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1. Introduction

Concept algebras arise from the need to develop a Contextual Boolean Logic,
based on “concept as unit of thought”. A concept is considered to be determined
by its extent and its intent. The extent consists of all entities belonging to the
concept, whilst the intent is the set of properties shared by these entities. The
notion of concept has been formalized at the early 80s ([Wi82]) and led to the
theory of Formal Concept Analysis ([GW99]). A formal context is a triple
(G,M, I) of sets such that I ⊆ G ×M . The members of G are called objects
and those of M attributes. If (g, m) ∈ I the object g is said to have m as an
attribute. For subsets A ⊆ G and B ⊆ M , A′ and B′ are defined by

A′ := {m ∈ M | ∀g ∈ A gIm}

B′ := {g ∈ G | ∀m ∈ B gIm}.
The operation ′, usually called derivation, induces a Galois connection between
the powersets of G and of M . If different relations are defined on the same sets
we use other notations to avoid confusion.

A formal concept of the context (G,M, I) is a pair (A, B) with A ⊆ G
and B ⊆ M such that A′ = B and B′ = A. A is called the extent and B the
intent of the concept (A,B). B(G,M, I) denotes the set of all formal concepts

1partially supported by GrK 334 of the German Research Foundation
2Institut für Algebra, Technische Universität Dresden, D-01062 Dresden, e-mail:

kwuida@math.tu-dresden.de



142 L. Kwuida

of the formal context (G,M, I). For g ∈ G and m ∈ M , we set g′ := {g}′ and
m′ := {m}′. The concepts

γg := (g′′, g′) and µm := (m′,m′′)

are respectively called object concept and attribute concept. They play an
important rôle in the representation of complete lattices as concept lattices.

The hierarchy on concepts is captured by the subconcept-superconcept
relation. The concept (A,B) is called a subconcept of the concept (C, D)
provided that A ⊆ C (which is equivalent to D ⊆ B). In this case, (C, D) is
a superconcept of (A, B) and we write (A, B) ≤ (C, D). (B(G,M, I);≤) is a
complete lattice and is called the concept lattice of the context (G,M, I), and
usually denoted by B(G, M, I). Conversely, each complete lattice is isomorphic
to some concept lattice ([GW99]).

To introduce a notion of negation3 on concepts, Rudolf Wille introduced
two unary operations 4 and 5 called weak negation and weak opposition
defined for each concept (A, B) by

(A,B)4 := (A
′′
, A

′
) and (A,B)5 := (B

′
, B

′′
),

where A := G \ A and B := M \ B. A concept lattice enriched with a weak
negation and a weak opposition is called a concept algebra. Here the motto is
that the negation of a concept should be a concept. There are other approaches
driven by the aim to keep the correspondence between set-complementation and
negation. For this purpose Rudolf Wille et al. extended the notion of concepts
to that of semiconcepts ([HLSW01]), protoconcepts ([Wi00]) and preconcepts
([Wi04]). These extensions are not in the scope of this paper. Our main interest
is the structure theory of concept algebras. In this contribution we focus on
congruences of concept algebras.

The concept algebra of the context (G,M, I) will be denoted by A(G,M, I).
Each concept algebra is a complete lattice and satisfies the following equations
(see [Wi00]):

(1) x44 ≤ x,

(2) x ≤ y ⇒ x4 ≥ y4,

(3) (x ∧ y) ∨ (x ∧ y4) = x,

(1’) x55 ≥ x,

(2’) x ≤ y ⇒ x5 ≥ y5,

(3’) (x ∨ y) ∧ (x ∨ y5) = x.

Definition 1.1 Each bounded lattice equipped with two unary operations 4 and
5 (respectively called weak complementation and dual weak complemen-
tation) satisfying the equations (1)-(3’) above, will be called a weakly dicom-
plemented lattice.

3The problem of negation is one of the oldest problems in the scientific and philosophic
community, and still attracts the attention of many researchers (see [Wa96]).
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Finite distributive weakly dicomplemented lattices are (isomorphic to) con-
cept algebras (see [GK04]). It is still an open problem whether these equations
are enough to describe the equational theory (if there is one) of concept algebras.
Working on the class of concept algebras, we would like, for example, to know
if this is closed under complete homomorphisms. At the present this is now
not clear. Observe that the kernels of complete homomorphisms are complete
congruences (see below). In Section 2 we give two characterizations of concept
algebra congruences. In Section 3 we consider the problem of describing the
lattice of concept algebra congruences.

2. Congruences of Concept Algebras

Concept algebras are concept lattices with additional operations. There-
fore, each concept algebra congruence is a concept lattice congruence with some
additional properties.

Definition 2.1 A complete congruence relation on a complete lattice L is
an equivalence relation θ on L such that xtθyt for all t ∈ T implies

∧

t∈T

xtθ
∧

t∈T

yt and
∨

t∈T

xtθ
∨

t∈T

yt.

In the rest of this contribution, we will usually use the term congruence to mean
complete congruence. Note that for a congruence θ, we have xθy if and only if
x∧yθx∨y. The congruence classes are intervals of L. For an element x ∈ L, we
denote by [x]θ its congruence class. We denote by xθ the least element of [x]θ
and by xθ its greatest element. Thus [x]θ is the interval [xθ, x

θ]. The factor
lattice L/θ is a complete lattice with respect to the order relation defined by:

[x]θ ≤ [y]θ : ⇐⇒ xθ(x ∧ y).

The following proposition gives a characterization of complete congruence rela-
tions.

Proposition 2.1 [GW99, pp. 106-107] An equivalence relation θ on a complete
lattice L is a complete congruence relation if and only if every equivalence class
of θ is an interval of L, the lower bounds of these intervals being closed under
suprema and the upper bounds being closed under infima.

Concept lattice congruences are described by compatible subcontexts. For
a formal context (G,M, I), a subcontext (H, N, I ∩ H × N), usually denoted
by (H,N), is said to be compatible if for all (A,B) in B(G,M, I), the pair
(A ∩H, B ∩N) is a formal concept of (H, N). The compatible subcontexts are
characterized by their induced projections.



144 L. Kwuida

Proposition 2.2 [GW99, p. 100] The subcontext (H, N) of (G,M, I) is com-
patible if and only if the mapping

ΠH,N : B(G,M, I) → B(H, N)
(A,B) 7→ (A ∩H,B ∩N)

is a surjective complete homomorphism.

The kernel of ΠH,N is a complete congruence of B(G,M, I). We denote it by
θH,N . We get

B(H, N) ∼= B(G,M, I)/θH,N

with

(A1, B1)θH,N (A2, B2) ⇐⇒ A1 ∩H = A2 ∩H ⇐⇒ B1 ∩N = B2 ∩N.

The bounds of congruence classes can be easily identified. In fact for a concept
(A, B), the least element of [(A,B)]θH,N

is the concept ((A ∩H)′′, (A ∩H)′)
and the greatest element is ((B ∩N)′, (B ∩N)′′). A complete congruence θ
is said to be induced by a subcontext if there is a compatible subcontext
(H,N) such that θ = θH,N . In the case of a doubly founded4 concept lattice
every complete congruence is induced by a subcontext. If in addition the context
is reduced then this subcontext is uniquely determined by the congruence.

Definition 2.2 A concept lattice congruence θ of B(G,M, I) is said to be 4-
compatible (resp. 5-compatible) if for all concepts x and y in B(G,M, I),
xθy ⇒ x4θy4 (resp. xθy ⇒ x5θy5). A concept algebra congruence is a
4-compatible and 5-compatible concept lattice congruence.

If θ is a congruence of the concept algebra A(K) then θ is a congruence of the
concept lattice B(K) and therefore corresponds to a compatible subcontext of
K. Which of these subcontexts enable the preservation of the unary operations?
We are going to examine under which conditions a congruence induced by a
compatible subcontext preserves the operation 4 and dualize to get the result
for the operation 5.

We adopt the following notations for m,n, m0 ∈ M and N ⊆ M .

m⊥n : ⇐⇒ m0 ⊥ n for all m0 ∈ m′′ ∩N,

where m0 ⊥ n stands for m′
0 ∪n′ = G. The relation ⊥ is called “the orthogonal

relation”. The attributes m and n are orthogonal if they (their extents m′ and
n′) cover G. Note that if m and n are in N , and m⊥n (all elements of m′′ ∩N
are orthogonal to n) then trivially m is orthogonal to n.

4A complete lattice L is doubly founded, if for any two elements x < y of L, there are

elements s, t ∈ L with: s is minimal with respect to s ≤ y, s � x, as well as t is maximal with

respect to t ≥ x, t � y.
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Theorem 2.3 The lattice congruence induced by a compatible subcontext (H,N)
is 4-compatible if and only if

∀m∈M ∀n∈N m⊥n ⇒ m ⊥ n. (∗)
Before we come to the proof let us rephrase this result. The theorem states that
if a subcontext (H, N) induces a 4-compatible congruence, then from m ∈ M
and n ∈ N such that all elements of m′′ ∩N are orthogonal to n, it follows that
m and n automatically cover G. Moreover, the condition (∗) is sufficient.
Proof. (⇐) We assume that the condition (∗) holds. We prove that if x and
y are concepts such that xθH,Ny then automatically x4θH,Ny4. Since xθH,Ny
is equivalent to (x ∧ y)θH,N (x ∨ y), it is enough to prove the assertion only for
x ≤ y. We can even restrict to pairs (x, y) such that x is minimal and y is
maximal in their congruence class. Recall that xθH,Ny means

ext(x) ∩H = ext(y) ∩H =: A and int(x) ∩N = int(y) ∩N =: B,

where ext(x) denotes the extent of the concept x and int(x) its intent. As we
assume x to be minimal and y maximal, we have x = (A′′, A′) and y = (B′, B′′).
Reformulating the problem, we have to prove that

(
(G \A′′)′′ , (G \A′′)′

)
θH,N

(
(G \B′)′′ , (G \B′)′

)
.

This is equivalent to the equality

(G \A′′)′ ∩N = (G \B′)′ ∩N.

The inclusion
(G \A′′)′ ∩N ⊆ (G \B′)′ ∩N

is immediate since A′′ is a subset of B′. Note that for all n ∈ N ,

n ∈ (G \B′)′ ⇐⇒ n′′ ⊆ (G \B′)′ ⇐⇒ G \B′ ⊆ n′ ⇐⇒ G \ n′ ⊆ B′.

Therefore it suffices to show that

∀n∈N [G \ n′ ⊆ B′ ⇒ G \ n′ ⊆ A′′] .

We know that B = A′ ∩N = {n ∈ N | A ⊆ n′}. To get the above assertion we
need to demonstrate that

∀n∈N


G \ n′ ⊆

⋂

m0∈N, A⊆m′
0

m′
0 ⇒ G \ n′ ⊆

⋂

m∈M, A⊆m′
m′


 .

i.e.

∀n∈N [m0 ⊥ n ∀m0∈N with A ⊆ m′
0 ⇒ m ⊥ n ∀m∈M with A ⊆ m′] .
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Equivalently, we do prove that for all n ∈ N the assertion

∃m∈M such that A ⊆ m′ and m 6⊥ n

implies
∃m0∈N such that A ⊆ m′

0 and m0 6⊥ n.

If this implication were not true for a certain n in N there would exist an
attribute m with A ⊆ m′ and m 6⊥ n such that for any attribute m0 ∈ N with
A ⊆ m′

0, we have m0 ⊥ n. All attributes from m′′ ∩ N belong particularly5

to these attributes. Therefore m0 ⊥ n for all m0 ∈ m′′ ∩ N . This is exactly
m⊥n. From (∗) we would get m ⊥ n, which would be a contradiction. Thus
x4θH,Ny4. Since x and y were chosen arbitrary we obtain that θH,N is 4-
compatible.

(⇒) For the converse we assume that θH,N is 4-compatible and want to
prove the condition (∗). We consider m ∈ M and n ∈ N with m⊥n. When do
we have m ⊥ n? The congruence class [(m′,m′′)]θH,N

of the attribute concept
(m′, m′′) is the interval

[((m′ ∩H)′′, (m′ ∩H)′) , ((m′′ ∩N)′, (m′′ ∩N)′′)] .

From the 4-compatibility of θH,N it follows that

((m′ ∩H)′′, (m′ ∩H)′)4θH,N ((m′′ ∩N)′, (m′′ ∩N)′′)4.

i.e.

((G \ (m′ ∩H)′′)′′, (G \ (m′ ∩H)′′)′)θH,N ((G \ (m′′ ∩N)′)′′, (G \ (m′′ ∩N)′)′).

Thus
(G \ (m′ ∩H)′′)′ ∩N = (G \ (m′′ ∩N)′)′ ∩N.

This is equivalent to

∀n∈N G \ n′ ⊆ (m′ ∩H)′′ ⇐⇒ G \ n′ ⊆ (m′′ ∩N)′

which is the same as

∀n∈N G \ n′ ⊆ (m′′ ∩N)′ ⇒ G \ n′ ⊆ (m′ ∩H)′′

since m′ ∩H ⊆ (m′′ ∩N)′. From m⊥n we get

∀m0∈N m′
0 ⊇ m′ ⇒ m0 ⊥ n

and furthermore
(m′′ ∩N)′ =

⋂

m0∈m′′∩N

m′
0 ⊇ G \ n′.

If m 6⊥ n then G\n′ 6⊆ m′. But m′ ⊇ (m′∩H)′′; it follows that G \ n′ 6⊆ (m′ ∩H)′′.
This is a contradiction since G \ n′ ⊆ (m′′ ∩ N)′ implies G \ n′ ⊆ (m′ ∩ H)′′.
This completes the proof. 2

5m0 ∈ m′′ ∩N ⇒ m′
0 ⊇ m′ ⊇ A.
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Corollary 2.4 A compatible subcontext (H, N) of (G,M, I) induces a concept
algebra congruence if and only if the conditions (i) and (ii) below hold.

(i) ∀m∈M∀n∈N m⊥n ⇒ m ⊥ n.

(ii) ∀g∈G∀h∈H g⊥h ⇒ g ⊥ h.6

From Proposition 2.2 compatible subcontexts correspond to projections that
are surjective homomorphisms. Another way to look for concept algebra con-
gruences is to examine compatible subcontexts (H, N) for which the projection
ΠH,N preserves the unary operations. We denote by j the derivation7 in the
subcontext (H, N). Let x = (A′′, A′) be a concept of (G,M, I).

ΠH,N (x4) = ((G \A′′)′′ ∩H, (G \A′′)′ ∩N)

and
ΠH,N (x)4 = ((H \A′′)jj , (H \A′′)j).

Thus ΠH,N (x4) = ΠH,N (x)4 if and only if

(G \A′′)′ ∩N = (H \A′′)j .

This means that for all n ∈ N
[
G \A′′ ⊆ n′ ⇐⇒ H \A′′ ⊆ nj

]
.

Thus ΠH,N (x4) = ΠH,N (x)4 if and only if for all n ∈ N
[
G \ n′ ⊆ A′′ ⇐⇒ H \ nj ⊆ A′′

]
.

The above equivalence can be rewritten as

G \ n′ ⊆

⋂

A⊆m′
m′ ⇐⇒ H \ nj ⊆

⋂

A⊆m′
m′


 .

i.e. ∀m∈M A ⊆ m′, n′ ∪m′ = G ⇐⇒ nj ∪m′ ⊇ H.

Since x was taken arbitrarily in B(G,M, I), we obtain the equality ΠH,N (x4) =
ΠH,N (x)4 if and only if for every subset A of G, for all n ∈ N and for all m ∈ M
with A ⊆ m′, the equivalence

n ⊥G m ⇐⇒ n ⊥H m

holds. This is equivalent to

∀n∈N ∀m∈M (n ⊥G m ⇐⇒ n ⊥H m) .

Thus, the following theorem holds.
6g ⊥ h : ⇐⇒ g′ ∪ h′ = M and g⊥h : ⇐⇒ g0 ⊥ h ∀g0 ∈ g′′ ∩H
7see Section 1
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Theorem 2.5 A compatible subcontext (H, N) of (G,M, I) induces a congru-
ence of the concept algebra A(K) if and only if the following assertions are valid:

(i) ∀n∈N ∀m∈M n ⊥G m ⇐⇒ n ⊥H m,

(ii) ∀h∈H ∀g∈G h ⊥M g ⇐⇒ h ⊥N g.

We denote by Mirr the set of irreducible attributes of a context (G,M, I). The
test of compatibility of subcontexts can just be done on the irreducible elements,
as we can see in the next proposition.

Proposition 2.6 The following assertions are equivalent:

(i) ∀m ∈ M, ∀n ∈ N, n ⊥G m ⇐⇒ n ⊥H m.

(ii) ∀m ∈ Mirr, ∀n ∈ N ∩Mirr, n ⊥G m ⇐⇒ n ⊥H m.

Proof. The implication (i) ⇒ (ii) is obviously true. We are going to prove
(ii) ⇒ (i). We assume that (ii) holds. We need only to prove that for m ∈ M
and n ∈ N , m ⊥H n ⇒ m ⊥G n since the reverse implication is trivial. Let
m ∈ M and n ∈ N such that m ⊥H n. We want to prove that m ⊥G n. If m
and n are irreducible then we are done. Else we get

m′ =
k⋂

i=0

m′
i and n′ =

l⋂
s=0

n′s for 0 ≤ i ≤ k and 0 ≤ s ≤ l

where mi and ns are irreducible. Therefore

m ⊥H n ⇒ (m′ ∩H) ∪ (n′ ∩H) = H

⇒ (m′
i ∪ n′s) ∩H = H ∀(i, s) ∈ {0, . . . , k} × {0, . . . , l}

⇒ mi ⊥H ns ∀(i, s) ∈ {0, . . . , k} × {0, . . . , l}
⇒ mi ⊥G ns ∀(i, s) ∈ {0, . . . , k} × {0, . . . , l}
⇒ m′

i ∪ n′s = G ∀(i, s) ∈ {0, . . . , k} × {0, . . . , l}

⇒
k⋂

i=0

m′
i ∪

l⋂
s=0

n′s = G

⇒ m′ ∪ n′ = G

⇒ m ⊥G n.

And (i) is proved. 2

This result is a little bit surprising, since the concept algebra structure does
not live on the irreducible elements, but on the 4-compatible and 5-compatible
elements. Some of them are from the lattice point of view reducible, but not
from the concept algebra point of view.
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Let us have a look at the problem of complete homomorphic images of con-
cept algebras. We consider a concept algebra A(G,M, I), a weakly dicomple-
mented lattice L and a surjective complete homomorphism f : A(G,M, I) → L.
The kernel of f is a complete congruence of A(G,M, I). We assume that
(G,M, I) is doubly founded. Then there exists a compatible subcontext (H,N)
of (G,M, I) such that θH,N is kerf . Thus (H,N) is a compatible subcontext
of (G,M, I) and (H,N) induces a concept algebra congruence. By the first
isomorphism theorem we would obtain that

L ∼= A(G,M, I)/kerf
∼= A(G,M, I)/θH,N

∼= A(H, N). i.e.

Theorem 2.7 Homomorphic images of doubly founded concept algebras are
(isomorphic to) concept algebras.

All finite lattices are complete and doubly founded. Thus the class of finite
concept algebras is stable under homomorphic images.

3 Congruence lattices of concept algebras.

The set of concept algebra congruences of a formal context K is a sublattice
of the lattice of all equivalence relations on B(K). We denote it by ConA(K).
It is a sublattice of the distributive lattice ConB(K), the congruence lattice of
the concept lattice of K . Thus ConA(K) is a distributive lattice. By Birkhoff’s
theorem there is an ordered set (P,≤) such that ConA(K) is isomorphic to
B(P, P,�). Finding a good description of the poset (P,≤) is a problem
worthy to be considered. In the case of ConB(K), the poset (P,≤) is a
copy of (Girr,≤)8 and of (Mirr,≤) with g ≤ h ⇐⇒ g′′ ⊆ h′′ for g and h in
Girr, where Girr is the set of join irreducible elements and Mirr the set of meet
irreducible elements.

Compatible subcontexts can be determined by means of arrow relations.

Definition 3.1 Let (G,M, I) be a formal context with g ∈ G and m ∈ M . The
arrow relations are defined by:

g ↙ m : ⇐⇒ m 6∈ g′ and g′ maximal with respect to m 6∈ g′,

g ↗ m : ⇐⇒ g 6∈ m′ and m′ maximal with respect to g 6∈ m′.

A subcontext (H, N) of a clarified context (G,M, I) is arrow-closed if the
following holds: h ↗ m and h ∈ H together imply m ∈ N , and dually, g ↙ n
and n ∈ N together imply g ∈ H.

Proposition 3.1 [GW99, p. 101] Every compatible subcontext is arrow-closed.
Every arrow-closed subcontext of a doubly founded context is compatible.

8(Girr,≤) ∼= (Mirr,≤) with m ≤ n ⇐⇒ m′′ ⊆ n′′ for m, n ∈ Mirr.
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If the context (G,M, I) is reduced, arrow-closed subcontexts can be elegantly
described in terms of the concepts of a context. For this purpose the transitive
closure of the arrow relations is needed.

Definition 3.2 For g ∈ G and m ∈ M we write g ↙↙ m if there are objects
g = g1, g2, . . . , gk ∈ G and attributes m1,m2, . . . , mk = m ∈ M with gi ↙ mi

for i ∈ {1, . . . , k} and gj ↗ mj−1 for j ∈ {2, . . . , k}. The relation ↙↙ is called
the transitive closure of the arrow relation and is also denoted by trans(↙,↗).
The complement of this relation is denoted by ↙↙\ .

Proposition 3.2 [GW99, p. 102] Let (G,M, I) be a reduced doubly founded
context. Then (H, N) is an arrow-closed subcontext if and only if (G \H, N) is
a concept of the context (G,M,↙↙\ ).

Thus the congruence lattice of B(G,M, I) is isomorphic to the concept lattice
of the context (G,M,↙↙\ ) if (G, M, I) is reduced and doubly founded. This
isomorphism exists even if the context is not assumed to be reduced. Our aim
is to find a similar description for the congruence lattice of concept algebras.
Complete sublattices of concept lattices are described by closed subrelations.
We consider a reduced finite context (G,M, I). The congruence lattice of B(K)
is isomorphic to B(G,M,↙↙\ ). The congruence lattice of A(K) is a sublattice of
the congruence lattice of B(K). Thus there is a closed subrelation 1 of ↙↙\ such
that ConA(K) ∼= B(G,M, 1). Is there any characterization of the relation 1?
When does (g, m) belong to 1? It is enough to find out when (g,m) does
not belong to 1; (i.e. the relation |1 ).

Observe that

|1 = ( |1 ∩ ↙↙\ ) ∪ ( |1 ∩ ↙↙) = ( |1 ∩ ↙↙\ )∪ ↙↙

since 1 ≤ ↙↙\ implies that |1 ⊇ ↙↙. The problem now is to find |1 ∩ ↙↙\ .
Note that

1 =
⋃

(A,A′)∈B(G,M,1)

A×A′.

i.e. (g,m) is in 1 if and only if there exists (A,A′) in B(G,M, 1) such that
g ∈ A and m ∈ A′. Therefore (g, m) /∈ 1 if and only if for any concept (A,A′)
in B(G,M, 1), it holds g 6∈ A or m 6∈ A′. This is equivalent to g ∈ A ⇒ m 6∈ A′

for any concept (A,A′) ∈ B(G, M, 1). Thus (g, m) /∈ 1 if and only if for any
compatible subcontext (H,N) 4- and 5-compatible, g 6∈ G \ H or m 6∈ N .
i.e. (g, m) /∈ 1 if and only if for any compatible subcontext (H,N) 4- and
5-compatible, m ∈ N ⇒ g ∈ H.

Remark 3.1 Let (G,M, I) be a reduced doubly founded context. Any complete
congruence θ of B(G,M, I) is induced by (H, N) with

H = {g ∈ Girr | γg \θ γg∗}
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and
N = {m ∈ Mirr | µm \θ µm∗}.

Proposition 3.3 We consider (G,M, I) to be a reduced context. Let g ∈ G
and m ∈ M . The following holds:

γg4 ≤ µm and γg4∗ � µm ⇒ (g, m) 6∈ 1 and (g, m) /∈I .

Proof. If γg4 ≤ µm and g I m then γg ≤ µm and 1 = γg4 ∨ γg ≤ µm, which
is in contradiction with γg4∗ � µm. Let (H,N) be a compatible and {4,5 }-
compatible subcontext and θH,N be the corresponding congruence. We consider
m ∈ N and want to show that g must be in H.

γgθγg∗ ⇒ γg4θγg4∗ ⇒ γg4 ∨ µmθγg4∗ ∨ µm ⇒ µmθµm∗.

m ∈ N implies µm \θ µm∗ and γg \θ γg∗. Thus g ∈ H. 2

The above proposition gives a sufficient condition for membership of the
relation |1 . But it is not necessary. It is possible to have (g,m) ∈ |1 and
(g, m) ∈I. From the proof we also have

γg5 ≤ µm and γg5∗ � µm ⇒ (g, m) /∈ 1 .

Is the condition “γg5 ≤ µm and γg4∗ � µm” enough to get (g,m) ∈ |1 ?
This leaves us with the open problem to find a necessary and sufficient

condition. An answer is given for finite distributive concept algebras ([Ga04]).

4 Conclusion

We have found a condition under which a complete congruence of a concept
lattice is a concept algebra congruence. The lattice of all congruences is still to
be described. Although there is an evidence that this lattice is isomorphic to a
lattice B(P, P,�) for some poset (P,≤), a “good description” of this poset is
still to be found.
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