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A FIRST-ORDER LOGIC FOR MULTI-ALGEBRAS

Jānis C̄ırulis1

Abstract. We present a complete first-order proof system for complex
algebras of multi-algebras of a fixed signature, which is based on a lan-
guage whose single primitive relation is singular inclusion, i.e., restricted
set inclusion with the domain consisting only of one-element sets. This
proof system is then adapted for multi-algebras by relativizing both free
and bounded variables in formulas to singletons.
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1. Introduction

In the literature, various more or less elaborated logical systems appropriate
for multi-algebras can be found — see [2, 10, 11, 13, 14, 16, 17, 20, 21]; this
list of references by no means is complete. Much work in this area is done by
computer scientists.

As a rule, multi-algebras which find use in computer science applications (for
example, in studies of nondeterministic computational models) are many-sorted;
moreover, carrier sets for some sorts may be empty. To simplify technicalities,
we deal here only with one-sorted multi-algebras, but we still do not rule out
algebras with an empty carrier. In virtue of this latter circumstance, we must
reckon with certain specific difficulties when adapting the ordinary first-order
logic for multi-algebras. One possible way to take account of empty structures
in logic is shifting from classical to the so-called universal, or inclusive, logic
(see e.g. [12]); this is the approach of [17]. We shall take here some other
way and move from multi-algebras to their complex algebras, which can be
treated as ordinary (and non-empty) algebras. The language of multi-algebras
admits a reinterpretation making it a language of complex algebras as well, and
axiomatizing complex algebras in a first-order logic is not a real problem. The
mentioned reinterpretation gives rise to a certain translation (transformation)
of formulas in such a way that, in particular, a formula is valid in the class of
all multi-algebras (including the empty one) if and only if its translation is valid
in the class of all complex algebras and, hence, provable in the logic of complex
algebras. (From the viewpoint of complex algebras, the translation of a formula
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is actually its relativization to singletons, or individuals.) Therefore, our logic
for multi-algebras is, in fact, a logic of complex algebras used in a non-standard
manner.

The standard tool in universal algebra for dealing with the ordinary alge-
bras is equational theories, and atomic formulas of more powerful logic for such
algebras are also equations. Of course, an equation is treated there as express-
ing identity of the values of the terms involved in it. When moving to partial
algebras, this concept of an equation should be weakened or generalized some-
how; see, e.g., Sect. 3.2 of [1] for an overview of some kinds of partial equations
actually used by various authors.

Equations as identities have also been studied in multi-algebras and complex
algebras [5, 7, 18]; then, however, the case in point is equality of sets rather
than identity of individuals. It was demonstrated in [14] that expressive power
of the standard first-order logic with equality is insufficient for treating some
special questions concerning multi-algebras. The weak commutative and weak
distributive laws for certain group-like and ring-like multi-algebras (see e.g. [19])
may be written as equations if an equation formed by two terms is interpreted
as a “weak equality”, asserting that their value sets overlap. Some authors
have exploited also inclusion as the primitive relation rather than any kind of
equality [2, 10, 13, 14, 16]. In [11, 20, 21], inclusion is complemented with
identity of individuals (i.e. elements of the carrier of the multi-algebra under
consideration). This kind of identity is definable in terms of inclusion in full
first-order logic; on the contrary, it actually increases the expressive power of
the quantifier-free language used by these authors.

Another non-traditional relation—singular inclusion, which holds between
two sets if and only if the first of these is a singleton which happens to be a subset
of the second one—was tested as the single primitive relation in the language
for multi-algebras in [3, 4], for structures with relations and multi-operations,
in [17], and for structures that can be regarded as power structures of these,
in Part III of [16]. Identity of individuals, as well as equality, overlapping and
inclusion of sets, are definable in terms of singular inclusion in first-order logic;
one more advantage of this relation consists in its conceptual similarity to the
membership relation.

In this paper, we choose singular inclusion, or “epsilon-relation” to be the
primitive relation in the first-order language for multi-algebras. Remarkably,
“epsilon-equations” reduce to the so called existence equations [1] in partial
algebras and to the traditional identity equations in ordinary algebras. Using
singular inclusion in logic comes back to S. Leśniewski’s Ontology—see [15].

2. Preliminaries: multi-algebras and their
ε-language

Through the paper, we keep fixed a set Ω of operation symbols (possibly,
0-ary). Where U is a set, we write PU for the power set of U .
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Definition 1. An m-ary multi-operation on a set U is any mapping of type
Um → PU . A multi-algebra of the signature Ω is a system U := (U,ωU )ω∈Ω,
where U is a set, the carrier of U , and each ωU is a multi-operation on U whose
arity is determined by ω.

There will not be a need in this paper to distinguish between a singleton {u}
and its single element u; therefore, we may consider U as a subset of PU , and
it then makes sense to regard the membership relation ∈ as a relation on PU
rather than between U and PU . In particular, then every ordinary Ω-algebra
on U can also be treated as a multi-algebra. Likewise, a partial algebra is then
just a multi-algebra in which operations are of type Um → U ∪ {∅}.

Now let X be a denumerable set of variables, and let T := (T, ωT )ω∈Ω be the
Ω-algebra of terms freely generated by X. A term t is linear in x if the variable
x has just one occurrence in t. The result of substitution of a term s for x in t
is denoted by [s/x]t. In a multi-algebra U , every assignment ϕ: X → U can be
extended to a mapping ϕ̃: T → PU as follows:

– if t is a variable x, then u ∈ ϕ̃(t) iff u = ϕ(x),

– if t is a compound term of the form ωt1t2 . . . tm, then u ∈ ϕ̃(t) iff u ∈
ωU (v1, v2, . . . , vm) for some v1 ∈ ϕ̃(t1), v2 ∈ ϕ̃(t2), . . . , vm ∈ ϕ̃(tm).

Let, furthermore, Lε be the first order language over T with a single binary
relation symbol ε. So atomic formulas of Lε are of the form s ε t, where s and
t are terms. Such a formula is supposed to be satisfied in a multi-algebra U by
an assignment ϕ if and only if ϕ̃(s) ∈ ϕ̃(t). For compound formulas, satisfaction
is defined in the usual way.

A multi-algebra U is said to be a multi-algebra model or, in short, an m-
model of a formula f if f is valid in U , i.e. is satisfied by all assignments in U .
In particular, in an empty algebra, where there are no assignments at all, every
open formula as well as the universal closure of a formula counts as valid, while
the existential closure of a formula is invalid. Given a set of formulas Γ and a
formula f , we write Γ |=m f to mean that f is valid in all m-models of Γ.

Proposition 1. (a) The following formulas are valid in any multi-algebra for
all terms r, s, t, t1, . . . , tm ∈ T :

(ε1): s ε t → s ε s,

(ε2): s ε t ∧ t ε r → s ε r,

(ε3): s ε t ∧ t ε r → t ε s,

(ε4): ∀z(z ε s ↔ z ε t) ∧ s ε r → t ε r,
where z does not occur in s and t,

(ε5): s ε ωt1 . . . tm ↔ ∃x1 . . . xm(x1 ε t1 ∧ · · · ∧ xm ε tm ∧ s ε ωx1 . . . xm),
where the variables xi are all distinct and occur neither in s nor any of
the terms tj.
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(b) A multi-algebra is nonempty, a partial algebra, or a total algebra (with
univalent operations) if and only if the following formulas are respectively valid
in it for all terms s, t:

(ε7): ∃x x ε x,

(ε8): s ε t → t ε s,

(ε9): t ε t.

On the other hand, the well-known axioms ∀xf → [t/x]f and [t/x]f → ∃xf
of standard first-order logic need not be valid even in a non-empty multi-algebra.
In particular, (ε9) does not imply (ε7), and, say, (ε1) is not a consequence of
its particular case x ε y → y ε x in the field of multi-algebras. Furthermore,
∀x x ε x → ∃x ε x is an example of a theorem of standard first-order logic which
is not valid in an empty multi-algebra.

Nevertheless, the formulas listed in (a) turn out to be characteristic, in a
sense, for the epsilon-relation. The reader may consult [12] for the general
concept of a first-order theory.

Definition 2. An epsilon-theory is any first-order theory in Lε having all for-
mulas (ε1)–(ε5) among its theorems. The least such a theory is called epsilon-
logic.

Our aim in this paper is to axiomatize the consequence relation |=m in
epsilon-logic. The above observations show that this cannot be done by means
of standard first-order logic directly. However, the objective can be achieved in
a roundabout way.

Let us associate with every formula f another formula at(f) as follows. First,
we inductively define an auxiliary transformation ∗ on the set of all formulas.
It suffices to consider only connectives ¬,→ and the quantifier ∀:

∗(s ε t) := s ε t,
∗(¬f) := ¬(∗f),

∗(f → g) := ∗f → ∗g,
∗(∀x f) := ∀x (x ε x → ∗f).

Next, at(f) is set to be the formula x1 ε x1∧· · ·∧xn ε xn → ∗f , where x1, . . . , xn

is the list of all free variables of f in the alphabetical order (or ∗f itself, if f is
closed). Likewise, at(Γ) stands for the set of all at-transforms of members of Γ.

Note that the formula x ε x is valid in all multi-algebras, even in the empty
one. The formula f ↔ at(f) also is valid in all multi-algebras for every f .
Motivation of the transformation at() will be clarified in the next section.

The following theorem, which is the main result of the paper, is a conse-
quence of the soundness and completeness theorem for epsilon-logic proved in
Sect. 5.
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Theorem 2. A formula f is valid in all ma-models of a set of formulas Γ if
and only if at(f) is derivable from at(Γ) in epsilon-logic.

3. From multi-algebras to complex algebras

The term ‘complex algebra’ has diverse meanings in the literature. In [9,
7], it meant what is called below a full complex algebra—a certain algebra
whose carrier is a powerset of some set. Some authors have used it for algebras
consisting only of the non-void subsets of a set; see, e.g., [5]. We follow here the
extended use of this term in [6].

Definition 3. An m-ary operation o on PU is said to be cumulative if

u ∈ o(A1, . . . , Am) if and only if u ∈ o(u1, . . . , um) for some u1 ∈
A1, . . . , um ∈ Am.

A complex algebra on U is an Ω-algebra on a nonempty subset of PU including
U with all operations cumulative. A complex algebra is said to be full if this
subset coincides with PU .

Thus, an ordinary algebra, i.e. algebra with total univalent operations, is a
complex algebra in this sense. On the other hand, any complex algebra is a
subalgebra of a full complex algebra.

Note that an operation on PU is cumulative only if it is additive in each
argument and normal (i.e. satisfies the condition o(∅, . . . , ∅) = ∅). Hence, every
complex algebra on U whose carrier happens to be a Boolean subalgebra of PU
is essentially a Boolean algebra with operators [9].

Definition 4. Let U be a multi-algebra. A complex algebra of U is any complex
algebra V on U such that, for all ω ∈ Ω, ωU is the restriction of ωV . The
smallest complex algebra of U is said to be the completion of U .

A valuation (of terms) in a complex algebra V is a homomorphism from T to
V . For example, if U is a multi-algebra, then the extension ϕ̃ of any assignment
ϕ in U is a valuation in the completion of U . Again, an atomic formula s ε t
of Lε is satisfied by a valuation µ in a complex algebra V if µ(s) ∈ µ(t). A
formula f of Lε is valid in V if it is satisfied by all valuations in V . If it is the
case, V is said to be a complex algebra model or, in short, a ca-model of f.

The following proposition is a close analogue of Proposition 1.

Proposition 3. All formulas (ε1)–(ε5) are valid in any complex algebra. A
complex algebra is a ca-model of any of formulas (ε6)–(ε8) if and only if the
corresponding multi-algebra is an m-model of it.

In general, the connection between validation in complex algebras and in
multi-algebras is more involved.
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Proposition 4. Suppose that U is some multi-algebra. The following condi-
tions on a formula f are equivalent:

(a) f is valid in U ,
(b) at(f) is valid in some complex algebra of U ,
(c) at(f) is valid in all complex algebras of U .

It is this result that motivates our interest in complex algebras, as well as in
the transformation at() described in the previous section.

4. From complex algebras to epsilon-algebras

A complex algebra V := (V, ωV )ω∈Ω may be considered as a structure of
kind (V ,∈) with the membership relation on V explicitly pointed out. It is
profitable to consider also abstract structures of this type.

Definition 5. An epsilon-algebra is a structure of type (A, ε), where A is an Ω-
algebra and ε is a binary relation on A. It is said to be a complex epsilon-algebra
if A is a complex algebra and ε is the membership relation on A.

Actually, just epsilon-algebras is the natural kind of structures for the lan-
guage Lε, validation of formulas in them being defined in the standard way. It
is easily seen that a complex epsilon-algebra (V ,∈) is a model of some formula
f in the standard sense if and only if V is a ca-model of f .

In the rest of the section, we shall characterize the class of all isomorphic
copies of complex epsilon-algebras. An isomorphism between epsilon-algebras
(A, ε) and (A′, ε′) is defined to be an isomorphism i: A → A′ such that a ε b
in A if and only if ia ε′ ib in A′.

Definition 6. An epsilon-algebra (A, ε) is said to be proper if the relation ε
satisfies the following conditions:

weak reflexivity : if a ε b, then a ε a,

transitivity : if a ε b and b ε c, then a ε c,

weak symmetry : if a ε b and b ε c, then b ε a,

and each operation of A is cumulative w.r.t. ε:

c ε ωA(a1, a2, . . . , am) if and only if c ε ωA(b1, b2, · · · , bm) for some
b1, b2, . . . , bm such that b1 ε a1, b2 ε a2, . . . , bm ε am.

It follows from Proposition 3 that every complex epsilon-algebra is proper.
It is also extensional in the sense of the next definition.

Definition 7. In an epsilon-algebra (A, ε), an element a is said to be an atom
of b if a ε b, and an atom if it is an atom of some element of A. The epsilon-
algebra is said to be extensional if two elements of A are equal whenever they
have equal sets of atoms.
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Theorem 5. An epsilon-algebra is isomorphic to a complex algebra if and only
if it is proper and extensional.

Proof. We already noticed that a complex algebra is always proper and exten-
sional. On the other hand, given a proper and extensional epsilon-algebra (A, ε),
we couple a complex algebra with it as follows. Let V := {atm(a): a ∈ A},
where atm(a) stands for the set of atoms of a:

b ∈ atm(a) if and only if b ε a.

If ω is an m-ary operation symbol from Ω, let oω be the m-ary operation on V
defined by

oω(atm(a1), atm(a2), . . . , atm(am)) := atm(ωA(a1, a2, . . . , am).

Then V := (V, oω)ω∈Ω is a complex algebra on the set of atoms of A. Moreover,
the mapping a 7→ atm(a) is an isomorphism from (A, ε) to (V ,∈). The proof
of these assertions consists of several steps.

Claim C1: If b ε a, then atm(b) = {b} = b.
Suppose that, indeed, b ε a for some a. By weak reflexivity of ε, then b ∈ atm(b).
If c ∈ atm(b) too, then b ε c (by weak symmetry) and, furthermore, d ε c iff
d ε b (by transitivity). Now, c = b by extensionality.

Thus, all atoms of A belong to V , and V is indeed a complex algebra on
the set of atoms on A.

Claim C2: If atm(b) is a singleton, then atm(b) = b.
Suppose that atm(b) = c. Then d ε c implies d ε b (by transitivity), while d ε b
implies d = c and (by weak reflexivity) d ε d, and, furthermore d ε c. Now c = b
by extensionality.

Claim C3: The mapping atm: A → V is bijective.
It is surjective by construction of V , and injective by extensionality of (A, ε).

Claim C4: b ε a if and only if atm(b) ∈ atm(a).
If b ε a, then atm(b) = b by C1. Conversely, if atm(b) ∈ atm(a), then atm(b) is
a singleton and, by C2, again atm(b) = b.

It follows from C3, C4 and the definition of oω that atm is an isomorphism.
2

5. Epsilon-logic as the logic of complex algebras

We begin with a simplification of the definition of an epsilon-theory. It is
worthwhile to note that the first three formulas in Proposition 6, which are par-
ticular cases of (ε1)–(ε3) respectively, are the axioms the quantifier-free fragment
of Leśniewski’s Ontology studied in [8].

Proposition 6. A first-order theory is an epsilon-theory if and only if the fol-
lowing formulas are theorems for all t ∈ T (all variables in each formula are
supposed to be distinct):
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x ε y → x ε x,

x ε y ∧ y ε z → x ε z,

x ε y ∧ y ε z → y ε x,

∀u (u ε x ↔ u ε y) ∧ x ε z → y ε z,

s ε ωt1 . . . tm ↔ ∃x(x ε ti ∧ s ε ωt1 . . . x . . . tm),
where x occurs neither in s nor any of the terms tj.

The next theorem explains the title of this section.

Theorem 7. Let T be any epsilon-theory. A formula is a theorem of T if and
only if it is valid in all ca-models of T .

Proof. Necessity of the conditions follows from Proposition 3. To prove its
sufficiency, assume that a formula f is valid in all ca-models of T . If it is not
a theorem, then the theory obtained from T by adding the negation of f as
a new axiom is consistent. It is well-known that every consistent first order
theory has a model (see, e.g. [12]). In our case, the model of T +¬f is a proper
epsilon-algebra (A, ε). Due to (ε5), the relation ³ defined on A by

a ³ b if and only if atm(a) = atm(b)

is easily seen to be a congruence of A; let A′ be the corresponding quotient
algebra A/³ . By induction on terms, [µ(t)] = µ′(t), where µ′ is the valuation
in A′ such that µ′(x) = [µ(x)] for all variables x. (Every valuation in A′ arises
this way.) Define the relation ε′ on A′ as follows:

[a] ε′ [b] if and only if a ε b;

this definition is correct, for (ε4) is also valid in (A, ε). By induction on formulas,
every formula of Lε is satisfied in (A, ε) by a valuation µ if and only it is satisfied
in (A′, ε′) by µ′. Thus, any formula is valid in (A′, ε′) if and only it is valid in
(A, ε). Henceforth, (A′, ε′) is a proper epsilon-algebra which is extensional and,
like (A, ε) is a model of T + ¬f . By Theorem 5, there is a complex epsilon-
algebra (V ,∈) isomorphic to (A′, ε′); V is then a ca-model of T +¬{. Formula
f itself cannot be valid in this model—a contradiction. 2

Theorem 2, a peculiar adequacy theorem for epsilon-logic with respect to
multi-algebras, now follows in virtue of Proposition 4.
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