Aleksandar Ivić

ON A NUMBER-THEORETICAL SYSTEM OF FUNCTIONAL EQUATIONS

It is known that $\tau(n)$ (number of divisors function) has the following property ([2], p. 394):

(1)
$$\sum_{n=1}^{\infty} \tau(n^2) n^{-s} = \frac{\zeta^3(s)}{\zeta(2s)}.$$

Using the fact that $\sum_{n=1}^{\infty} \mu^2(n) n^{-s} = \frac{\zeta(s)}{\zeta(2s)}$ ([2], p. 255) we get the following identity:

(2)
$$\tau(n^2) = \sum_{d \mid n} \mu^2(d) \tau\left(\frac{n}{d}\right),$$

since $\sum_{n=1}^{\infty} \tau(n) n^{-s} = \zeta^2(s)$.

Likewise, we have ([1], p. 256, [3], p. 135)

(3)
$$\sum_{n=1}^{\infty} \tau^{2}(n) n^{-s} = \frac{\zeta^{4}(s)}{\zeta(2s)},$$

which together with (1) gives

(4)
$$\tau^2(n) = \sum_{d \mid n} \tau(d^2).$$

The aim of this paper is to prove the following theorem which classifies multiplicative functions satisfying functional equations (5) and (6); these equations give (2) and (4) when $f(n)=\tau(n)$.

Theorem. Let f(n) be a multiplicative function such that

(5)
$$f(n^2) = \sum_{d|n} \mu^2(d) f\left(\frac{n}{d}\right)$$
 and

(6)
$$f^{2}(n) = \sum_{d \mid n} f(d^{2}).$$

Then either

- a) f(n)=0 or
- b) $f(n) = \tau(n)$ or

c)
$$f(n)$$
 is generated by $\frac{\zeta(3s)}{\zeta(s)}$; that is, $\sum_{n=1}^{\infty} f(n) n^{-s} = \frac{\zeta(3s)}{\zeta(s)}$.

Proof. If f(n) is multiplicative, both the left-hand and the right-hand sides of (5) and (6) are multiplicative functions, and using the properties of the Möbius function $\mu(n)$ it is seen that (5) and (6) are equivalent to

(7)
$$f(p^{2a}) = f(p^a) + f(p^{a-1})$$
 and

(8)
$$f^{2}(p^{a})=f(1)+f(p^{2})+\ldots+f(p^{2a-2})+f(p^{2a}),$$

where p stands for an arbitrary prime, a for an arbitrary natural number.

Since $f^2(1)=f(1)$ for every multiplicative function f(n), we may suppose that f(1)=1 (f(1)=0 gives f(n)=0, and this is the trivial solution listed under a).) and obtain using (7) and (8)

$$f(p^2)=f(p)+1, f^2(p)=1+f(p^2)=2+f(p)$$

so that f(p)=2 or f(p)=-1. Each of these cases is treated separately.

Case I. f(p)=2. Then $f(p^2)=f(p)+1=3$, hinting that $f(p^a)=a+1$, which would give $f(n)=\tau(n)$, that is, the solution listed under b). The relation $f(p^a)=a+1$, true for a=1,2 will be proved by mathematical induction. Let then $f(p^b)=b+1$ for all $b \le a$ and consider $f(p^{a+1})$. If a is odd, then by (7)

$$f(p^{a+1})=f(p^{\frac{a+1}{2}})+f(p^{\frac{a-1}{2}})=\frac{a+3}{2}+\frac{a+1}{2}=a+2.$$

Suppose now that a is even. Then a+2 is even, and using induction, (7) and (8) we get

$$f(p^{a+2}) = f(p^{\frac{a+2}{2}}) + f(p^{\frac{a}{2}}) = \frac{a+4}{2} + \frac{a+2}{2} = a+3,$$

$$f(p^{2a+2}) = f(p^{a+1}) + f(p^a) = f(p^{a+1}) + a+1,$$

$$f^2(p^{a+1}) = \sum_{b=0}^{a} f(p^{2b}) + f(p^{2a+2}) = \sum_{b=0}^{a} (2b+1) + f(p^{a+1}) + a+1 =$$

$$= (a+1)(a+2) + f(p^{a+1}).$$

$$f^{2}(p^{a+1})-f(p^{a+1})-(a+1)(a+2)=0, \text{ so that either } f(p^{a+1})=a+2$$
 or $f(p^{a+1})=-a-1$. If $f(p^{a+1})=-a-1$, then $f(p^{2a+2})=0$ and $f(p^{2a+4})=f(p^{a+2})+f(p^{a+1})=a+3-a-1=2, (a+3)^{2}=f^{2}(p^{a+2})=\sum_{b=0}^{a}f(p^{2b})+f(p^{2a+2})+f(p^{2a+4})=$
$$=(a+1)^{2}+2,$$

giving a=-3/2, a contradiction, and proving $f(p^{a+1})=a+2$.

Case II. f(p) = -1. Using (7) and (8) we get $f(p^2) = f(p) + 1 = 0$, $f(p^4) = -f(p^2) + f(p) = -1$, $f(p^6) = f(p^3) + f(p^2) = f(p^3)$, $f^2(p^3) = f(1) + f(p^2) + f(p^4) + f(p^6)$, so that $f^2(p^3) = f(p^3)$, $f(p^3) = 1$ or $f(p^3) = 0$. If $f(p^3) = 0$, then $f(p^6) = 0$, $f(p^8) = -f(p^4) + f(p^3) = -1$, $1 = f^2(p^4) = f(1) + f(p^2) + f(p^4) + f(p^6) + f(p^8) = -1$, and this contradiction lives $f(p^3) = f(p^6) = 1$, and it is proved similarly that $f(p^5) = 0$. Thus we have the beginning of an induction proof that

$$f(p^{a}) = \begin{cases} 1 & a = 6k \\ -1 & a = 6k+1 \\ 0 & a = 6k+2 \\ 1 & a = 6k+3 \\ -1 & a = 6k+4 \\ 0 & a = 6k+5 \end{cases} k = 0, 1, 2, \dots$$

(The values 1,-1,0 are repeated periodically, but since the parity of a is needed because of (7), it is more convenient to work mod6 than mod3).

If
$$a=6k+1$$
, $a+1=2$ $(3k+1)$ and we have $f(p^{a+1})=f(p^{3k+1})+f(p^{3k})=-1+1=0$, as needed. If $a=6k+3$, $a+1=2$ $(3k+2)$ and we have $f(p^{a+1})=f(p^{3k+2})+f(p^{3k+1})=0-1=-1$, as needed. If $a=6k+5$, $a+1=2$ $(3k+3)$ and we have $f(p^{a+1})=f(p^{3k+3})+f(p^{3k+2})=1+0=1$, as needed.

For the remaining cases the induction hypothesis gives $\sum_{b=1}^{6k} f(p^{2b}) = 0$, since that sum equals 2k sums 0+1-1=0, and it is seen that $f(p^{a+1})$ satisfies a quadratic equation. One of the roots of that quadratic equation will lead to a contradiction, giving for $f(p^{a+1})$ the value of the other root, which will be what is wanted to be proved.

If
$$a=6k$$
, $f^2(p^{a+1})=1+\sum_{b=1}^{6k}f(p^{2b})+f(p^{2a+2})$, $f(p^{2a+2})=f(p^{a+1})+f(p^a)=f(p^{a+1})+1$, so that $f^2(p^{a+1})=2+f(p^{a+1})$, $f(p^{a+1})$ equals 2 or -1 . If $f(p^{a+1})=2$, $f(p^{a+2})=f(p^{3k+1})+f(p^{3k})=0$, $f(p^{2a+4})=f(p^{a+2})+f(p^{a+1})=2$, $0=f^2(p^{a+2})=1+\sum_{b=1}^af(p^{2b})+f(p^{2a+2})+f(p^{2a+4})=6$, so that $f(p^{a+1})=-1$, as needed.

If a=6k+2, we get the equation $f^2(p^{a+1})=f(p^{a+1})$. If $f(p^{a+1})=0$ then $f(p^{a+2})=-1$, and we have

 $1=f^2(p^{a+2})=1+\sum_{b=1}^{a+1}f(p^{2b})+f(p^{2a+4})=-1$, so that $f(p^{a+1})$ equals 1, as needed.

If a=6k+4, then we get the quadratic equation $f^2(p^{a+1})=f(p^{a+1})$ again, only now $f(p^{a+1})=1$ leads to a contradiction, for we have $f(p^{a+2})=1$, $f(p^{2a+2})=0$,

 $1=f^2(p^{a+2})=1+\sum_{b=1}^{a+1}f(p^{2b})+f(p^{2a+4})=2$, so that only $f(p^{a+1})=0$ remains possible. Thus we have proved that in the case f(p)=-1, f(n) is a multiplicative function with the property $f(p^{3m})=1$, $f(p^{3m-1})=0$, $f(p^{3m-2})=-1$, for every natural number m, and so we have

$$\sum_{n=1}^{\infty} f(n) n^{-s} = \prod_{p} (1+f(p)p^{-s}+f(p^{2})p^{-2s}+f(p^{3})p^{-3s}+\ldots) =$$

$$\prod_{p} (1-p^{-s}+p^{-3s}-p^{-4s}-p^{-7s}+\ldots) = \prod_{p} (1-p^{-s})(1+p^{-3s}+p^{-6s}+\ldots)$$

$$= \prod_{p} \frac{1-p^{-s}}{1-p^{-3s}} = \frac{\zeta(3s)}{\zeta(s)}.$$

Thus we have proved completely the assertion of the theorem; the function f(n) generated by $\frac{\zeta(3s)}{\zeta(s)}$ can be represented by other arithmetical functions in the following way:

(9)
$$f(n) = \sum_{d|n} \mu(d) g_3\left(\frac{n}{d}\right),$$

where $g_3(n)$ is 1 if n is a cube, 0 otherwise, because $\sum_{n=1}^{\infty} g_3(n) n^{-s} = \zeta(3s)$,

$$\sum_{n=1}^{\infty} \mu(n) n^{-s} = \frac{1}{\zeta(s)}.$$
 Since $|f(n)| \le 1$ $(f(n))$ is actually 1, -1 or 0) trivially

$$\sum_{n\leq x} f(n) = O(x),$$

but this result can be sharpened if the following theorem ([2], p. 327) of H. Delange is used:

Let f(n) be a multiplicative function such that

a)
$$|f(n)| \leq 1$$
,

b)
$$\sum_{p \le x} f(p) \sim \rho \frac{x}{\log x}$$
 ($\rho \ne 1, \sim$ means asymptotically equivalent).

Then
$$\sum_{n \le x} f(n) = o(x).$$

Since $|f(n)| \le 1$, and we have by the prime number theorem

$$\sum_{p \le x} f(p) = \sum_{p \le x} (-1) = -\pi(x) \sim -\frac{x}{\log x},$$

we may apply Delange's theorem to obtain

$$\sum_{n< x} f(n) = o(x).$$

REFERENCES

- G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Oxford, Clarendon Press, 1964.
- [2] A. G. Postnikov, Vvedenie v Analitičeskuju Teoriju Čisel, Moskva, Nauka, 1971.
- [3] S. Ramanujan, Collected Papers, New York, Chelsea, 1962.

Aleksandar Ivić

O JEDNOM SISTEMU FUNKCIONALNIH JEDNAČINA TEORIJE BROJEVA

Rezime

U radu se dokazuje sledeća teorema: neka je f(n) multiplikativna funkcija koja zadovoljava sledeći sistem funkcionalnih jednačina

$$f(n^2) = \sum_{d|n} \mu^2(d) f\left(\frac{n}{d}\right) i f^2(n) = \sum_{d|n} f(d^2).$$

Tada je

- a) f(n)=0 ili
- b) $f(n) = \tau(n)$ (broj delitelja n) ili
- c) f(n) je generisano sa $\frac{\zeta(3s)}{\zeta(s)}$, tj. $\sum_{n=1}^{\infty} f(n) n^{-s} = \frac{\zeta(3s)}{\zeta(s)}$.