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A NOTE ON SEMILATTICE DECOMPOSITIONS OF
COMPLETELY π-REGULAR SEMIGROUPS
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Abstract. We study completely π-regular semigroups admitting a de-
composition into a semilattice of σn-simple semigroups, and describe them
in terms of properties of their idempotents. In the general case, semi-
groups admitting a decomposition into a semilattice of σn-simple semi-
groups were characterized by M. Ćirić and S. Bogdanović in [3] (see The-
orem 1 below), in terms of paths of length n in the graph corresponding
to the relation −→, and in terms of principal filters and n-radicals. Here
we prove that in the completely π-regular case, it suffices to consider only
those paths of length n starting and/or ending with and idempotent, as
well as principal filters and n-radicals generated by idempotents.
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1. Introduction and preliminaries

The relation −→, introduced by M. S. Putcha in [6] and T. Tamura in [10],
plays a crucial role in semilattice decompositions of semigroups. In the men-
tioned papers it was used in study of semigroups decomposable into a semilattice
of Archimedean semigroups, whereas T. Tamura in [11] showed how the least
semilattice congruence on a semigroup can be constructed starting from −→.
He proved that the transitive closure of −→ is a quasi-order whose symmetric
opening (that is, its natural equivalence) is equal to the least semilattice con-
gruence on a considered semigroup. Furthermore, M. S. Putcha in [7], proved
that the action of the transitive closure and the symmetric opening operators
in the Tamura’s procedure can be permuted.

The hardest step in Tamura’s procedure is the application of transitive clo-
sure operator to the relation −→. As known, the transitive closure of a relation
one obtains using an iteration procedure. In the general case, the number of
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iterations applied may be infinite, and a natural problem that arises here is:
Under what conditions on a semigroup S, the least semilattice congruence on
S can be obtained applying only a finite number of iterations to −→? This
problem has been considered first by M. S. Putcha in [7], and later by M. Ćirić
and S. Bogdanović in [3], who gave structural characterizations (cited here as
Theorem 1) of all semigroups in which this number can be bounded by a given
natural number n, the so-called semilattices of σn-simple semigroups. These
semigroups have been also studied by S. Bogdanović, M. Ćirić and Ž. Popović
in [2].

On the other hand, semilattice decompositions are especially interesting
when they are considered for some particular types of semigroups. For example,
many authors studied semilattice decompositions of completely π-regular semi-
groups. Another characterization of the least semilattice congruence on such
semigroups was given by M. S. Putcha in [5], and by L. N. Shevrin [8, 9] and
M. L. Veronesi [12], and in a series of papers by S. Bogdanović and M. Ćirić
(see the survey paper [1]), decompositions of completely π-regular semigroups
into a semilattice of Archimedean semigroups (that is, σ1-simple semigroups)
were studied and described in terms of idempotents, regular elements and other
special elements.

In this paper we study completely π-regular semigroups admitting a decom-
position into a semilattice of σn-simple semigroups and describe them in terms
of properties of their idempotents. In the general case, semigroups admitting
a decomposition into a semilattice of σn-simple semigroups were characterized
by M. Ćirić and S. Bogdanović in [3] (see Theorem 1 below), in terms of paths
of length n in the graph corresponding to the relation −→, and in terms of
principal filters and n-radicals. Here we prove that in the completely π-regular
case, it suffices to consider only those paths of length n starting and/or ending
with and idempotent, as well as principal filters and n-radicals generated by
idempotents.

Now we give precise definitions of the notions used above and the ones that
will be used in the further text.
N will be used in the sequel to denote the set of all positive integers. Let S be

a semigroup. For a subset A of S, we define
√

A = {x ∈ S | (∃n ∈ N) xn ∈ A}.
A subset A of S is completely semiprime if for any x ∈ S, x2 ∈ A implies x ∈ A.
If A is an ideal of S, then it is completely semiprime if and only if

√
A ⊆ A. A

subsemigroup T of S is a filter of S if for all x, y ∈ S, xy ∈ T implies x, y ∈ T .
The least filter of S containing an element a (the intersection of all filters of S
containing a) is denoted by N(a) and called the principal filter of S generated
by a.

The division relation | and the relation −→ on S are defined by

a | b ⇔ (∃x, y ∈ S1) b = xay, a −→ b ⇔ (∃k ∈ N) a | bk.
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For n ∈ N, n ≥ 2, the relation −→n on S is defined by

a −→n b ⇔ (∃x ∈ S) a −→n−1 x −→ b,

and for n = 1, −→n=−→. In other words, −→n is the n-th power of −→ in the
semigroup of binary relations on S. The transitive closure of −→ is denoted by
−→∞. For n ∈ N and a ∈ S, the sets Σn(a) and Σ(a) are defined by

Σn(a) = {x ∈ S | a −→n x}, Σ(a) = {x ∈ S | a −→∞ x},

and the equivalence relations σn and σ on S are defined by

(a, b) ∈ σn ⇔ Σn(a) = Σn(b), (a, b) ∈ σ ⇔ Σ(a) = Σ(b).

In other words,

Σ1(a) =
√

SaS, Σn+1(a) =
√

SΣn(a)S ⊇ Σn(a), and Σ(a) =
⋃

n∈N
Σn(a).

As it was proved by M. Ćirić and S. Bogdanović in [8], σ is the least semilattice
congruence on S, N(a) = {x ∈ S |x −→∞ a} and Σ(a) is the least completely
semiprime ideal of S containing a, called the principal radical of S generated
by a. The set Σn(a) is called the n-radical generated by a. A semigroup S
is σn-simple if σn coincides with the universal relation on S, and σ1-simple
semigroups are also called Archimedean semigroups.

The set of all idempotents of a semigroup S is denoted by E(S). If e ∈ E(S),
then Ge = {x ∈ S |x ∈ eS ∩ Se, e ∈ xS ∩ Sx} is the largest subgroup of S
having e as its identity, called the maximal subgroup of S determined by e, and
the set Te is defined by Te =

√
Ge. An element a of S is completely π-regular if

at least one of its powers lies in some subgroup of S. There is exactly one such
subgroup, and its identity is denoted by a0.

For undefined notions and notations we refer to the book [4].

2. The main results

We start this section by recalling a theorem from the paper [3] by M. Ćirić
and S. Bogdanović, which characterizes semilattices of σn-simple semigroups.

Theorem 1. Let n ∈ N. Then the following conditions on a semigroup S
are equivalent:

(i) S is a semilattice of σn-simple semigroups;

(ii) (∀a ∈ S) a σn a2;

(iii) (∀a, b ∈ S) a−→n b ⇒ a2−→n b;

(iv) (∀a, b, c ∈ S) a−→n c & b−→n c ⇒ ab−→n c;
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(v) for every a ∈ S, Σn(a) is an ideal od S;

(vi) (∀a, b ∈ S) Σn(ef) = Σn(e) ∩ Σn(f);

(vii) for every a ∈ S, N(a) = {x ∈ S |x−→n a};
(viii) (∀a, b, c ∈ S) a−→n b & b−→n c ⇒ a−→n c;

(ix) σn = −→n ∩ (−→n)−1 on S.

Note that (iii) is known as the power property for −→n , (iv) is the common
multiple property for −→n , briefly the cm-property , and (viii) is the transitivity
of −→n .

Next we prove two auxiliary lemmas.

Lemma 1. Let a be a completely π-regular element of a semigroup S. Then
for every b ∈ S and every n ∈ N,

a0−→n b implies a−→n b.

In other words, for every n ∈ N,

Σn(a0) ⊆ Σn(a).

Proof. Let m ∈ N such that am ∈ Ga0 , and let (am)−1 be the inverse of am in
the group Ga0 . Then a0 = (am(am)−1)2 ∈ SaS, which yields Sa0S ⊆ SaS, and
hence

Σ1(a0) =
√

Sa0S ⊆
√

SaS = Σ1(a).

Now, by induction we easily verify that Σn(a0) ⊆ Σn(a), for every n ∈ N.

Lemma 2. Let b be a completely π-regular element of a semigroup S. Then
for every a ∈ S and every n ∈ N,

a−→n b if and only if a−→n b0.

Proof. Let m ∈ N such that bm ∈ Gb0 . Consider an arbitrary a ∈ S.
Suppose that a −→ b. Then bk ∈ SaS, for some k ∈ N, and hence bmk ∈

Gb0 ∩ SaS. Let (bmk)−1 be the inverse of bmk in the group Gb0 . Now b0 =
(bmk(bmk)−1)2 ∈ SaS so we obtain that a | b0, which is equivalent to a −→ b0,
because b0 is an idempotent. Conversely, let a −→ b0, i.e. a | b0. Then
bm = b0bm ∈ SaSbm ⊆ SaS, and hence a −→ b.

Therefore, we have proved that our assertion holds for n = 1. By induction
we easily verify that this assertion holds for every n ∈ N.

Note that if b is completely π-regular we have a−→ b0 if and only if a | b0.
Therefore, in such a case we obtain

a−→ b if and only if a | b0.

Now we are prepared for the main result of the paper.
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Theorem 2. Let S be a completely π-regular semigroup and n ∈ N. Then
the following conditions are equivalent:

(i) S is a semilattice of σn-simple semigroups;

(ii) (∀a ∈ S) a σn a0;

(iii-a) (∀a, b ∈ S) a−→n b ⇒ a0−→n b;

(iii-b) (∀a ∈ S)(∀f ∈ E(S)) a−→n f ⇒ a2−→n f ;

(iv-a) (∀a, b ∈ S)(∀g ∈ E(S)) a−→n g & b−→n g ⇒ ab−→n g;

(iv-b) (∀e, f ∈ E(S))(∀c ∈ S) e−→n c & f −→n c ⇒ ef −→n c;

(iv-c) (∀e, f, g ∈ E(S)) e−→n g & f −→n g ⇒ ef −→n g.

(v) for every e ∈ E(S), Σn(e) is an ideal od S;

(vi) (∀e, f ∈ E(S)) Σn(ef) = Σn(e) ∩ Σn(f);

(vii) for every e ∈ E(S), N(e) = {x ∈ S |x−→n e}.
If n ≥ 2, then any of the above conditions is equivalent to

(viii) (∀e, f, g ∈ E(S)) e−→n f & f −→n g ⇒ e−→n g.

Proof. (i)⇒(ii). For an arbitrary a ∈ S, a0−→ a and a | a0, which implies
a−→ a0, and if (i) holds, then by (ix) of Theorem 1 it follows a σn a0.

(ii)⇒(iii-a). The condition (ii) is equivalent to Σn(a) = Σn(a0), whereas
(iii-a) is equivalent to Σn(a) ⊆ Σn(a0), so it is evident that (ii) implies (iii-a).

(iii-a)⇒(i). Let a, b ∈ S such that a−→n b. By the assumption (iii-a),
a0−→n b, and since (a2)0 = a0, we have that (a2)0−→n b, so by Lemma 1,
a2−→n b. Hence, by Theorem 1, S is a semilattice of σn-simple semigroups.

(i)⇒(iii-b). This is an immediate consequence of Theorem 1.
(iii-b)⇒(i). Consider a, b ∈ S such that a−→n b. By Lemma 2, a−→n b

implies a−→n b0, and by (iii-b), a−→n b0 implies a2−→n b0, so again by Lemma
2, a2−→n b. By this and by Theorem 1 it follows that (i) holds.

(i)⇒(iv-c). This is an immediate consequence of Theorem 1.
(iv-c)⇒(iv-a). Let a, b ∈ S and g ∈ E(S) such that a−→n g and b−→n g.

This means that a −→ x−→n−1 g and b −→ y−→n−1 g, for some x, y ∈ S. By
the hypothesis, S is a completely π-regular semigroup, so x ∈ Te0 and y ∈ Tf0 ,
for some e0, f0 ∈ E(S), and by Lemma 2, we have that a −→ x is equivalent to
a | e0 and b −→ y is equivalent to b | f0. But, a | e0 and b | f0 yield e0 = uav
and f0 = pbq, for some u, v, p, q ∈ S. Set e = (vua)2 and f = (bqp)2. Then
e, f ∈ E(S) and

e0 = e3
0 = ua(vua)2v = uaev,

so we have that e | e0, and similarly, f | f0. Again by Lemma 2, e | e0 is equiv-
alent to e −→ x and f | f0 is equivalent to f −→ y, which yields

e −→ x−→n−1 g and f −→ y−→n−1 g,
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i.e. e−→n g and f −→n g. Now, by the assumption (iv), we obtain that
ef −→n g, i.e. ef −→ z−→n−1 g, for some z ∈ S, and hence

zk ∈ SefS = S(vua)2(bqp)2S ⊆ SabS,

which means that ab −→ z. Therefore, ab −→ z−→n−1 g, so ab−→n g. Hence,
we have proved that (iv-a) holds.

(iv-a)⇒(iii-b). This implication is obvious.
(iv-b)⇒(iv-c). This implication is obvious.
(iv-c)⇒(iv-b). Let e, f ∈ E(S) and c ∈ S such that e−→n c and f −→n c.

By Lemma 2, e−→n c0 and f −→n c0, and (iv-c) yields ef −→n c0, so again by
Lemma 2 we obtain ef −→n c, which was to be proved.

(i)⇒(v). This follows immediately by Theorem 1.
(v)⇒(i). Consider an arbitrary a ∈ S. By the assumption (v), Σn(a0) is an

ideal of S, and clearly, it is a completely semiprime ideal of S, so by Lemma 2 of
[3], Σn(a0) = Σ(a0). On the other hand, a0−→ a implies a ∈ Σ1(a0) ⊆ Σ(a0),
which, taken together with Lemma 2 of [3] and Lemma 1, gives

Σ(a) ⊆ Σ(a0) = Σn(a0) ⊆ Σn(a).

This yields Σn(a) = Σ(a), which means that Σn(a) is an ideal of S. Therefore,
by (v) of Theorem 1 we conclude that (i) holds.

(i)⇒(vi). This is an immediate consequence of Theorem 1.
(vi)⇒(i). Let e, f ∈ E(S) and c ∈ S such that e−→n c and f −→n c. By (vi),

this implies c ∈ Σn(e)∩Σn(f) = Σn(ef), i.e. ef −→n c, which was to be proved.
(i)⇒(vii). This follows immediately by Theorem 1.
(vii)⇒(i). Let a, b ∈ S and g ∈ E(S) such that a−→n g and b−→n g. Then

a, b ∈ N(g), and since N(g) is a subsemigroup of S, then ab ∈ N(g). However,
by (vii), this means that ab−→n g, which was to be proved.

Further, let n ≥ 2.
(i)⇒(viii). This is an immediate consequence of Theorem 1.
(viii)⇒(i). According to Theorem 1, in order to prove (i), it suffices to prove

that −→n is a transitive relation, and we will consider a, b, c ∈ S such that
a−→n b and b−→n c.

First, by Lemma 2 we have that a−→n b0 and b−→n c0. Furthermore,
a−→n b0 yields a−→ y−→n−1 b0, for some y ∈ S, and since y ∈ Te0 , for
some e0 ∈ E(S), by Lemma 2 it follows that a−→ y if and only if a | e0, i.e.
e0 = uav, for some u, v ∈ S. If we set e = (vua)2, then e ∈ E(S) and e0 = uaev
so e | e0. But, by Lemma 2, e | e0 is equivalent to e−→ y, so we have that
e−→ y−→n−1 b0, i.e. e−→n b0.

On the other hand, b−→n c0 gives b−→ z−→n−1 c0, for some z ∈ S, and
z ∈ Th0 , for some h0 ∈ E(S). Now, by Lemma 2, b−→ z if and only if b | h0,
i.e. h0 = pbq, for some p, q ∈ S. Set h = (bqp)2. Then h ∈ E(S) and h | h0,
which is equivalent to h−→ z, again by Lemma 2. Thus, h−→ z−→n−1 c0, that
means h−→n c0.
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Finally we have b0−→ b, and also b | h, so b−→h. Hence, b0−→2 h, so
b0−→n h, because n ≥ 2. Therefore,

e−→n b0, b0−→n h and h−→n c0,

so by the assumption (v) we conclude that e−→n c0.
Now, in order to prove that a−→n c, we start with the relation e−→n c0,

and by Lemma 2 we obtain that e−→n c. But this means that e−→ t−→n−1 c,
for some t ∈ S. Further, e−→ t implies

tk ∈ SeS = S(vua)2S ⊆ SaS,

for some k ∈ N, so a−→ t. Therefore, a−→ t−→n−1 c, and we have that
a−→n c, which was to be proved.

Remark 1. The requirement n ≥ 2 is crucial for the equivalence of (i) and
(viii) in the previous theorem. Namely, every completely π-regular semigroup
S satisfies the condition

(∀e, f, g ∈ E(S)) e−→ f & f −→ g ⇒ e−→ g,

because it is clearly equivalent to the condition

(∀e, f, g ∈ E(S)) e | f & f | g ⇒ e | g,

and the division relation is transitive. But, S is not necessarily a semilattice of
σ1-simple semigroups. For example, the five-element Brandt semigroup

B2 = 〈a, b | a2 = b2 = 0, aba = a, bab = b〉

is completely π-regular, and hence satisfies the above conditions. But S is not
a semilattice of σ1-simple (Archimedean) semigroups.
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