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ON THE IMPROVED FAMILY OF SIMULTANEOUS
METHODS FOR THE INCLUSION OF MULTIPLE

POLYNOMIAL ZEROS

Dušan M. Milošević1, Ljiljana D. Petković2

Abstract. Starting from a family of iterative methods for the simulta-
neous inclusion of multiple complex zeros, we construct efficient iterative
methods with accelerated convergence rate by the use of Gauss-Seidel pro-
cedure and the suitable corrections. The proposed methods are realized
in the circular complex interval arithmetic and produce disks that contain
the wanted zeros. The suggested algorithms possess a high computational
efficiency since the increase of the convergence rate is attained without ad-
ditional calculations. Using the concept of the R-order of convergence of
mutually dependent sequences, the convergence analysis of the proposed
methods is presented. Numerical results are given to demonstrate the
convergence properties of the considered methods.

AMS Mathematical Subject Classification (1991): 65H05, 65G20, 30C15.

Key words and phrases: Zeros of polynomials, simultaneous methods, con-
vergence rate, circular arithmetic.

1. Introduction

The aim of this paper is the construction of inclusion methods with very
high computational efficiency for the simultaneous inclusion of multiple polyno-
mial zeros. The improvement is obtained using the Gauss-Seidel approach and
suitable corrections of Schröder’s and Halley’s type. The proposed accelera-
tion is attained without additional calculations, which means that the obtained
algorithms possess a great computational efficiency.

The proposed iterative methods are realized in circular complex interval
arithmetic. These methods produce approximations in the form of complex
intervals (disks or rectangles) containing the sought zeros. The main advantage
of circular arithmetic methods is the self-validation of the obtained results. In
this manner the information about the upper error bounds of approximations
to the zeros is provided. For more details about the circular complex arithmetic
and inclusion root-finding methods see the books [1], [8] and [13].

Throughout this paper a circular closed region (disk) Z := {z : |z − c| ≤ r},
with the center c := mid Z and the radius r := rad Z, will be denoted briefly by
the parametric notation Z = {c; r}. The basic operations of circular arithmetic
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and its properties may be found in the books [1] and [13]. Here we stress
only that the inversion of a non-zero disk Z can be defined by the Möbius
transformation (exact inversion)

Z−1 = {c; r}−1 =
{c̄; r}
|c|2 − r2

=
{1

z
: z ∈ Z

}
(|c| > r, i.e., 0 /∈ Z),(1)

or by Taylor’s form (centered inversion)

ZIc =
{1

c
;

r

|c|(|c| − r)

}
⊇ Z−1 (|c| > r).(2)

We will use the symbol INV to denote one of the introduced inversions. The
square root of a disk {c; r} in the centered form, where c = |c|eiθ and |c| > r
(that is, the disk {c; r} does not contain the origin) is defined as the union of
two disjoint disks (see [3]):

{c; r}1/2 :=
{√

|c|eiθ/2;
r√

|c|+
√
|c| − r

}
⋃{

−
√
|c|eiθ/2;

r√
|c|+

√
|c| − r

}
.(3)

In what follows, the disks in the complex plane will be denoted by capital
letters. In addition, let us note that all operations posses the so-called inclusion
isotonicity property, that is, they preserve the subset relation.

2. Family of total step methods

Let the zeros ζ1, . . . , ζν (2 ≤ ν ≤ n) of a monic polynomial P (z) = zn +
an−1z

n−1+. . .+a1z+a0 have the multiplicities µ1, µ2, . . . , µν(µ1+. . .+µν = n),
respectively. Efficient procedures for the determination of the order of multiplic-
ity can be found, for instance, in [5] and [6]. Further, let z1, . . . , zν be mutually
distinct approximations to the polynomial zeros. By εi we denote the error
terms, that is, εi = zi − ζi. For the point z = zi (i ∈ Iν := {1, . . . , ν}) and a
complex parameter α (6= −1), let us introduce the abbreviations

Σk,i =
ν∑

j=1
j 6=i

µj

(zi − ζj)k
and q∗i = µi(α + 1)Σ2,i − α(α + 1)Σ2

1,i.

Using identities

δ1,i =
P ′(zi)
P (zi)

=
ν∑

j=1

µj

zi − ζj
=

µi

zi − ζi
+ Σ1,i

and

δ2,i =
P ′(zi)2 − P (zi)P ′′(zi)

P (zi)2
= − d

dz

(
P ′(z)
P (z)

)∣∣∣∣∣
z=zi

=
ν∑

j=1

µj

(zi − ζj)2
=

µi

(zi − ζi)2
+ Σ2,i,
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after elementary manipulations we obtain

µi(α + 1)δ2,i − αδ2
1,i − q∗i =

(µi(α + 1)
εi

− αδ1,i

)2

.(4)

From the identity (4) we single out the term εi (= zi − ζi) and obtain the
following fixed point relation

ζi = zi −
µi(α + 1)

αδ1,i ±
√

µi(α + 1)δ2,i − αδ2
1,i − q∗i

(i ∈ Iν).(5)

Let us introduce the disks

Sk,i(X,W) :=
i−1∑
j=1

µj

(
INV1(z −Xj)

)k

+
n∑

j=i+1

µj

(
INV1(z −Wj)

)k

,(6)

where k = 1, 2, X = (X1, ..., Xn) and W = (W1, ...,Wn) are vectors whose
components are disks and INV1 ∈ {()−1, ()Ic}. Using (6) let us define the disk

Qi(X,W) = µi(α + 1)S2,i(X,W)− α(α + 1)S2
1,i(X,W).

Then, by (6) and the definition of q∗i , according to the inclusion isotonicity it
follows q∗i ∈ Qi(X,W).

In order to consider the method without correction and the methods with
Schröder’s and Halley’s correction simultaneously, we introduce the additional
indices p = 0, 1 and 2, respectively, and denote the corresponding vectors of
disks as follows:

Z(0) = Z =
(
Z1, . . . , Zν

)
(current disk approximations),

Ẑ
(0)

= Ẑ =
(
Ẑ1, . . . , Ẑν

)
(new disk approximations),

Z(1) = ZN =
(
Z1 −N(z1), . . . , Zν −N(zν)

)
(Schröder’s disks),

Z(2) = ZH =
(
Z1 −H(z1), . . . , Zν −H(zν)

)
(Halley’s disks),

where

N(zi) = µi
P (zi)
P ′(zi)

and H(zi) =
P (zi)(1 + 1/µi

2

)
P ′(zi)−

P (zi)P ′′(zi)
2P ′(zi)

are corrections that appear in the well known iterative formulas ẑ = z − N(z)
and ẑ = z − H(z) (for multiple zero) with the order of convergence two and
three, respectively.

Using the inclusion isotonicity property, from the fixed point relation (5) we
obtain the new family of total step inclusion methods

Ẑi = zi − µi(α + 1)INV2(Ai) (i ∈ Iν , p = 0, 1, 2),(7)
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where INV2 ∈ {()−1, ()Ic} and

Ai = αδ1,i +
[
µi(α + 1)δ2,i − α

(
δ1,i

)2 −Qi

(
Z(p),Z(p)

)]1/2

∗
.

The subscripts “1” and “2” of INV in (6), (7) and subsequent formulas
point to the order of application of the inversion; namely, in the realization
of the iterative formula (7) we first apply the inversion INV1 to the sums (6),
and then the inversion INV2 in the final step. In our consideration of the
new family we will always assume that α 6= −1. However, the particular case
α = −1 reduces (by applying a limiting process) to the already known Halley-
like interval method studied in [9] and [15].

By virtue of (3), the square root of a disk in (7) produces two disks; the
symbol ∗ indicates that one of the two disks should be selected. That disk will
be called a “proper” disk. Considering (4) and the inclusion q∗i ∈ Qi we conclude
that proper disk is the one that contains µi(α +1)/εi −αδ1,i. According to (3),
we have[

µi(α + 1)δ2,i − αδ2
1,i −Qi

]1/2 = G1,i ∪G2,i, mid Gk,i = gk,i, g1,i = −g2,i

for i ∈ Iν , k = 1, 2. An efficient and reliable criterion for the choice of the
proper disk is considered in [3] (see also [8]) and reads:

If disks Z1, . . . , Zν are reasonably small, then we have to choose the disk
(between G1,i and G2,i), whose center minimizes |P ′(zi)/(µiP (zi))− gk,i| (k =
1, 2).

In order to estimate the order of convergence of the interval methods with
corrections, we usually deal with the sequences ε

(m)
i = |mid Z

(m)
i − ζi|, r

(m)
i =

rad Z
(m)
i (i ∈ Iν), where Z

(m)
i is an outer approximation to the zero ζi produced

at the mth iterative step. In the convergence analysis of an iterative inclusion
method (IM) we use the concept of the R-order of convergence, introduced in
[7] (denoted by OR(IM)), and operate with mutually dependent sequences of
centers and radii of disks. We will use the following assertion given in [4] (see,
also [14]) :

Theorem 1. Given the error-recursion

u
(m+1)
i ≤ ci

k∏
j=1

(
u

(m)
j

)tij
, (i ∈ Ik; m ≥ 0),(8)

where tij ≥ 0, ci > 0, 1 ≤ i, j ≤ k and u
(m)
j = ε

(m)
j or u

(m)
j = r

(m)
j . Denote

the matrix of exponents appearing in (8) with Tk, that is Tk = [tij ]k×k. If the
non-negative matrix Tk has the spectral radius ρ(Tk) > 1 and a corresponding
eigenvector x ρ > 0, then the R-order of convergence of all sequences {u(m)

i } (i ∈
Iν) is at least ρ(Tk).
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In the sequel the matrix Tk = [tij ] will be called the R-matrix because
it is related to the R-order of convergence. Further, for two real or complex
numbers w1 and w2 satisfying |w1| = O(|w2|) we write w1 ∼ w2 (the same order
of magnitude). In the convergence analysis of inclusion methods it is adopted
that 0 < |ε(0)| = r(0) < 1 (the “worst case” model). This assumption has no
influence to the final result of the limit process in finding the lower bound of
the R-order of convergence.

According to Theorem 1, using the approach proposed in [2] and [11], and
later in [10] and [12], the following assertion can be proved:

Theorem 2. The total-step methods (7) are convergent with the convergence
order

OR(7) ≥


{

4, p = 0,

2 +
√

7 ∼= 4.646, p = 1, 2,
if INV1 = ()−1,

p + 4, p = 0, 1, 2, if INV1 = ()Ic .

3. Family of single step methods

Further acceleration of the convergence of the family of inclusion methods
(7) can be attained using the new inclusion disks serially, that is, employing the
already calculated disks as soon as they are available (the so-called Gauss-Seidel
approach or single step mode). In this manner we obtain the corresponding
family of single-step methods:

Ẑi = zi − µi(α + 1) · INV2(Bi) (i ∈ Iν , p = 0, 1, 2),(9)

where INV2 ∈ {()−1, ()Ic} and Bi = αδ1,i+
[
µi(α+1)δ2,i−αδ2

1,i−Qi(Ẑ,Z(p))
]1/2

∗
.

In order to find the R-order of convergence of the single step methods (9), one
has to handle 2ν mutually dependent sequences of centers and radii of produced
disks, which is a difficult task. However, we can estimate easily the bounds of
the R-order regarding the limit cases ν = 2 and very large ν.

Since the convergence rate of a single-step method becomes almost the same
to the one of the corresponding total-step method when the polynomial degree
is very large, according to Theorem 2 we have

OR((9, ν))∼=OR(7)≥


{

4, p = 0,
2 +

√
7 ∼= 4.646, p = 1, 2,

if INV1 = ()−1,

p + 4, p = 0, 1, 2, if INV1 = ()Ic .

Consider now the single-step methods (9) for ν = 2 and assume that |ε(0)
1 | =

|ε(0)
2 | = r

(0)
1 = r

(0)
2 < 1 (the ”worst case” model). After an extensive calculation

we derive the following estimates:

(i) Case INV1 = ()−1:

|ε̂1| ∼
{
|ε1|3|ε2|, p = 0,
|ε1|3r2

2, p = 1, 2,
|ε̂2| ∼

{
|ε1|3|ε2|4, p = 0,
|ε1|3|ε2|3r2

2, p = 1, 2,

r̂1 ∼ |ε1|3r2, r̂2 ∼ |ε1|3|ε2|3r2, p = 0, 1, 2.
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(ii) Case INV1 = ()Ic :

|ε̂1| ∼ |ε1|3|ε2|p+1, |ε̂2| ∼ |ε1|3|ε2|p+4, p = 0, 1, 2,

r̂1 ∼ |ε1|3r2, r̂2 ∼ |ε1|3|ε2|3r2.

The corresponding R-matrices and their spectral radii and eigenvectors are:

(i) Case INV1 = ()−1:

p = 0, T
(e)
4 =


3 1 0 0
3 4 0 0
3 0 0 1
3 3 0 1

,
ρ
(
T

(e)
4

)
= 5.30278,

x
(e)
ρ = (1, 2.30277, 1, 2.30277) > 0,

p = 1, 2, T
(e)
4 =


3 0 0 2
3 3 0 2
3 0 0 1
3 3 0 1

,
ρ
(
T

(e)
4

)
= 6.29654,

x
(e)
ρ = (1, 1.91, 0.7382, 1.6483) > 0.

(ii) Case INV1 = ()Ic :

p = 0, 1, 2, T
(c)
4 =


3 p + 1 0 0
3 p + 4 0 0
3 0 0 1
3 3 0 1

, ρ
(
T

(c)
4

)
=

 5.30278, p = 0,
6.64575, p = 1,
7.8541, p = 2,

x(c)
ρ =

 (1, 2.30277, 1, 2.30277) > 0, p = 0,
(1, 1.8229, 0.6771, 1.5) > 0, p = 1,
(1, 1.6180, 0.5279, 1.1459) > 0, p = 2.

The superscripts “e” and “c” are used to indicate the type of the inversion used
in (6).

According to the previous results we can formulate the following assertion:

Theorem 3. The ranges of the lower bounds of the R-order of convergence of
the single-step methods (9) are

OR(9) ∈
{

(4, 5.303), p = 0,
(4.646, 6.297), p = 1, 2,

if INV1 = ()−1,

OR(9) ∈

 (4, 5.303), p = 0,
(5, 6.646), p = 1,
(6, 7.855), p = 2,

if INV1 = ()Ic .

Remark 1. Similarly as in [10], it can be proved that any correction of the
order higher than two (for instance, Halley’s correction) cannot increase the
convergence speed of the inclusion algorithm if the exact inversion is applied to
(6) (that is, INV1 = ()−1).
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Remark 2. From Theorems 2 and 3 we see that (when corrections are used)
centered inversion gives a better convergence although it produces an enlarged
disk compared to the exact inversion (see (2)). The explanation lies in the fact
that the centered inversion enables the better convergence of the midpoints of
the disks produced by (6). In this way, the faster convergence of the midpoints
of disks forces a better convergence of the radii (see [12]).

4. Numerical examples

The presented families of inclusion methods have been tested in solving
many polynomial equations. To provide the enclosure of the zeros in the second
and third iteration, which produce very small disks, we used the programming
package Mathematica 5 with the multi-precision arithmetic. For demonstration,
we give two numerical examples.

Example 1. We applied the interval methods (7) and (9) (with p = 0, 1, 2) in
order to find the circular inclusion approximations to the zeros of the polynomial

P (z) = z12 + z11 − 20z10 + 2z9 + 153z8 − 179z7 − 418z6 + 1052z5

−204z4 − 1436z3 + 1224z2 + 432z − 864.

The zeros of P are ζ1 = −3, ζ2 = −1, ζ3 = 1 + i, ζ4 = 1− i, ζ5 = 2, with the
respective multiplicities µ1 = 3, µ2 = µ3 = µ4 = 2, µ5 = 3. The initial disks
were selected to be Z

(0)
i = {z(0)

i ; 0.5} with the centers:

z
(0)
1 = −2.8− 0.1i, z

(0)
2 = −1.2 + 0.2i, z

(0)
3 = 1.1 + 0.8i,

z
(0)
4 = 0.8− 1.1i, z

(0)
5 = 1.8− 0.2i.

The maximal radii of the inclusion disks, produced in the third iterative steps,
are given in Table 1. The terms “exact inversions” and “centered inversions”
point out that the same type of inversion is applied in the implemented iterative
formulas, that is, INV1, INV2 = ()−1 and INV1, INV2 = ()Ic , respectively.

exact inversions
α (7), p = 0 (9), p = 0 (7), p = 1 (9), p = 1 (7), p = 2 (9), p = 2
1 1.03(−32) 2.11(−39) 7.67(−41) 3.69(−51) 3.78(−40) 6.20(−52)

0.5 7.09(−40) 3.92(−45) 3.09(−44) 3.87(−53) 5.95(−45) 2.74(−54)
µi/(n − µi) 1.36(−41) 1.40(−44) 1.47(−48) 1.68(−53) 1.43(−47) 7.76(−55)

0 3.60(−40) 1.34(−44) 7.72(−44) 2.01(−54) 2.03(−46) 1.32(−55)
−1 7.24(−29) 7.89(−32) 4.82(−28) 2.11(−39) 2.00(−30) 1.23(−41)

centered inversions
α (7), p = 0 (9), p = 0 (7), p = 1 (9), p = 1 (7), p = 2 (9), p = 2
1 1.89(−39) 4.48(−43) 1.49(−58) 3.42(−59) 2.23(−80) 7.75(−86)

0.5 7.77(−45) 8.95(−50) 1.64(−59) 4.41(−66) 6.10(−88) 6.87(−94)
µi/(n − µi) 1.04(−46) 4.61(−49) 3.25(−65) 1.57(−67) 4.82(−92) 6.14(−95)

0 1.17(−42) 6.97(−49) 1.49(−57) 5.07(−65) 3.63(−89) 6.67(−92)
−1 1.88(−31) 2.34(−36) 1.17(−47) 8.75(−52) 6.10(−71) 1.77(−77)

Table 1 The radii of inclusion disks in the third iteration. A(−h) means A × 10−h.

Example 2 To find the circular inclusion approximations to the zeros of the
polynomial

P (z) = z12 − (2− 3i)z11 + (16− 6i)z10 − (26− 38i)z9
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+(101− 58i)z8 − (120− 131i)z7 + (250− 76i)z6

−(72 + 20i)z5 − (84− 432i)z4 + (864− 292i)z3

−504z2 + 432iz + 864,

we implemented the same interval methods as in Example 1.
The zeros of P are ζ1 = −1, ζ2 = 2i, ζ3 = 1 + i, ζ4 = 1− i, ζ5 = −3i of the

multiplicities µ1 = 2, µ2 = 3, µ3 = 2, µ4 = 2, µ5 = 3, respectively. The initial
disks were selected to be Z

(0)
i = {z(0)

i ; 0.6}, with the centers:

z
(0)
1 = −1.2 + 0.2i, z

(0)
2 = −0.1 + 2.3i, z

(0)
3 = 1.2 + 0.8i,

z
(0)
4 = 0.8− 1.2i, z

(0)
5 = 0.2− 2.8i.

The maximal radii of the inclusion disks produced in the first three iterative
steps, are given in Table 2.

exact inversions centered inversions
α m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

(7), p = 0
1 3.18(−2) 1.33(−9) 2.96(−43) 5.20(−2) 7.77(−10) 6.19(−45)

0.5 1.82(−2) 3.91(−10) 1.67(−46) 2.62(−2) 6.82(−11) 6.13(−51)
µi/(n − µi) 1.33(−2) 1.57(−10) 3.53(−46) 1.81(−2) 1.54(−11) 1.91(−50)

0 9.86(−3) 5.91(−11) 6.44(−46) 1.29(−2) 6.31(−12) 5.95(−50)
−1 2.92(−2) 9.21(−9) 1.01(−36) 4.33(−2) 1.50(−9) 2.18(−41)

(7), p = 1
1 2.58(−2) 1.12(−9) 3.07(−45) 3.79(−2) 9.23(−12) 1.45(−64)

0.5 1.68(−2) 7.90(−11) 1.56(−51) 2.31(−2) 9.25(−13) 2.39(−71)
µi/(n − µi) 1.15(−2) 8.99(−12) 9.55(−55) 1.51(−2) 1.45(−13) 6.10(−72)

0 7.84(−3) 1.35(−12) 4.27(−57) 1.01(−2) 2.60(−14) 6.07(−71)
−1 2.60(−2) 3.35(−10) 4.25(−46) 3.74(−2) 3.80(−12) 9.32(−62)

(7), p = 2
1 2.53(−2) 5.27(−10) 1.79(−45) 3.74(−2) 5.83(−14) 1.90(−89)

0.5 1.67(−2) 4.75(−11) 3.31(−51) 2.30(−2) 8.62(−15) 8.03(−95)
µi/(n − µi) 1.15(−2) 8.03(−12) 2.06(−53) 1.52(−2) 2.09(−15) 1.29(−98)

0 7.98(−3) 2.38(−12) 3.10(−55) 1.03(−2) 5.39(−16) 7.69(−99)
−1 2.61(−2) 4.41(−10) 1.24(−45) 3.76(−2) 3.18(−14) 4.45(−89)

(9), p = 0
1 1.38(−2) 4.66(−11) 6.08(−47) 3.60(−2) 8.81(−12) 1.15(−50)

0.5 1.29(−2) 3.76(−12) 8.05(−53) 1.77(−2) 2.58(−13) 5.35(−58)
µi/(n − µi) 1.04(−2) 2.27(−12) 3.58(−52) 1.39(−2) 5.12(−13) 3.88(−56)

0 6.45(−3) 2.64(−12) 2.08(−51) 8.42(−3) 5.85(−13) 3.36(−54)
−1 1.55(−2) 2.51(−10) 1.15(−42) 2.24(−2) 7.16(−11) 1.21(−45)

(9), p = 1
1 1.81(−2) 1.49(−10) 9.84(−50) 2.59(−2) 2.02(−13) 7.04(−68)

0.5 9.75(−3) 3.46(−12) 1.40(−56) 1.30(−2) 3.93(−15) 7.42(−76)
µi/(n − µi) 7.73(−3) 1.76(−13) 2.54(−62) 1.01(−2) 2.78(−15) 5.36(−77)

0 4.39(−3) 2.13(−13) 4.00(−64) 5.60(−3) 3.57(−15) 7.46(−75)
−1 1.15(−2) 2.60(−11) 1.08(−53) 1.53(−2) 7.13(−13) 3.41(−64)

(9), p = 2
1 1.83(−2) 1.98(−10) 9.65(−50) 2.64(−2) 9.66(−15) 4.00(−92)

0.5 9.90(−3) 4.33(−12) 2.64(−56) 1.32(−2) 6.29(−16) 2.13(−98)
µi/(n − µi) 7.87(−3) 1.98(−13) 5.20(−62) 1.03(−2) 6.82(−17) 1.85(−102)

0 4.49(−3) 2.64(−13) 3.53(−64) 5.75(−3) 8.72(−18) 4.59(−104)
−1 1.15(−2) 2.91(−11) 5.56(−53) 1.52(−2) 1.74(−15) 8.94(−93)

Table 2 The radii of inclusion disks in the first three iterations. A(−h) means A × 10−h.

Tables 1 and 2 show very fast convergence of the proposed methods. The
third iteration is given to demonstrate very high accuracy of approximations,
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rarely required in practice. Furthermore, the corresponding columns in Tables
1 and 2, concerned with exact inversions, show that the application of Halley’s
correction in (7) and (9) does not produce, in general, smaller disks if INV1 =
()−1 (compared to the methods with Newton’s corrections), which coincides
with the theoretical results given by Theorems 2 and 3.
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