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ON TRACES OF MAXIMAL CLONES
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Abstract.
In this paper we study the partially ordered set of endomorphism

monoids of Rosenberg relations, which are used to characterize maximal
clones on a finite set. The problem naturally splits into 49 cases of inter-
relationships of endomorphism monoids of Rosenberg relations. In order
to make the paper self-contained, in addition to new results, we survey
some previously published partial results providing therefore the complete
solution to all but five cases.
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1. Introduction

In this paper we study the structure of the poset of traces of maximal clones
on a finite set. This research was motivated by the papers [1] and [4], where the
completeness for some special structures (concrete near-rings) was investigated
using techniques from clone theory. It appeared that unary parts (traces) of the
maximal clones that contain the operation + correspond to the maximal near-
rings containing the identity map. Moreover, if for every two distinct unary
parts M

(1)
i and M

(1)
j of such maximal clones we have M

(1)
i 6⊆ M

(1)
j , then every

unary part is a maximal near-ring. It is natural to ask what goes on in the
general case, i.e. what the relationship between any two traces of maximal
clones on a finite set is. As was expected, the width of this poset is doubly
exponential, but it was rather surprising to find out that its height is equal to
the size of the underlying set. Moreover, it turned out that the structure of this
poset is quite rich.

Some of the results related to endomorphism monoids of central and regular
relations can be found in [6], [8] and [5], and we quote them here without proof.

In Section 2 we fix the notions and notation used in the paper. Some proper-
ties of endomorphisms of regular relations are given in Section 3. The overview
of the relationships between the traces of maximal clones is given in Section 4.
The paper concludes with Section 5 in which we give some properties of the
poset of traces of maximal clones.

We thank P. P. Pálfy for his help with the proofs of Propositions 4.30 and
4.31.
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2. Preliminaries

Throughout the paper we assume that A is a finite set and |A| > 3. Let
O

(n)
A denote the set of all n-ary operations on A (so that O

(1)
A = AA) and

let OA :=
⋃

n>1 O
(n)
A denote the set of all finitary operations on A. For

F ⊆ OA let F (n) := F ∩ O
(n)
A be the set of all n-ary operations in F . A

set C ⊆ OA of finitary operations is a clone of operations on A if it contains
all projection maps πn

i : An → A : (x1, . . . , xn) 7→ xi and is closed with re-
spect to composition of functions in the following sense: whenever g ∈ C(n)

and f1, . . . , fn ∈ C(m) for some positive integers m and n then g(f1, . . . , fn) ∈
C(m), where the composition h := g(f1, . . . , fn) is defined by h(x1, . . . , xm) :=
g(f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)).

For a clone C, the unary part C(1) of C, will be referred to as the trace of
C.

We say that an n-ary operation f preserves an h-ary relation % if the following
holds:

a11

a21

...
ah1

 ,


a12

a22

...
ah2

 , . . . ,


a1n

a2n

...
ahn

 ∈ % implies


f(a11, a12, . . . , a1n)
f(a21, a22, . . . , a2n)

...
f(ah1, ah2, . . . , ahn)

 ∈ %.

For a set Q of relations and for a set F of operations let

PolQ := {f ∈ OA | f preserves every % ∈ Q}.

Let PolnQ := (PolQ)∩O
(n)
A . For an h-ary relation θ ⊆ Ah and a unary operation

f ∈ AA it is convenient to write

f(θ) := {(f(x1), . . . , f(xh)) | (x1, . . . , xh) ∈ θ}.

Then clearly f preserves θ if and only if f(θ) ⊆ θ. It follows that Pol1Q is
the endomorphism monoid of the relational structure 〈A,Q〉. Therefore instead
of Pol1Q we simply write EndQ. Also, we denote by AutQ the automorphism
group of the relational structure 〈A,Q〉, i.e. AutQ := SA ∩ PolQ, where SA is
the full symmetric group on A.

If the underlying set is finite and has at least three elements, then the lattice
of clones has cardinality 2ℵ0 . However, one can show that the lattice of clones
on a finite set has a finite number of coatoms, called maximal clones, and that
every clone distinct from OA is contained in one of the maximal clones. One
of the most influential results in clone theory is the explicite characterization
of the maximal clones, obtained by I. G. Rosenberg as the culmination of the
work of many mathematicians. It is usually stated in terms of the following six
classes of finitary relations on A (the so-called Rosenberg relations).

(R1) Bounded partial orders. These are partial orders on A with a least and a
greatest element.
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(R2) Nontrivial equivalence relations. These are equivalence relations on A
distinct from ∆A := {(x, x) | x ∈ A} and A2.

(R3) Permutational relations. These are relations of the form {(x, π(x)) | x ∈
A} where π is a fixpoint-free permutation of A with all cycles of the same
length p, where p is a prime.

(R4) Affine relations. For a binary operation ⊕ on A let

λ⊕ := {〈x, y, u, v〉 ∈ A4 | u⊕ v = x⊕ y}.

A relation % is called affine if there is an elementary Abelian p-group
〈A,⊕,	, 0〉 on A such that % = λ⊕.

Suppose now that A is an elementary Abelian p-group. Then it is well-
known that f ∈ Pol{λ⊕} if and only if

f(x1 ⊕ y1, . . . , xn ⊕ yn) = f(x1, . . . , xn)⊕ f(y1, . . . , yn)	 f(0, . . . , 0)

for all xi, yi ∈ A. In case f is unary, this condition becomes

f(x⊕ y) = f(x)⊕ f(y)	 f(0).

(R5) Central relations. All unary relations are central relations. For central
relations % of arity h > 2 the definition is as follows: % is said to be
totally symmetric if (x1, . . . , xh) ∈ % implies (xπ(1), . . . , xπ(h)) ∈ % for all
permutations π, and it is said to be totally reflexive if (x1, . . . , xh) ∈ %
whenever there are i 6= j such that xi = xj . An element c ∈ A is central
if (c, x2, . . . , xh) ∈ % for all x2, . . . , xh ∈ A. Finally, % 6= Ah is called
central if it is totally reflexive, totally symmetric and has a central element.
According to this, every central relation can be written as C∪R∪T , where
C consists of all the tuples of distinct elements containing at least one
central element (the central part), R consists of all the tuples (x1, . . . , xh)
such that there are i 6= j with xi = xj (the reflexive part) and T consists
of all the tuples (x1, . . . , xh) such that x1, . . . , xh are distinct non-central
elements. We will call T the tail of %.

(R6) h-regular relations. Let Θ = {θ1, . . . , θm} be a family of equivalence re-
lations. We say that Θ is an h-regular family if every θi has precisely h
blocks, and additionally, if Bi is an arbitrary block of θi for i ∈ {1, . . . ,m},
then

⋂m
i=1 Bi 6= ∅.

An h-ary relation % 6= Ah is h-regular if h > 3 and there is an h-regular
family Θ such that (x1, . . . , xh) ∈ % if and only if for all θ ∈ Θ there are
distinct i, j with (xi, xj) ∈ θ.

Note that regular relations are totally reflexive and totally symmetric.

Theorem 2.1. [Rosenberg [10]] A clone M of operations on a finite set is max-
imal if and only if there is a relation % from one of the classes (R1)–(R6) such
that M = Pol{%}.
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Let f ∈ O
(n)
A for some n ∈ N . We say that the ith argument of f is essential

if there exist a1, . . . , ai−1, ai+1, . . . , an, b, c ∈ A with b 6= c such that

f(a1, . . . , ai−1, b, ai+1, . . . , an) 6= f(a1, . . . , ai−1, c, ai+1, . . . , an),

i.e. the value of f is not independent of the ith argument. We shall call an
operation f a S lupecki operation if it is surjective and has at least two essential
arguments. It is easy to check that the set UA of all non–S lupecki operations
(that is, operations that are essentially unary or not surjective) is a clone. More-
over this clone is maximal, and it is the only maximal clone that contains all
unary maps. From this it follows that the partially ordered set of traces of
maximal clones has the greatest element.

Let us recall the notion of the irreducible element in a partially ordered
set. Let (A,6) be a partially ordered set. We say that an element b covers an
element a (a ≺ b) if a < b and there is no c ∈ A such that a < c < b. An
a ∈ A is ∧–irreducible if there exists exactly one element b ∈ A such that a ≺ b.
Analogously, an a ∈ A is ∨–irreducible if there exists exactly one element b ∈ A
such that b ≺ a. Finally, an element a is irreducible if it is ∧–irreducible or
∨–irreducible and in that case we say that b is the primary neighbor of a. Note
that an arbitrary element may have 0, 1 or 2 primary neighbors.

3. Some properties of endomorphisms of regular relations

Note first that there is another way to define regular relations. Given a finite
set A, |A| > 3, and an h-regular family Θ = {θ1, . . . , θm} on the set A, let

RΘ = {(x1, . . . , xh) | (∀θ ∈ Θ)(∃i 6= j)xiθxj}

denote the corresponding h-regular relation. Now, take the set {1, . . . , h}m. We
define the elementary (h, m)-relation Ψh,m on this set in the following way:

Ψh,m =

{( a1
1
...

a1
m

 , . . . ,

 ah
1
...

ah
m

) | (∀i ∈ {1, . . . ,m})(∃j 6= k)aj
i = ak

i

}
.

Note that the elementary (h, m)-relation is the h-regular relation on the set
{1, . . . , h}m defined by the h-regular family Θ∗ = {θ∗1 , . . . , θ∗m}, where

θ∗i =

{( b1
1
...

b1
m

 ,

 b2
1
...

b2
m

) | b1
i = b2

i

}
.

Then, there exists a surjective mapping λ : A → {1, . . . , h}m such that

RΘ = {(x1, . . . , xh) | (λ(x1), . . . , λ(xh)) ∈ Ψh,m}.
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The complete characterization of all mappings that preserve regular relations
can be found in [3]. We present this result without proof.

Denote by −→x (i) the i-th coordinate of the vector −→x , which is an element of
the set {1, . . . , h}m. Let f be an n-ary function on the set A. We define the
function f ′i : An → {1, . . . , h} in the following way:

f ′i(x1, . . . , xn) := (λ(f(x1, . . . , xn)))(i).

Proposition 3.1. [3] An n-ary function f on a set A preserves an h-regular
relation RΘ if and only if for each function f ′i either f ′i has at most h − 1
distinct values or there exist a permutation s on {1, . . . , h}, a j ∈ {1, . . . , n}
and a v ∈ {1, . . . ,m} such that

f ′i(x1, . . . , xn) := s((λ(xj))(v)).

We continue with some properties of h-regular and elementary (h, m)-rela-
tions.

Lemma 3.2. [5] Let A = {1, . . . , h}m, m > 2 and let Ψh,m be an elementary h-
regular relation on A. Then for every pair of distinct elements −→c ,

−→
d ∈ A there

exist elements
−→
e2 , . . . ,

−→
eh such that

−→
d 6∈ {

−→
e2 , . . . ,

−→
eh}, (

−→
d ,
−→
e2 , . . . ,

−→
eh) ∈ Ψh,m

and (−→c ,
−→
e2 , . . . ,

−→
eh) 6∈ Ψh,m.

Lemma 3.3. [5] Let Θ = {θ} be an h-regular family and let RΘ be the h-regular
relation defined by Θ. Then End{θ} ⊆ End{RΘ}.

Lemma 3.4. Let Θ = {θ1, . . . , θm} be an h–regular family and let RΘ be the
h–regular relation defined by Θ. Then

∩m
i=1θi = {(a, b) | (∀c3, . . . , ch ∈ A)(a, b, c3, . . . , ch) ∈ RΘ}.

Proof. (⊆) Let (a, b) ∈ ∩m
i=1θi and take arbitrary c3, . . . , ch ∈ A. Then for every

i, 1 6 i 6 m, we have (a, b) ∈ θi, so (a, b, c3, . . . , ch) ∈ RΘ by definition.
(⊇) Suppose that (a, b) 6∈ ∩m

i=1θi. Then there exists an i, 1 6 i 6 m,
such that (a, b) 6∈ θi. Let T i

1, . . . , T
i
h be the equivalence classes of θi and let

a ∈ T i
1, b ∈ T i

2. For arbitrary choice of cj ∈ T i
j , 3 6 j 6 h, we have that

(a, b, c3, . . . , ch) 6∈ RΘ–contradiction. �

Lemma 3.5. Let Θ = {θ1, . . . , θm} be an h–regular family, let RΘ be the h–
regular relation defined by Θ and let Φ = ∩m

i=1θi. Then Aut{RΘ} ⊆ Aut{Φ}.

Proof. Let f ∈ Aut{RΘ}. To see that f ∈ Aut{Φ}, it suffices to prove that
(f(a), f(b)) ∈ Φ for every (a, b) ∈ Φ . Take arbitrary elements c3, . . . , ch ∈ A.
Then (a, b, f−1(c3), . . . , f−1(ch)) ∈ RΘ (by Lemma 3.4) and

(f(a), f(b), f(f−1(c3)), . . . , f(f−1(ch))) = (f(a), f(b), c3, . . . , ch) ∈ RΘ,
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so (f(a), f(b)) ∈ Φ by definition. �

Lemma 3.6. Let Θ = {θ1, . . . , θm} be an h–regular family, let RΘ be the h–
regular relation defined by Θ and let Φ = ∩m

i=1θi. If Φ = ∆A, then A ∼=
A/θ1 × · · · ×A/θm.

Proof. Let ϕ : A → A/θ1 × · · · × A/θm be the mapping defined by ϕ(a) =
([a]θ1 , . . . , [a]θm). We are going to show that ϕ is bijective. Let ϕ(a) = ϕ(b).
Then ([a]θ1 , . . . , [a]θm) = ([b]θ1 , . . . , [b]θm). It follows that [a]θi = [b]θi , for every
i, 1 6 i 6 m, so (a, b) ∈ ∩m

i=1θi = Φ. Since Φ = ∆A, we obtain that a = b.
Hence, ϕ is injective. Let (T1, . . . , Tm) ∈ A/θ1×· · ·×A/θm. Since Θ is h–regular
relation, we have T := ∩m

i=1Ti 6= ∅. Moreover, for all a, b ∈ T we have (a, b) ∈ Φ.
Hence, a = b and T = {a}. Now, ϕ(a) = (T1, . . . , Tm) by construction. Hence,
ϕ is surjective. Altogether ϕ is bijective. Hence A ∼= A/θ1 × · · · ×A/θm. �
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4. Characterizations

The results are summarized in the following table:

%\σ
Bounded
partial
order

Equiva-
lence
relation

Permu-
tational
relation

Affine
relation

Unary
central
relation

k–ary
central
relation,
k > 2

h–
regular
relation

Bounded
partial
order −

4.1

−
4.6

−
4.13

−
4.14

−
4.19

±?

[8, 4.10]

±?

4.27

Equiva-
lence
relation −

4.2

−
4.7

−
4.13

−
4.15

−
4.19

−
[8, 4.11]

±
[5, 4.1]

Permu-
tational
relation −

4.3

±
4.9

−
4.13

±
4.16

−
4.19

−
[8, 4.12]

±
4.30

Affine
relation −

4.4

−
4.10

−
4.13

−
4.17

−
4.19

−
[8, 4.13]

±
4.31

Unary
central
relation −

[8, 4.2]

±
[8, 4.3]

−
[8, 4.4]

−
[8, 4.5]

−
[8, 4.1]

±
[8, 4.1]

±
[8, 4.6,4.8]

k–ary
central
relation,
k > 2

−
[8, 4.2]

±
[8, 4.3]

−
[8, 4.4]

−
[8, 4.5]

−
[8, 3.2]

±
[6, 3.4]

±?

[8, 4.6,4.8]

h–regular
relation −

4.5

−
4.12

−
4.13

−
4.18

−
4.19

−?

4.24

±?

[5, 5.1]

Table 1.

The entries in this table are to be interpreted in the following way:

• we write −, if End{%} 6⊆ End{σ} for every pair (%, σ) of relations of
indicated type;
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• we write ±, if End{%} 6⊆ End{σ} in general, but there are % and σ such
that End{%} ⊆ End{σ} and in that case we give necessary and sufficient
condition;

• we write ±?, if the work is still in progress, but there is a partial result;

• we write −?, if End{%} 6⊆ End{σ} in general, but it is still unknown if
there exist % and σ such that End{%} ⊆ End{σ}.

Each of the subsections that follow presents results from one column of the
table.

4.1. Rosenberg Relations vs. Bounded Partial Orders

In this subsection we are going to show that no trace of a maximal clone is
subset of the trace of a maximal clone defined by a bounded partial order.

We assume that σ is a partial order on A with the least element 0 and the
greatest element 1 and % will range through the list of Rosenberg relations.

Proposition 4.1. Let % be a bounded partial order distinct from σ and σ−1.
Then End{%} * End{σ}.

Proof. The result follows immediately from Theorem 1 in [2]. �

Proposition 4.2. Let % be a nontrivial equivalence relation. Then End{%} *
End{σ}.

Proof. Consider the following two functions:

fa,b(x) =

 a, if x = b,
b, if x = a,
x, otherwise,

ga,b(x) =

 a, if x ∈ [b]%,
b, if x ∈ [a]%,
x, otherwise.

If there exist a and b such that a <σ b and [a]% = [b]%, then fa,b preserves %
but does not preserve σ. If for all a <σ b we have [a]% 6= [b]%, then for any
such pair a, b the mapping ga,b preserves %, but does not preserve σ. Hence,
End{%} 6⊆ End{σ}. �

Proposition 4.3. Let % be a permutational relation arising from a p–regular
permutation α. Then End{%} * End{σ}.

Proof. If 0 and 1 are contained in different cycles of the permutation α, say
α = (0a1 . . . ap−1)(1ap+1 . . . a2p−1) . . . (so, a0 = 0 and ap = 1), then we take the
mapping

f(x) =

 ap+i, if x = ai, 0 6 i 6 p− 1
ai−p, if x = ai, p 6 i 6 2p− 1

x, otherwise.
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Since f exchanges the cycles (0a1 . . . ap−1) and (1ap+1 . . . a2p−1), it follows
that it preserves %. On the other hand, we have 06σ1, but f(0) = 166σ0 = f(1),
so σ is not preserved by f .

Suppose now that 0 and 1 are contained in the same cycle of α, say α =
(0 . . . aj−11aj+1 . . . ap−1) . . . Then the mapping

f(x) =
{

ai+j−1, if x = ai, 0 6 i 6 p− 1
x, otherwise,

preserves %, but does not preserve σ, since 06σ1, but f(0) = 166σa2j−1 = f(1)
(indices are, of course, mod p). To conclude, End{%} 6⊆ End{σ}. �

Proposition 4.4. Let % be an affine relation. Then End{%} * End{σ}.

Proof. For the proof, we take the affine mapping f(x) = 0 + 1− x. Now, 06σ1,
but f(0) = 1 66σ0 = f(1) and σ is not preserved. �

Proposition 4.5. Let % be an h–regular relation. Then End{%} * End{σ}.

Proof. It is sufficient to take the mapping

f(x) =
{

0, if x = 1,
1, otherwise.

Since 06σ1 and f(0) = 166σ0 = f(1), it follows that σ is not preserved. On
the other hand, f preserves every totally reflexive at least ternary relation and,
therefore, preserves h–regular relations. �

4.2. Rosenberg Relations vs. Equivalence Relations

Next we show that the traces of maximal clones defined by bounded partial
orders, equivalence, affine and h–regular relations are not subsets of the trace
of a maximal clone defined by any equivalence relation. However, it can happen
that the trace of a maximal clone defined by a permutational or a central relation
is a subset of the trace of a maximal clone defined by some equivalence relation.
The complete characterizations of all such relations are given in Propositions
4.9 and 4.11.

In this subsection we assume that σ is a nontrivial equivalence relation and
that % ranges through the Rosenberg relations.

Proposition 4.6. Let % be a partial order with the least element 0 and the
greatest element 1. Then End{%} * End{σ}.
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Proof. Consider the following % preserving mappings:

fa,b(x) =
{

a, if x = a,
b, otherwise, ga(x) =

{
0, if x6%a,
x, otherwise.

If [0]σ 6= [1]σ and |[1]σ| > 2, then there is an a ∈ [1]σ such that a 6= 1.
Clearly, f1,0 does not preserve σ. Dually, if [0]σ 6= [1]σ and |[0]σ| > 2, then
there is an a ∈ [0]σ such that a 6= 0. Analogously, f0,1 does not preserve the
equivalence relation σ.

Further, if [0]σ 6= [1]σ and |[0]σ| = |[1]σ| = 1, then there is at least one
equivalence class of σ with at least two elements, say a and b, since σ is a
nontrivial equivalence relation. Then there are two possibilities: either b 66%a
or b6%a. In the first case, we observe that ga is not an endomorphism of σ.
Analogously, the counterexample for the latter case is gb.

Finally, if [0]σ = [1]σ, then there exists an a ∈ A such that a 6∈ [0]σ. However,
in this case, f1,a does not preserve σ. To conclude, End{%} 6⊆ End{σ}. �

Proposition 4.7. Let % be a nontrivial equivalence relation. Then End{%} *
End{σ}.

Proof. Denote by R1, . . . , Rn the equivalence classes of % and by S1, . . . , Sm the
equivalence classes of σ. Now, we consider the following cases:

Case 1: There exists a class of % which intersects at least two nontrivial
classes of σ.

Let Ri, Sj , Sk be such that |Sj |, |Sk| > 2, j 6= k, and Ri has a nonempty
intersection with both Sj and Sk. Let a ∈ Ri ∩ Sj and b ∈ Ri ∩ Sk. Then

f(x) =
{

b, if x = a,
x, otherwise

clearly preserves %. On the other hand, there exists a c ∈ Sj \ {a}, so (a, c) ∈ σ,
but (f(a), f(c)) = (b, c) 6∈ σ. Therefore, f(σ) 6⊆ σ.

Case 2: Every class of % intersects at most one nontrivial class of σ. Now,
we have two possibilities:

(1) Ri ∩ Sj = ∅ whenever Ri and Sj are nontrivial. Let R1 be a nontrivial
class of % and let S1 be a nontrivial class of σ. Then for every element c ∈ S1

we have [c]% = {c}. Now, take arbitrary a ∈ S1, b ∈ R1 and the mapping from
the previous case. It clearly preserves % and does not preserve σ.

(2) Ri ∩ Sj 6= ∅ for some nontrivial Ri, Sj . Let a ∈ Ri ∩ Sj .
If there is a b ∈ Ri \ Sj , then we take the same mapping as in (1) with the

same conclusion. Otherwise, it follows that Ri ⊆ Sj . Now, if Ri ⊂ Sj , then
there is some c ∈ Sj \Ri. On the other hand, σ is not trivial, so, there is at least
one more equivalence class, say Sk. Let d ∈ Sk. Now, we take the mapping

f(x) =
{

d, if x ∈ Ri,
x, otherwise
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which preserves % and does not preserve σ, since (a, c) ∈ σ and (f(a), f(c)) =
(d, c) 6∈ σ. Finally, if Ri = Sj , then at least one of the relations % and σ has at
least one more nontrivial class which is not a nontrivial class of both relations.
If it has a nonempty intersection with some nontrivial class of the other relation,
then we act as above. Otherwise, it is the union of some trivial classes of the
other relation. Now, if that class is a class of σ, then we act as in (1). Otherwise,
it is a class of %, say Rl. Then take p, q ∈ Rl, r ∈ Ri and define the mapping

f(x) =
{

p, if x = r,
q, otherwise

which preserves % and does not preserve σ, since for s ∈ Sj , s 6= r, we have
(r, s) ∈ σ and (f(r), f(s)) = (p, q) 6∈ σ. Therefore, f(σ) 6⊆ σ. �

In order to give the answer in the case of a permutational relation % we need
the following lemma.

Lemma 4.8. Let % be a permutational relation arising from a p–regular per-
mutation α on A. If Aut{%} ⊆ Aut{σ}, then all equivalence classes of σ are
nontrivial.

Proof. Let Aut{%} ⊆ Aut{σ}. Suppose that there exists a trivial class [a]σ =
{a} and let C1 be a cycle of α such that a ∈ C1. If C1 contains an element
b from a nontrivial class of σ, say C1 = (b . . . a . . . ap−1), where a0 = b and
am = a, then just take the mapping

f(x) =
{

αm(x), if x ∈ C1,
x, otherwise.

It is clear that f ∈ Aut{%} \Aut{σ}.
If C1 is the union of trivial classes of σ, then there exists a cycle C2 that

contains an element b from some nontrivial class. Then C1 = (aa1 . . . ap−1) and
C2 = (bap+1 . . . a2p−1), where a0 = a and ap = b. Now,take the mapping

f(x) =

 ap+i, if x = ai, 0 6 i 6 p− 1
ai−p, if x = ai, p 6 i 6 2p− 1

x, otherwise.

It is clear that f preserves %, but does not preserve σ, since the elements of [b]σ
are mapped by f to the elements of at least two equivalence classes of σ. Hence,
all equivalence classes of σ are nontrivial. �

Proposition 4.9. Let % be a permutational relation arising from a p–regular
permutation α on A. Then End{%} ⊆ End{σ} if and only if every cycle of α is
an equivalence class of σ.
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Proof. (⇐) Suppose that every cycle of α is an equivalence class of σ and let
f ∈ End{%}. Since f preserves %, f maps each cycle of α onto a cycle of α. But,
then f maps every equivalence class of σ onto an equivalence class of σ, so σ is
also preserved by f . Hence, End{%} ⊆ End{σ}.

(⇒) Suppose that End{%} ⊆ End{σ}. Then Aut{%} ⊆ Aut{σ}, so all equiv-
alence classes of σ are nontrivial, by Lemma 4.8.

First, we are going to show that for every cycle C there exists an equivalence
class S such that either C (considered as a set of elements) is a subset of S or S
is a subset of C. Suppose that this is not the case. Then there exists a cycle Cj

such that for every equivalence class S we have that Cj is not contained in S and
S is not contained in Cj . Then Cj contains elements of at least two equivalence
classes, say S1 and S2. Since S1 is not contained in Cj , it follows that there
exists an element a ∈ S1 \ Cj , so there exists a cycle Ci such that a ∈ Ci. Let
b ∈ S1 ∩ Cj and c ∈ S2 ∩ Cj . Since b, c ∈ Cj it follows that c = αm(b) for some
m. Now, take the mapping

f(x) =
{

αm(x), if x ∈ Cj ,
x, otherwise.

It obviously preserves % and does not preserve σ, since (a, b) ∈ σ and (f(a), f(b))
= (a, c) 6∈ σ.

Further, if there exists a cycle C which consists of k > 2 equivalence classes
of σ, since the permutation α preserves σ, it follows that all equivalence classes
of C contain the same number of elements, say n > 2; then C contains k ·n = p
elements, where k, n > 2 and p is a prime number – contradiction.

Similarly, assume that there exists an equivalence class of σ, say S, which
contains at least two cycles of α, say C1, C2, . . . . Then there is a cycle C0 6⊆ S,
so a mapping that takes C1 to C0 in an appropriate way and leaves everything
else fixed obviously preserves % and does not preserve σ. Therefore, every cycle
of α is an equivalence class of σ. �

Proposition 4.10. Let % be an affine relation. Then End{%} * End{σ}.

Proof. Let [a]σ be a nontrivial equivalence class of σ, b ∈ [a]σ, b 6= a and let
c ∈ A \ [a]σ. Then there is an affine mapping f which takes b to c and leaves a
fixed. Clearly, σ is not preserved by f , so End{%} 6⊆ End{σ}. �

The following result was obtained in [8]. We repeat it here without proof.

Proposition 4.11. Let % be a central relation on A whose center is C%.
Then End{%} ⊆ End{σ} if and only if % is a unary or a binary central

relation with no tail such that C% is a nontrivial equivalence class of σ and all
other equivalence classes of σ are trivial. (Note that for unary central relations
C% = % and that they have no tail by definition.)

Proposition 4.12. Let % be an h–regular relation. Then End{%} * End{σ}.
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Proof. Let [a]σ be a nontrivial equivalence class, so there is b ∈ [a]σ, b 6= a, and
let c 6∈ [a]σ (such a c exists because σ is nontrivial). Then the mapping

f(x) =
{

a, if x = a,
c, otherwise

preserves every totally reflexive at least ternary relation. On the other hand,
(a, b) ∈ σ, but (f(a), f(b)) = (a, c) 6∈ σ, so f does not preserve σ. Hence,
End{%} 6⊆ End{σ}. �

4.3. Rosenberg Relations vs. Permutational Relations

In this subsection we show that the trace of the maximal clone defined by
a permutational relation cannot contain the trace of any other maximal clone.
Let σ be a permutational relation arising from a p–regular permutation α.

Proposition 4.13. Let % be any Rosenberg relation. Then End{%} * End{σ}.

Proof. Case 1: Suppose that % is not a permutational relation. Since α is
fixpoint free (by definition), it follows that σ is not preserved by constant map-
pings.

On the other hand, bounded partial orders, equivalence, affine, central and
h–regular relations are always preserved by a suitably chosen constant mapping,
so if % is one of those, it is clear that End{%} 6⊆ End{σ}.
Case 2: Let % now be a permutational relation arising from a q–regular per-
mutation β, then we proceed as follows:

If p 6= q, we can prove that End{%} 6⊆ End{σ} in the following way:
Since p and q are distinct prime numbers, there is a cycle of α, say S =

(a0 . . . ap−1), which has a nonempty intersection with at least two cycles of
β, say R1 = (b0 . . . bq−1) and R2 = (bq . . . b2q−1) and at least one of these
cycles is not contained in S, say R1. Without loss of generality, assume that
a0 = b0 ∈ R1 ∩ S, aj = bq ∈ R2 ∩ S and bm ∈ R1 \ S, for some 1 6 m 6 q − 1.
Now, just take the mapping

f(x) =
{

βm(x), if x ∈ R1,
x, otherwise.

It preserves %, but it does not preserve σ, since a0, aj ∈ S, but f(a0) = f(b0) =
βm(b0) = bm 6∈ S and f(aj) = f(bq) = bq ∈ S, so S is not mapped onto a cycle
by f .

Now, suppose that p = q. We also assume that α is not a power of β. Let
R1, R2, . . . , Rl be the cycles of % and S1, S2, . . . , Sl the cycles of σ. Since % and σ
are distinct, we have two possibilities: either there exists a cycle of % contained
in at least two cycles of σ or R1 = S1, R2 = S2, . . . , Rl = Sl as sets, but they
differ in the arrangement of elements in cycles.

Suppose first that there is a cycle, say R1, which intersects at least two cycles
of σ, say S1 and S2, so R1 is not a cycle of α. Then β has at least two cycles,
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so β = (r1
0 . . . r1

p−1)(r2
0 . . . r2

p−1) . . . (rl
0 . . . rl

p−1), where R1 = (r1
0 . . . r1

p−1). Now,
take the mapping f(ri

j) = r1
j , 0 6 j 6 p − 1, 1 6 i 6 l. Clearly, it preserves %,

since it maps all cycles of β onto R1 and does not preserve σ, since the image of
every cycle of α either contains less then p elements as a set or it is R1, which
is not a cycle of α.

Now, if R1 = S1, R2 = S2, . . . Rl = Sl as sets and there exists a pair of
cycles, say R1 and S1, such that R1 = S1, but α|S1 is not a power of β|S1, then
there exists r0 such that α(r0) = βk(r0) and α(r1) = βj(r1), k 6≡ j (mod p),
where r1 = β(r0). For f = β we have f(α(r0)) = f(βk(r0)) = βk+1(r0) and
α(f(r0)) = α(r1) = βj(β(r0)) = βj+1(r0), so f(α(r0)) 6= α(f(r0)) and σ is not
preserved.

If every pair of cycles with the same sets of elements is such that α|Si is a
power of β|Ri, for all i, then there are two pairs, say R1 = (r0 . . . rp−1), S1 =
(s0 . . . sp−1) and R2 = (rp . . . r2p−1), S2 = (sp . . . s2p−1), such that α|S1 =
(β|R1)m and α|S2 = (β|R2)n, m 6= n, m,n < p. Then we take the mapping

f(rk) =
{

rk+p, if rk ∈ R1,
rk, otherwise.

Since f maps R1 onto R2 and every other cycle of % onto itself, it preserves
%. We will show that it does not preserve σ.

Without loss of generality we can assume that r0 = s0 and rp = sp. Then
we have the following: s1 = α(s0) = α(r0) = βm(r0) = rm, so it follows that
f(α(s0)) = f(s1) = f(rm) = rm+p. On the other hand, α(f(s0)) = α(rp) =
βn(rp) = rn+p 6= rm+p, since n 6= m. So, f(α(s0)) 6= α(f(s0)) and it follows
that f ∈ End{%} \ End{σ}. �

4.4. Rosenberg Relations vs. Affine Relations

We now show that only the trace of a maximal clone defined by a permu-
tational relation can be in certain cases contained in the trace of a maximal
clone defined by an affine relation. The complete characterization is given in
Proposition 4.16. We assume that σ = {〈x, y, u, v〉 ∈ A4 | x + y = u + v} is an
affine relation, where 〈A, +,−, 0〉 is an elementary Abelian p–group and that %
is one of the Rosenberg relations.

Proposition 4.14. Let % be a partial order with the least element 0% and the
greatest element 1%. Then End{%} * End{σ}.

Proof. We define the mapping

fa,b,c(x) =
{

a, if x = b,
c, otherwise.

If 0 = 0%, then we take the order–preserving mapping f0%,0,1% that is not affine.
Further, if 0 6= 0% and p > 3, then we take the order–preserving mapping

f0%,0%,1%
which is not affine. If, however, p = 2, then we have two possibilities:
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either 0 = 1% or 0 6= 1%. In the first case just take the nonaffine order-preserving
mapping f1%,1%,0%

. In the latter case, the mapping

f(x) =

 0%, if x<%0,
0, if x = 0,

1%, otherwise,

preserves %, but does not preserve σ. Hence, End{%} 6⊆ End{σ}. �

Proposition 4.15. Let % be a nontrivial equivalence relation. Then End{%} *
End{σ}.

Proof. For the proof we take the mapping

f(x) =
{

0, if x = 0,
a, otherwise

where a is any element of A \ {0} if [0]% = {0}, and a ∈ [0]% \ {0}, if [0]% is a
nontrivial equivalence class. Then f ∈ End{%} \ End{σ}. �

Proposition 4.16. Let % be a permutational relation arising from a p–regular
permutation α on A. Then End{%} ⊆ End{σ} if and only if α is a cyclic
permutation of the form α(x) = ax + b, a 6= 0 (where A is considered as vector
space over the p–element field GF(p)), or |A| = 4 and α has two cycles.

Proof. (⇒) Suppose that End{%} ⊆ End{σ} and that α has at least three cycles,
so that α = (a0

0 . . . a0
p−1)(a1

0 . . . a1
p−1) . . . (al

0 . . . al
p−1), where a0

0 = 0. Then the
mapping

f(x) =
{

a1
j , if x = ak

j , k ∈ {2, . . . , l}
x, otherwise,

obviously preserves %, so it also preserves σ. Hence, f is affine. Now, notice
that Kerf = {0}, whence follows that f is an injective affine mapping – a
contradiction. Hence, α has at most two cycles.

If α has precisely two cycles, then |A| = 2p, where p is prime. Since ele-
mentary Abelian q–group has qk elements, it follows that p = 2, so |A| = 4 and
α = (a0a1)(a2a3).

Now, suppose that α is a cyclic permutation and take any nontrivial f ∈
End{%}. Then f ◦α = α◦f whence follows that f is a power of α. On the other
hand, since f ∈ End{σ}, we have f(x) = kx + n for some k ∈ GF(f), n ∈ A
(see [9]). Since f is nontrivial, we also have that α is a power of f . Hence,
α ∈ End{σ} and α(x) = ax + b for some a 6= 0.

(⇐) Conversely, if α(x) = ax + b is a cyclic permutation, then f ∈ End{%}
if and only if f = αm for some m. Therefore, f(x) = kx + n, so it follows that
f ∈ End{σ}.
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If α has precisely two cycles, then |A| = 4 and α = (a0a1)(a2a3). Now,
every mapping f which preserves % maps a cycle onto a cycle, so f(A) has
either two or four elements. To prove that f is always affine, it suffices to show
that f(x + y) = f(x) + f(y) − f(0), for every x, y ∈ A. If at least one of x, y
is 0 then it is clear that the above equation is satisfied. Further, if x = y, then,
since A is a 2–group, x + x = 0 and f(0) + f(0) = 0 = f(x) + f(x). Finally,
if x 6= y and x, y 6= 0 then x + y = z, where z is the third nonzero element.
We have f(x + y) − f(x) − f(y) + f(0) = f(x + y) + f(x) + f(y) + f(0) =
f(z) + f(x) + f(y) + f(0) = 0, since f(0), f(x), f(y), f(z) are either all distinct
or two values appear twice. We conclude, End{%} ⊆ End{σ}. �

Proposition 4.17. Let % be an affine relation. Then End{%} * End{σ}.

Proof. It is known that every two elementary Abelian p–groups with the
same carrier are isomorphic, so it follows that |End{%}| = |End{σ}|. Now,
if End{%} 6= End{σ}, then End{%} 6⊆ End{σ}. �

Proposition 4.18. Let % be an h–regular relation or a central relation with the
center C%. Then End{%} * End{σ}.

Proof. Take the mapping

f(x) =
{

0, if x = 0,
a, otherwise,

where a ∈ A \ {0}. For central relations we only require that a ∈ C% \ {0} if
C% 6= {0}. �

4.5. Rosenberg Relations vs. Central Relations

First we will show that the trace of a maximal clone is never contained in
the trace of the maximal clone defined by a unary central relation. Then we
will give a partial answer to the question for central relations of arity at least 1.

Proposition 4.19. Let σ be a unary central relation and let % be any Rosenberg
relation. Then End{%} * End{σ}.

Proof. Note that a unary central relation σ is a proper nonempty subset of A.
Hence there exists an element a ∈ A \ σ and the constant mapping f(x) = a
does not preserve σ.

On the other hand, bounded partial orders, equivalence, affine, k–ary central
(k > 2) and h–regular relations are preserved by any constant mapping, so if %
is one of these, it is clear that End{%} 6⊆ End{σ}.

It is left to be seen what is the relationship between End{%} and End{σ}, if
% is a permutational or another unary central relation.
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Let % be a permutational relation arising from a p–regular permutation α.
We consider the following cases:
Case 1: α has at least two cycles. Then there is a cycle that contains an
element a ∈ A \ σ and there is another cycle that contains b ∈ σ, say

α = (aa1 . . . ap−1)(bap+1 . . . a2p−1) . . .

(so, a0 = a and ap = b.) Then we define

f(x) =

 ap+i, if x = ai, 0 6 i 6 p
ai−p, if x = ai, p 6 i 6 2p− 1

x, otherwise.

Obviously, f ∈ End{%}. On the other hand, since f(b) = a 6∈ σ, it follows that
σ is not preserved by f .
Case 2: α is a one-cycle permutation. We take a ∈ A\σ and b ∈ σ and assume
that α = (ba1 . . . aj−1aaj+1 . . . ap−1), a0 = b, aj = a. Then αj(b) = a so that
αj ∈ End{%} \ End{σ}.

Now, let % be a unary central relation. Then we have two possibilities: either
% ⊂ σ or % 6⊂ σ.

In the first case, there exists an element b ∈ σ \ %. We define the mapping

f(x) =
{

a, if x ∈ σ \ %,
x, otherwise,

where a ∈ A \ σ. It is obvious that f preserves % and does not preserve σ. On
the other hand, if % 6⊂ σ, then there is an element b ∈ % \ σ and the constant
mapping f(x) = b does not preserve σ. So, End{%} 6⊆ End{σ}. �

In the sequel let σ be a central relation of arity > 2. The following result
was obtained in [8]:

Proposition 4.20. [8] Let % be a bounded partial order on A that is not a
chain, with the least element 0 and the greatest element 1 and let σ be a binary
central relation on the same set with the center Cσ. Then End{%} ⊆ End{σ} if
and only if σ = % ∪ %−1.

Proposition 4.23 was obtained in [6] and we present it here without proof.

Definition 4.21. Let % be a central relation of arity k and let m > k. Then
for −→a = (a1, . . . , am) ∈ Am we define

type%(−→a ) = {{ai1 , . . . , aik
} | i1, . . . , ik ∈ {1, . . . ,m} and (ai1 , . . . , aik

) ∈ %irr}.

Definition 4.22. Let −→a = (a1, . . . , am),
−→
b = (b1, . . . , bm) and m > k = ar(%).

We say that type%(−→a ) embeds into type%(
−→
b ) if there is a bijective mapping

f : {a1, . . . , am} → {b1, . . . , bm}
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such that for all {ai1 , . . . , aik
} ⊆ {a1, . . . , am} we have

{ai1 , . . . , aik
} ∈ type%(−→a ) ⇒ {f(ai1), . . . , f(aik

)} ∈ type%(
−→
b ).

In this case we write f : type%(−→a ) ↪→ type%(
−→
b ).

Proposition 4.23. Let %1 and %2 be central relations such that ar(%1) = k and
ar(%2) = m. Then End{%1} ⊆ End{%2} if and only if

• k 6 m and

• for all −→a ∈ %irr
2 and

−→
b ∈ Am we have

type%1
(−→a ) ↪→ type%1

(
−→
b ) ⇒

−→
b ∈ %2.

Let RΘ be the h–regular relation defined by an h–regular family Θ =
{θ1, . . . , θm} and let λ : A → {1, . . . , h}m be the surjective mapping such that
RΘ = {(x1, . . . , xh) | (λ(x1), . . . , λ(xh)) ∈ Ψh,m}.

Proposition 4.24. If |A| = hm, then End{RΘ} 6⊆ End{σ}.

Proof. First, note that if |A| = hm, then λ is a bijective mapping.
Now, since σ is a nontrivial central relation, there exist noncentral elements

b1, b2, . . . , bk such that (b1, b2, . . . , bk) 6∈ σ. Further, take an arbitrary central
element c. Since λ is bijective, there exist −→cλ,−→y1, . . . ,

−→yk ∈ {1, . . . , h}m such that
−→yi = λ(bi), 1 6 i 6 k, and −→cλ = λ(c), where

−→yi =


yi
1

yi
2
...

yi
m

 and −→cλ =


cλ
1

cλ
2
...

cλ
m.

 .

We define the family Φ = {ϕ1, ϕ2 . . . , ϕm} of bijective mappings on the set
{1, . . . , h} in the following way:

ϕj(x) =


y1

j , if x = cλ
j ,

cλ
j , if x = y1

j ,
x, otherwise,

where 1 6 j 6 m.
Now, define the mapping

f




x1

x2

...
xm


 =


ϕ1(x1)
ϕ2(x2)

...
ϕm(xm)

 .
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It is easy to see that f ∈ Aut{Ψh,m}. Also, note that f(−→cλ) = −→y1. Now, take
−→x2, . . . ,

−→xk ∈ {1, . . . , h}m such that −→xi = f−1(−→yi ) and let a2, . . . , ak ∈ A be such
that −→xi = λ(ai), 2 6 i 6 k. Since c ∈ Cσ, it follows that (c, a2, . . . , ak) ∈ σ.
But, then (λ−1◦f ◦λ(c), λ−1◦f ◦λ(a2), . . . , λ−1◦f ◦λ(ak)) = (λ−1◦f(−→cλ), λ−1◦
f(−→x2), . . . , λ−1◦f(−→xk)) = (λ−1(−→y1), λ−1(−→y2), . . . , λ−1(−→yk)) = (b1, b2, . . . , bk) 6∈ σ
and we have that λ−1 ◦ f ◦ λ 6∈ End{σ}.

On the other hand, λ−1 ◦ f ◦ λ ∈ Aut{RΘ} ⊂ End{RΘ}. To conclude,
End{RΘ} 6⊆ End{σ}. �

4.6. Rosenberg Relations vs. h–regular Relations

We will show that the trace of a maximal clone defined by an affine relation is
never included in the trace of a maximal clone defined by an h–regular relation.
For all other Rosenberg relations we can obtain inclusion under some conditions.
We give a complete characterization for permutational relations (Proposition
4.30) and for equivalence relations the complete characterization can be found
in [5]. However, the complete answer concerning bounded partial orders, central
and h–regular relations is still unknown. Some partial characterizations are
given in Propositions 4.27, 4.33 and 4.34.

In this subsection we assume that σ is an h–regular relation. Since every h–
regular relation is defined by an h–regular family of equivalence relations Θ, we
will also denote this relation by RΘ. The relation % ranges through Rosenberg
relations.

Proposition 4.25. Let % be a bounded partial order. If RΘ is an h–regular
relation defined by Θ = {θ1, . . . , θm}, where m > 2, then End{%} 6⊆ End{RΘ}.

Proof. Let 0 be the least element of % and let λ : A → {1, . . . , h}m be a surjective
mapping such that RΘ = {(x1, . . . , xh) | (λ(x1), . . . , λ(xh)) ∈ Ψh,m}. Further,
let B = A \ {y | λ(0) = λ(y)}. Note that B is a nonempty set, since |λ(A)| > 3,
so min B 6= ∅. Now, take any a ∈ min B and the mapping

f(x) =
{

0, if x 6 a,
x, otherwise.

It is obvious that f preserves %. We are going to show that f does not preserve
RΘ.

For the proof, take the mapping λ. It takes 0 to
−→
0λ and a to−→aλ. Since

−→
0λ,−→aλ ∈

{1, . . . , h}m, we obtain, by Lemma 3.2, that there exist
−→
e2

λ, . . . ,
−→
eh

λ such that
−→aλ 6∈ {

−→
e2

λ, . . . ,
−→
eh

λ}, (−→aλ,
−→
e2

λ, . . . ,
−→
eh

λ) ∈ Ψh,m and (
−→
0λ,

−→
e2

λ, . . . ,
−→
eh

λ) 6∈ Ψh,m.

In particular,
−→
0λ 6=

−→
ei
λ, 2 6 i 6 h.

Now, let e2, . . . , eh be such that
−→
ei
λ = λ(ei). Then ei ∈ B, 2 6 i 6 h, since

λ(ei) 6= λ(0). Now we have that (a, e2, . . . , eh) ∈ RΘ, but (f(a), f(e2),. . . ,
f(eh)) = (0, e2,. . . ,eh) 6∈ RΘ. �
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Lemma 4.26. Let RΘ be an h–regular relation defined by an h–regular family
Θ = {θ} and let a be an irreducible element in (A,6%). If End{%} ⊆ End{RΘ},
then either [a]θ = {a} or a and its primary neighbors are in the same equivalence
class of θ.

Proof. Suppose to the contrary that [a]θ 6= {a}, but there exists a primary
neighbor b of a such that b 6∈ [a]θ. Now, take the mapping

f(x) =
{

b, if x = a,
x, otherwise.

It is clear that f preserves %. We will show that f does not preserve RΘ.
Let T1, . . . , Th be the equivalence classes of θ, where [b]θ = T1 and [a]θ =
T2. Further, let c2, . . . , ch be such that ci ∈ Ti, 2 6 i 6 h, and c2 6= a.
Then (a, c2, . . . , ch) ∈ RΘ, but (f(a), f(c2), . . . , f(ch)) = (b, c2, . . . , ch) 6∈ RΘ –
contradiction. �

Using Lemma 4.26, we obtain the following partial characterization:

Proposition 4.27. Let |A| = h + 1 , let % be a bounded partial order on A
with the least element 0 and the greatest element 1 and let RΘ be an h–regular
relation defined by an h–regular family Θ = {θ}, where θ has just one nontrivial
equivalence class that consists of 0 and 1. Then End{%} ⊆ End{RΘ} if and only
if 0 and 1 are not irreducible.

Proof. (⇐) Let f ∈ End{%}. If f(0) = 0 and f(1) = 1, then it is clear that
f ∈ End{RΘ}. So, suppose that f(0) 6= 0 or f(1) 6= 1, say f(1) 6= 1. We are
going to prove that then |im(f)| 6 h− 1.

First, note that 1 6∈ im(f), since 1 is the greatest element. Further, 1 is not
irreducible, so there are at least two elements a1, a2 such that a1 ≺ 1 and a2 ≺ 1.
Now, if a16%f(1) and a26%f(1), then it follows that f(1)=1 – contradiction.

So, we have that a1 66%f(1) or a2 66%f(1). But, then at least one of a1, a2

does not belong to im(f), say a1 6∈ im(f). Since |A| = h + 1 and a1, 1 6∈ im(f),
we obtain that |im(f)| 6 h−1. Having in mind that θ has h equivalence classes,
it follows that f ∈ End{RΘ}.

(⇒) Suppose that End{%} ⊆ End{RΘ} and that at least one of 0, 1 is
irreducible, say 0. Then, by Lemma 4.26 either [0]θ = {0} or for every primary
neighbor a of 0 we have [0]θ = [a]θ. It follows that 1 is the primary neighbor of
0 – contradiction. �

The proof of the following result can be found in [5].

Proposition 4.28. Let % be a nontrivial equivalence relation and let RΘ be
the h–regular relation defined by an h–regular family Θ = {θ1, . . . , θm}. Then
End{%} ⊆ End{RΘ} if and only if m = 1, all nontrivial equivalence classes of
θ1 are also nontrivial equivalence classes of % and every nontrivial class of %
which is a union of trivial classes of θ1, if any, is of greater cardinality than all
nontrivial classes of θ1.
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Proposition 4.29. Let % be a permutational relation arising from a p–regular
permutation α on A and let σ be a nontrivial equivalence relation on the same
set. Then Aut{%} ⊆ Aut{σ} if and only if every cycle of α is an equivalence
class of σ.

Proof. (⇐) Suppose that every cycle of α is an equivalence class of σ and let
f ∈ Aut{%}. Since f preserves %, f maps each cycle of α onto a cycle of α. But,
then f maps every equivalence class of σ onto an equivalence class of σ, so σ is
also preserved by f . Hence, Aut{%} ⊆ Aut{σ}.

(⇒) Suppose that Aut{%} ⊆ Aut{σ}. By Lemma 4.8, it follows that all
equivalence classes of σ are nontrivial.

First, we are going to show that for every cycle C there exists an equivalence
class S such that either C is a subset of S (as a set) or S is a subset C. Suppose
that this is not the case. Then there exists a cycle Cj such that for every
equivalence class S we have that Cj is not contained in S and S is not contained
in Cj . Then Cj contains elements of at least two equivalence classes, say S1 and
S2. Since S1 is not contained in Cj , it follows that there exists an a ∈ S1 \ Cj ,
so there exists a cycle Ci such that a ∈ Ci. Let b ∈ S1 ∩ Cj and c ∈ S2 ∩ Cj .
Since b, c ∈ Cj it follows that c = αm(b) for some m. Now, take the mapping

f(x) =
{

αm(x), if x ∈ Cj ,
x, otherwise.

It is obviously an automorphism of % and it is not an automorphism of σ, since
(a, b) ∈ σ and (f(a), f(b)) = (a, c) 6∈ σ.

Suppose that there exists a cycle C which consists of k > 2 equivalence
classes of σ. Since the permutation α preserves σ, it follows that all equivalence
classes of C contain the same number of elements, say n > 2; then C contains
k · n = p elements, where k, n > 2 and p is a prime number – contradiction.

Similarly, assume that there exists an equivalence class of σ, say S, which
contains at least two cycles of α, say C1, C2, . . . . Then there is a cycle C0 6⊆ S,
so a mapping that takes C1 to C0 and C0 to C1 in an appropriate way and leaves
everything else fixed obviously preserves % and does not preserve σ. Therefore,
every cycle of α is an equivalence class of σ. �

Using Proposition 4.29, we obtain the following result:

Proposition 4.30. Let % be a permutational relation arising from a p–regular
permutation α on A and let RΘ be the h–regular relation defined by an h–regular
family Θ = {θ1, . . . , θm}. Then End{%} ⊆ End{RΘ} if and only if m = 1 and
every cycle of α is an equivalence class of θ1.

Proof. (⇒) From Lemma 3.5, we have Aut{RΘ} ⊆ Aut{Φ}, where Φ = ∩m
i=1θi.

Note that either Φ = ∆A, or we obtain that classes of Φ are exactly the cycles
of α. (If Φ 6= ∆A, then Aut{%} ⊆ Aut{RΘ} ⊆ Aut{Φ}, so Aut{%} ⊆ Aut{Φ}
and from Proposition 4.29 it follows that the classes of Φ are exactly the cycles
of α.)
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Suppose, first, that Φ = ∆A. Then, by Lemma 3.6, we may assume that
A = A/θ1×· · ·×A/θm, so |A| = hm. Denote by T i

1, . . . T
i
h the equivalence classes

of θi, 1 6 i 6 m. Then every a ∈ A can be represented as a column-vector j1
...

jm

 ,

where ji is such that a ∈ T i
ji

. By Lemma 3.1, every automorphism of RΘ has
the form  a1

...
am

 7→
 σ1(aπ(1))

...
σm(aπ(m))

 , (∗)

where π : {1, . . . ,m} → {1, . . . ,m} and σj : {1, . . . , h} → {1, . . . , h}, 1 6 j 6 m,
are bijections.

A nontrivial automorphism of the form (∗) has at most (h − 2)hm−1 fixed
points, since moving at least one point induces moving at least 2·hm−1 points (If
a1 is moved to a′1, then all hm−1 elements containing a1 as the first coordinate
are moved to hm−1 elements containing a′1 as the first coordinate and, since
this mapping is bijective, hm−1 elements containing a′1 as the first coordinate
are also moved), so the maximal number of fixed points of such a bijection is
hm − 2 · hm−1 = (h− 2)hm−1. We know that p | |A| = hm, so p | h.

Further, it is clear that Aut{%} contains p–cycles. (Every cycle of α belongs
to Aut{%}). In other words, Aut{%} contains a mapping which moves exactly
p points. Now, if m > 2, then every nontrivial permutation in Aut{RΘ} moves
at least hm − (h − 2)hm−1 = 2 · hm−1 > 2h > h > p points, so Aut{RΘ} does
not contain any p–cycle, thus Aut{%} 66 Aut{RΘ} and it follows that m = 1 in
this case.

If Ψ consists of the cycles of α, then both Aut{%} and Aut{RΘ} are contained
in Aut{Φ}, so every f ∈ Aut{%} ∪Aut{RΘ} preserves equivalence classes of Φ.
Now consider A/Φ and two permutation groups G% and GΘ on the same set. We
define G% as the group of all permutations f̂ : A/Φ → A/Φ, where f̂(B) = f [B]
and f ∈ Aut{%}, and GΘ as the group of all permutations f̂ : A/Φ → A/Φ,
where f̂(B) = f [B] and f ∈ Aut{RΘ}. The first group is the full symmetric
group, since we can arbitrarily permute the cycles of α. However, if m > 2, the
second group is not the full symmetric group. (By definition, GΘ = Aut{RΘ/Φ},
where Θ/Φ = {θ1/Φ, . . . , θm/Φ}. Take (x1, . . . , xh) ∈ RΘ/Φ, (y1, . . . , yh) 6∈
RΘ/Φ and the mapping ϕ, defined by ϕ(xi) = yi, 1 6 i 6 h. Since ϕ is a partial
injective mapping, it can be extended to a permutation πϕ. It is clear that πϕ

does not preserve RΘ/Φ, so GΘ is not a full symmetric group.)
Since G% 6⊆ GΘ, it follows that Aut{%} 6⊆ Aut{RΘ}, so End{%} 6⊆ End{RΘ}.
Hence, m = 1. Note that Aut{θ1} = Aut{RΘ}, so θ1 has only nontrivial

equivalence classes, by Lemma 4.8.
Let us now show that every cycle of α is an equivalence class of θ1.
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First, we are going to show that for every cycle C there exists an equivalence
class T of θ1 such that either C is a subset of T (as a set) or T is a subset of
C. Suppose that this is not the case. Then there exists a cycle Cj such that for
every equivalence class T of θ1 we have that Cj is not contained in T and T is
not contained in Cj . Denote by T1, . . . , Th the equivalence classes of θ1. Then
Cj contains elements of at least two equivalence classes, say T1 and T2. Since
T1 is not contained in Cj , it follows that there exists an element a ∈ T1 \Cj , so
there exists a cycle Ci such that a ∈ Ci. Let b ∈ T1 ∩Cj and c ∈ T2 ∩Cj . Since
b, c ∈ Cj it follows that c = αm(b) for some m. Now, take the mapping

f(x) =
{

αm(x), if x ∈ Cj ,
x, otherwise

and the tuple (a, b, a3, . . . , ah) ∈ RΘ, where ai ∈ Ti \ Cj (such element always
exists, since Ti 6⊆ Cj for every 1 6 i 6 h). We have

(f(a), f(b), f(a3), . . . , f(ah)) = (a, c, a3, . . . , ah) 6∈ RΘ.

Further, if there exists a cycle C which consists of k > 2 equivalence classes
of θ1, since the permutation α preserves θ1, it follows that all equivalence classes
of C contain the same number of elements, say n > 2; then C contains k ·n = p
elements, where k, n > 2 and p is a prime number – contradiction.

Similarly, assume that there exists an equivalence class of θ1, say T1, which
contains at least two cycles of α, say C1, C2, . . . . Then there is a cycle C0 6⊆ T1

such that C0 ∩ T2 6= ∅ for some other equivalence class T2 of θ1, so a mapping
that takes C1 to C0 in an appropriate way and leaves everything else fixed
obviously preserves %. To see that f does not preserve RΘ just take the tuple
(a, b, a3, . . . , ah) ∈ RΘ, where ai ∈ Ti, 3 6 i 6 h, b ∈ C2 and a ∈ C1 is such that
f(a) = c ∈ C0∩T2. Then (f(a), f(b), f(a3), . . . , f(ah)) = (c, b, a3, . . . , ah) 6∈ RΘ.

From this it follows that every cycle of α is an equivalence class of θ1.
(⇐) Suppose, now, that m = 1 and every cycle of α is an equivalence class

of θ1 and let f ∈ End{%}. Since f preserves %, f maps each cycle of α onto a
cycle of α. But, then f maps every equivalence class of θ1 into an equivalence
class of θ1, so θ1 is also preserved by f . Hence, End{%} ⊆ End{θ1}. Now, by
Lemma 3.3, it follows that End{%} ⊆ End{RΘ}. �

Proposition 4.31. If % is an affine relation, then End{%} ⊆ End{RΘ} if and
only if RΘ is a trivial regular relation.

Proof. If RΘ is a trivial regular relation, then End{RΘ} = AA whence trivially
End{%} ⊆ End{RΘ}. Suppose that RΘ is a nontrivial regular relation. Then
the claim can be proved by observing that Aut{%} = Aut{λ⊕} ∼= AGL(d, p), is
2–transitive, but Aut{RΘ} is 2–transitive only in the trivial case, so Aut{%} 6⊆
Aut{RΘ}. From this it follows immediately that End{%} 6⊆ End{RΘ}.

To see that Aut{%} is 2-transitive, note that each f ∈ Aut{%} is of the form
f(x) = ϕ(x) + b, where ϕ is a regular (i.e. invertible) linear function on A
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(considered as vector space over p–element field GF(p)). Let x, y, x′, y′ ∈ A
be such that x 6= y, x′ 6= y′. Hence, y − x 6= 0 and y′ − x′ 6= 0. Now, there
exists regular linear function ϕ on A that maps y − x to y′ − x′. Defining
f(z) = ϕ(z − x) + x′ we obtain an affine permutation such that ϕ(x) = x′ and
ϕ(y) = y′. In other words, Aut{%} is 2–transitive. �

The proofs of the following partial results can be found in [8] and [5].

Proposition 4.32. If RΘ is a h–regular relation defined by the h–regular family
Θ = {θ1, . . . , θm}, where m > 2, and % is central, then End{%} 6⊆ End{RΘ}.

Proposition 4.33. Let % be a k–ary central relation with no tail whose center is
C%, let Θ = {θ1, . . . , θm} be an h–regular family and let RΘ be the corresponding
h–regular relation. Then End{%} ⊆ End{RΘ} if and only if k < h, m = 1 and
C% is the only nontrivial equivalence class of θ1.

Proposition 4.34. Let RΘ be the h1-regular relation defined by an h1-regular
family Θ = {θ} and let RΘ′ be the h2-regular relation defined by an h2-regular
family Θ′ = {θ′}. Then End{RΘ} ⊆ End{RΘ′} if and only if all nontrivial
equivalence classes of θ′ are also nontrivial equivalence classes of θ and every
nontrivial class of θ which is a union of trivial classes of θ′ is of greater cardi-
nality than any nontrivial class of θ′.

5. Conclusions

The results presented in Section 4 shed some light on the rather involved
structure of the poset of traces of maximal clones on a finite set.

First it is possible to construct nontrivial chains which contain endomor-
phism monoids of distinct types of Rosenberg relations, e.g. one can find a unary
central relation %, a k–ary central relation σ, an equivalence relation τ and an
h–regular relation Rθ such that End{%} ⊂ End{σ} ⊂ End{τ} ⊂ End{RΘ}. For
example, let A = {0, 1, 2, 3, 4} and let % = {0, 1, 2} be a unary central relation.
Let σ be the binary central relation with no tail whose center is Cσ = {0, 1, 2}
and let τ be the equivalence relation whose blocks are 012|3|4. We take for RΘ

the h–regular relation defined by the h–regular family Θ = {τ}. Then we have
End{%} ⊂ End{σ} ⊂ End{τ} ⊂ End{RΘ}.

Further, this poset contains chains of endomorphism monoids of central re-
lations of the length |A| − 1, where A is the underlying set. The construction of
these chains can be found in [8]. There are also long chains of endomorphism
monoids of h–regular relations and they were constructed in [5]. However, the
structure of the poset of traces of maximal clones is richer than expected. In [6]
it was shown that for every given natural number n, there exists the underlying
set A, such that a Boolean algebra with n atoms can be embedded into the poset
of traces of maximal clones over A. The same paper shows that the height of
this poset is the size of the underlying set and that the width of the poset is
doubly exponential in |A|.
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