 1, %) + ROGT: X, )

G(n,mMG(x,X) ’

where 7 and y are local section of 7*(T'M). In particular, if 1 is colinear with
x then we obtain the holomorphic curvature from [1]

QR(U» ﬁa 1, ﬁ) 2ﬁjnkRjk
1.6 Kr(z,n) = — = .
(1.6) rlam) G2(n,m) L2(z,n)

From [3], we have

Definition 1.1. The complex Finsler space (M, F) is called generalized Fin-
stein if Rz is proportional to t,=, i.e. if there exists a real valuated function
K(z,m), such that

i—=h cor h oL
where Ry = Rgan'M" = —g505(N)T", t5 = L(2,0)95 + 0Tl e = 5%
_ . _ oL
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A (g.E.) complex Finsler space enjoys some of interesting properties which
we collect in:

Theorem 1.1. Let (M, F) be a (9.E.) complex Finsler space. Then

i) K(z,m) = $Kr(z,n) and it depends on z alone.

i) If (M, F) is connected and weakly Kdhler, of complex dimension > 2,
then it is a space with constant holomorphic curvature.

iit) If the space is of nonzero constant holomorphic curvature, then F is
weakly Kdahler.

iv) If the space is Kdhler of nonzero constant holomorphic curvature, then

F is purely Hermitian. Conversely, a purely Hermitian complex Finsler space,
which is Kdhler of constant holomorphic curvature, is (g.E.).

Note that for the particular case of the complex Finsler spaces which are
Kéhler of nonzero constant holomorphic curvature, the notions of (¢.E.) and
purely Hermitian spaces coincide.

Finally, we recall here that in [3] it is proved

Proposition 1.1. Let (M, F) be a (g.E.) complex Finsler space. Then

Re [(flﬁj )2}
L(z,m) ’

Kr(z) _—j—h
L(Z’ X) Re (C?hX Xh) +

J

(18) K:F(Za’th) =

?

where K (z) is the holomorphic curvature of (M, F) and Cjj, := Cipn'".

Moreover, for a complex Finsler space (M, F'), (g.E.) of nonzero holomorphic
curvature we have

L(z,x) Kr(2)

where ¢ is the angle between directions of 1 and x.

(1.9) + cos? p >

2. Holomorphic bisectional curvature

We consider z € M |, n € T/M, n # 0 and x another direction in T, M,

n # x. n and x are viewed as local sections of 7*(T'M), i.e. n := 1’ 82;* and

71 and x are viewe
X=X 3%, with x7 = x7(z,7).

Definition 2.1. The holomorphic bisectional curvature of the complex Finsler
metric F in directions n and x is given by

R(n,7, x,X) + R(x, X, n,7)

@1) Br(zmx) = G, MG X) ’

where G(x,X%) # 0.
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Further on, we shall simply call it holomorphic bisectional curvature. The
holomorphic bisectional curvature Br(z,n, x) depends both on the position z €
M and the two directions 1 and .

Proposition 2.1. i) Br(z,n,x) = Br(z,x,1);
ZZ) BF(Zvna 77) = ]CF(Z7"7)§
i) Br(z,n,X) is real valued;
iv) BF(Za %7)() = BF(27777X);
v) Br(z, an, Bx) = Br(z,1,x), for any o, 3 € C.

In particular, if R is symmetric, i.e. R(n,7,%x,%X) = Rn,X,x,7) =
R(x, X, n,7) then R( )
2R (7,1, x, X
(2:2) Bi(2,mx) 1= o

G, MG (x,x)’

Moreover, if R is symmetric, by Proposition 2.5.2 from [1], p. 107, the holo-
morphic bisectional curvature completely determines the curvature tensor R;m

We propose now to determine the relationships between the holomorphic
bisectional curvature and the two kinds of holomorphic curvature. For this, we
consider the unitary directions ! and m, where [ = % and m = € x)’ [ and
m are local sections in 7*(T'M). By means of these, we construct the dlagonal
directions S, and D;,, and their conjugates S, =4 m and Di;, = =1-

We denote by ¢ the angle between the directions of the unitary sectlons l

and m. Therefore, we have cos p = Iﬁiﬁl(ll;??l) = ReG(l,m).

Proposition 2.2. i) G(Sim, Spz,) = 4cos? £;

i) G(Dim, Di,) = 4sin® £.

Proof. It follows by direct computation. o
By above considerations, we shall prove the following

Proposition 2.3. Let (M, F) be a complex Finsler space. Then
(23BF(Z7 7, X) = 2BF(Z7 7, Slm) COS2 % + 2BF(Z5 7, Dlm) Sinz % - ICF(Zv 77)7

where Br(z,1, Sim) and Br(z,1, D) are the holomorphic bisectional curvature
of F in the direction n and Sy, and n and Dy, respectively.

Proof. Taking into account Proposition 2.1, iv) and relation (2.1), we obtain
(2.4) Br(z,m,%x) = Br(z,1l,m) = R(l,1,m,m) + R(l,1,m,m).

On the other hand, decomposing R(l, 1, Sim, Si)s R(Sim, Sim, 1, 1), R(1,1,
Dy, Dyz,) and R(Dlm,Dlm,l, [), direct computations give:
(la l7 SZTTH Slm) + R(Sl’ma Slfn) la l) + R(l7 l) Dlm7 Dl"m) + R(Dlma Dlma l7 l)
=4R(1,1,1,]) + 2[R [ (1,1, m,m) + R(m, m,l,l)]
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=2Kp(z, 1) + 2Bp(z,l,m).
In view of Definition 2.1 and Proposition 2.1, the last relation becomes

4BF(Z7la Sim) COSQ % + 4BF(Z’ l7 DiT?L) SiIl2 % = 2’CF(Za 77) + QBF(Z777aX)7
which is (2.3). a

If x and 7 are colinearity, i.e. x = an, a € R*, then Bp(z,n,x) =
BF(ZaThan) = BF(Zanan) = ICF(Zan) Conversely, if BF(ZanaX) = ICF(Zan)
then, the (2.3) relation, yields

(2.5) Kr(z,nm) = Br(z,m, Sim) cos? g + Br(z,1, Dim) sin? %

Moreover, by relation (2.3), if the holomorphic bisectional curvature is iden-
tically vanishing in any direction then the holomorphic curvature is identically
vanishing too. Conversely, if Kr(z,1) = 0 then

(2.6) Br(z,m,x) = Br(z,1, Sim) cos? % + Bp(z,m, Dim) sin? %

When the holomorphic bisectional curvature is a constant, i.e. it has the
same constant value for any choice of z and directions 7, y, but with this as-
sumption, we obtain

Proposition 2.4. Let (M,F) be a complex Finsler space of constant holo-
morphic bisectional curvature in any of directions n and x, i.e. Bp(z,m,x) = ¢,
c €R. Then Kp(z,n) = c.

Proof. By (2.3) and by Br(z,7,x) = ¢, for any direction, it results in
¢ =2ccos? £ + 2csin® £ — KCp (2, 7). This relation leads to Kr(z,n) =c. O

In the remainder of this section, we study the holomorphic bisectional cur-
vature of a complex Finsler space (M, F') with additional symmetry condition
of the Riemann type tensor R. A first result is:

Proposition 2.5. If (M, F) is a complex Finsler space and R is symmetric
then

@7 Br(zmx) = 2Kp(z,Sim)cost g + 2 (2, Di) sin4%
1 1
_1 [KF(Zﬂ?) + ICF(Z7X)] - §ICF(Z7T]7 X)7

where Kp(z,Sim), Kr(z, Dim) and Kp(z,x) are the holomorphic curvature of
F in directions Sy, Dy and x, respectively.

Proof. Taking into account Proposition 2.1, i) and relation (2.1), we have

(28) BF(ZJ%X) :BF(Zvlam) = 2R(17Z7 m, m)
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Decomposing R(Sim; Sim, Sim, Stm) $i R(Dim, D,y Dim, Di,), by direct
computations, we obtain:

R(Stms Spims Stms Siim) + R(Dims Diyy Dimm, D) = 2R(1,1,1,1)

+2R(m,m,m,m) + 2 [R(l,m,l,m) + R(m,l,m,l)] + 8R(l,1,m,m).

By Definition 2.1 and Proposition 2.1, the last relation becomes

8Kk (2, Sim) cos* £ + 8K p(z, Diyn) sin® £ = Kp(z,m) + Kr (2, X)

+2Kr(2z,m,x) +4Br (2,1, X),

which leads to (2.7). m|

Proposition 2.6. Let (M, F) be a complex Finsler space of constant holomor-
phic flag curvature along of any flag (n,x), i.e. Kr(z,m,x) = ¢, c € R, and R
symmetric. Then

i)
(2.9) Br(z,m,%) = ¢ cos? .

Moreover,

a) if ¢ > 0 then Br(z,n,x) < ¢;

b) if ¢ <0 then ¢ < Br(z,1,X)-

i1) (M, F) is of constant holomorphic bisectional curvature if and only if ¢
15 a constant.

Proof. i) Because, Br(z,1m,x) = ¢, ¢ € R, for any directions n and x, then
Kr(z,m) = c. Therefore, relation (2.7) becomes

Br(z,m,x) = 2¢ (cos* £ +sin? £) —c=2c (1 — 2sin® £cos? £) — ¢

= ¢ — csin® p = ccos? .
i1) Immediately result by (2.9) relation. )

Colorallary 2.1. Let (M, F) be a complex Finsler space with R symmetric.
If along any flag and in any direction we have

[Kr(z,m,x)| < ¢ and [Kp(z,m)| < ¢, ¢ >0,
then |Br(z,m, x)| < 3c.

Proof. Indeed,
|Br(z,m,x)| < 2¢(cos* £ + sin* £)+c=c (24 cos? p) < 3c. |

Some special results for the holomorphic bisectional curvature will be ob-
tained subsequently, when we study a particular fruity case.

3. The holomorphic bisectional curvature of a (¢.F.) com-
plex Finsler space

We establish some inequalities between the holomorphic bisectional curva-
ture and holomorphic curvature of a (g.E.) complex Finsler space. For the



150 N. Aldea

beginning, let us express the holomorphic bisectional curvature of a (g.F.) com-
plex Finsler space by means of the holomorphic curvature of the same space.

In a local coordinate, the holomorphic bisectional curvature of complex Fins-
ler metric F' in directions i and x is given by

(XX + XX ") Ry
L(z,m)L(z, x) ’

with L(z, x) = g;;X"X’ # 0, and the angle ¢ between directions of n and x is

(31) BF(Z7777X) =

N T
(3.2) cosp = MX_F X
2/ L(z,n)L(z,X)

Proposition 3.1. Let (M, F) be a (9.E.) complex Finsler space. Then

where Kp(z) is the holomorphic curvature of (M, F).

Proof. Because (M, F) is a (g.E.) complex Finsler space, by Propositions 3.3,
i4i) and 3.4 from [3], we obtain:

Ry’ = K (2) (L(z,m)g,5 + wiln) -

leﬁknkﬁh = K(2) (L(z, 95 + Ulﬁj) - Cj7|kcf|g77kﬁh

= K(2) (L(z, n9g;5 + 77[77j> + T;lwhere T, = gﬁTlikﬁl and T;k:: L

By Jacobi identity

(86,105,021 + (85,165, 81]] + |65, 195,651] = 0, we have

—5.1-R%j — P]—:Z.Lﬁ.j - 5]-P,—ii — 5,;Lﬁ»j = 0. We interchange 7 with j

) Pl ) pl vl r o7l ! ! il

*(%'Rfcj + 8]'Rf”. — PEiLTj + PEjLTi — 6jPEi + 51'PE]. — 6kTij =0.

Multiplying the last relation by 7*, we obtain

—0 (BL*) + 0 (BLF) = T, i = 0.

But R%jﬁk = Mrznganﬁk = K(2) (L(z,n)(;é- + njnl) and

0; (R%jﬁk) = K(2) (771'5;' + Cil}jﬁknl +1;01) .
Taking into account above relations it results in Tilj“—cﬁk = 0 and from here
Ek: 0.
Plugging into (3.1) it results:
2K (2)(L(z,m)g54+m7; )x'X°

Br(zn.x) = L)
2K (z 12
= L(z,n)é()z,x) L(Zan)L(Za X) + |77jXJ| :| .
But, K(z) = 1Kp(z), so that the last relation is (3.3). a

We note that, if z(z) = 0 then, by relation (3.3), we have Br(z,7,x) = 0.
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Example 1. In [3] we considered the complex version of Antonelli-Shimada

metric on a domain from 7'M , dimg M = 2, such that its metric tensor be
nondegenerated

(34)  Las(zw;n,0) = > (jn|* +16]*)* , with 1,6 #0,
where z := 2!, w = 22, n:=n', § := 1% o(z,w) is a real valued function and
In')? :== n'it, n* € {n,0}. We showed that the (3.4) metric is not (g.F.) and

. . . 2 pa— ; ]
its holomorphic curvature is Kp = _L%;sazigzh n*q", where z* € {z,w},n’ €

{n,0}. It % = 0 then the (3.4) metric is not purely Hermitian or weakly
Kaéhler, but it is (¢.E.) with Kr = Br = 0. Moreover, it is locally Minkowski if
and only if ¢ is a constant. a

Taking into account (3.2) we have
12 C 2
[2Re (7;%7)]" = (nyx? + ;%) = 4L(2,m)L(z, x) cos® p
and from‘héere we obt%in
Re [ (1) ] + x| = 2L(z m)L(z, ) cos? .
The complex number theory permit us to write

(3.5) i’ |” = L(z.m) Lz, x) cos? o + [Im (7,7 ],

which leads to

Colorallary 3.1. Let (M, F) be a complex Finsler space (g.E.), of nonzero
constant holomorphic curvature, Krp = ¢, c € R*. Then

[1m (7,%)]” }

2 L(z,n)L(z,x)

(36) Br(zm,) = 5

{1+6082g0+

In particular, if in the relation (3.6), Im (ﬁjyj) = 0 then it results in
Br(z,m,x) = 5(1 + cos®¢). Moreover, if Re (7;X’) = 0 then Bp(z,n,x) =

5
By Proposition 1.1 we obtain

Colorallary 3.2. Let (M,F) be a complex Finsler space (g.E.), of nonzero
constant holomorphic curvature, Krp = ¢, c € R*. Then

Br(zmx)  Kr(znx) _ 1 Re (C53%°X") }

(3.7) ={1+20052g0+

c 2c 2 L(z,x)

where Kr(z,n,x) is the holomorphic flag curvature along the flag (n, x)-

Proposition 3.2. Let (M, F) be a complex Finsler space (g.E.) of nonzero
constant holomorphic curvature, Kp = ¢, c € R*. Then

BF(ZJ%X) >

(3.8) X ;
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Moreover,
if ¢ >0 then Br(z,m,x) > § > 0;
if ¢ <0 then 0> § > Br(z,1m,X)-

Proof. Taking into account relation (1.9), we obtain

Bp(zc,n,x) > 1 (14 cos?yp) > 1. O
Example 2. In Proposition 3.5 from [3] we proved that if (M, F) is (¢9.E.)
complex Finsler space with r = —4 then F' is Kobayashi metric. Therefore
the holomorphic bisectional curvature of Kobayashi metric is

Im(7:%7 2
By (z,m,x) < —2. -

In the remainder of this section, we consider the particular class of the
(g.E.) complex Finsler space which is K&hler with nonzero constant holomorphic
curvature. Therefore, relation (3.7) is reduced to

Colorallary 3.3. Let (M, F) be a complex Kahler-Finsler space (g.E.) of non-
zero constant holomorphic curvature, Kp = ¢, ¢ € R*. Then

1 1
< BF(ZW%X) + ’CF(ZJ%X) _ 7+COS2QO§ g;

(3'9) 2 c 2c 2

Example 3. We consider the complex Finsler metrics

_ P +e(Pnl’= < zn><zm>)

(3.10) L: TEERE ,

defined over the disk AT = {z eC”, |z|<r, r:= é} ife < 0; on C™ if
¢ = 0; and on the complex projective space P"(C) if ¢ > 0, where |z|? :=
Sh2FEE < zom >i= 300 2R, Particularly, for ¢ = —1 we obtain the
Bergman metric on the unit disk A™ := A}, for ¢ = 0 the Fuclidian metric on
C", and for ¢ = 1 the Fubini-Study metric on P"(C).

The (3.10) metrics are (g.E.), Kéhler with £r = 4e. From Proposition 3.2

we obtain: if ¢ < 0 then Bp(z,n,x) < 2¢ and if € > 0 then 2¢ < Bp(z,71,x). O
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