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ON SUBDIRECT DECOMPOSITION AND VARIETIES
OF SOME RINGS WITH INVOLUTION. II 1

Igor Dolinka2, Neboǰsa Mudrinski1

Abstract. We describe an effective algorithm which, for a given n ≥ 1
constructs the lattice of all varieties of (involution) rings satisfying the
‘Jacobson identity’ xn+1 = x.
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As it is clearly suggested by the title, this note is a continuation of [1]. In the
latter paper, the authors start from the famous theorem of N. Jacobson which
asserts that every ring satisfying the identity xn+1 = x for some n ≥ 1 must
be commutative (though Jacobson’s result is more general: the existence of a
positive integer n(a) for each a ∈ R such that an(a)+1 = a suffices to conclude
that the ring R is commutative). One way (which is, for obvious reasons, quite
popular among universal algebraists) to see this is to determine, for a fixed
n, the subdirectly irreducible rings with the identity xn+1 = x, e.g. as in [4,
pp.175–178]. It turns out that these subdirectly irreducibles are precisely the
finite fields Fpk such that (pk−1) | n. Hence, every ring satisfying an identity of
the form xn+1 = x is a subdirect product of finite fields, and thus commutative.

Motivated by this approach, in [1] all subdirectly irreducible involution rings
satisfying xn+1 = x were determined. Recall that an involution ring is a struc-
ture (R, ∗) such that R is a ring, and the unary operation ∗ is an involutorial
antiautomorphism of R, i.e. we have (x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗ and
(x∗)∗ = x (we refer e.g. to [2, 3, 6, 7] for an overview of involution rings). The
result is as follows (the notation is slightly changed, but is still standard).

Theorem 1. [1, Theorem 2] A ring with involution is subdirectly irreducible
and obeys the identity xn+1 = x if and only if there is a prime number p and
an integer k ≥ 1 satisfying (pk − 1) | n, such that R is isomorphic to one of the
following:

(1) Fpk , where the involution is the identity mapping,
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(2) F∗pk , with the involution defined by x∗ = xpm

, when k is even and k = 2m,

(3) Ex(Fpk).

Of course, as we want to keep this note reasonably self-contained, we should
explain what Ex(R) is for a given ring R. Let Ropp denote the opposite ring of
R (i.e. its anti-isomorphic copy). Define a unary operation ∗ on the direct sum
R

⊕
Ropp by (a, b)∗ = (b, a). It is easily verified that ∗ is an involution of the

considered direct sum, usually called the exchange involution [6]. The resulting
involution ring is denoted by Ex(R). Of course, if R is commutative (and this
is the case e.g. when R is a field), Ex(R) can be considered just as a direct sum
of two copies of R, while the involution just reverses pairs.

In the second part of [1], an application of the above result is presented,
namely, it is shown how to determine the lattice of all subvarieties of the involu-
tion ring variety determined by x7 = x. This example is particularly interesting,
because it contains all varieties of regular ∗-rings considered by Yamada [8]. It
turned out that while the corresponding ring variety has 12 subvarieties, there
are 90 varieties in the involutorial case. And then, the last sentence of [1] (not
counting, of course, the Acknowledgment) reads as follows: “By similar meth-
ods as those presented in this section, one can apply our Theorem 2 (along
with Theorem 9) for calculating the lattice of varieties of rings with involution
satisfying xn+1 = x for an arbitrary (but fixed) positive integer n.”

Although it is true that [1] indeed gives a good grip on how the prescribed
task should be done for a given n, the reader will probably agree with us in
finding this unsatisfactory from the algorithmic point of view. Thus the goal
of this note becomes apparent: to provide a description or a characterization
of the lattice of (involution) ring varieties with the considered identity, clearly
yielding an effective algorithm which, for a given n, constructs the required
lattice. Of course, all the lattices in question are finite, as there are only finitely
many subdirectly irreducible (involution) rings satisfying xn+1 = x for a given
n. So, our task is, in fact, in recognizing whether two sets of such subdirectly
irreducibles generate the same variety.

In the following, let F denote the class of all finite fields, while F∗ denotes
the class of all subdirectly irreducible involution rings described in Theorem 1
above (that is, Fpk ,F∗pk and Ex(Fpk) for all primes p and for all k ≥ 1). By
Fp and F∗p we denote the members of F and F∗, respectively, of characteris-
tic p. Finally, let Fp(n) = {Fpk : (pk − 1) | n}, F∗p,k = {Fpk ,F∗pk , Ex(Fpk)}
and F∗p (n) =

⋃
(pk−1)|n F∗p,k. Clearly, Fp(n) (F∗p (n)) contains precisely the

subdirectly irreducible (involution) rings satisfying xn+1 = x and having char-
acteristic p. It is obvious (and recorded in Corollary 8 of [1]) that Fp(n) (F∗p (n))
contains nontrivial members if and only if (p− 1) | n.

Certainly, the first step towards calculating L(n), the lattice of all varieties
of (involution) rings satisfying xn+1 = x, is the following fact.
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Theorem 2. [1, Theorem 9] Let n be a positive integer, and let {p1, . . . , pk} be
the set of all prime numbers pi such that (pi−1) | n. Further, let L

(n)
p denote the

sublattice of L(n) consisting only of varieties satisfying px = 0 (i.e. of varieties
of characteristic p). Then L(n) ∼= L

(n)
p1 × . . .× L

(n)
pk .

Therefore, to construct L(n), it suffices first to determine all primes p with
(p− 1) | n, and then to construct L

(n)
p for every such p. In the sequel, we shall

assume that p, the characteristic of rings we are working with, is fixed.
Let us notice here that in [1], the above theorem was proved by using some

basic facts from universal algebra and elementary number-theoretical consider-
ations. But it may be easily noted from that proof as well that the considered
result on the direct decomposition of the subvariety lattice is in fact not a result
on rings, since the additive abelian group (a left Z-module) was the only part
of the ring structure used there. We pause for a moment just to indicate how
the above result follows from a much more general setting.

Let V1, . . . ,Vm be varieties of the same similarity type. These varieties are
independent if there is a term t(x1, . . . , xm) such that for each i, 1 ≤ i ≤ m,
the variety Vi satisfies t(x1, . . . , xm) = xi. Further, if for a variety V we have
V = V1 ∨ . . . ∨ Vm and the subvarieties V1, . . . ,Vm are independent, then V is
said to be the varietal product of V1, . . . ,Vm, written as V = V1 ⊗ . . .⊗ Vm. In
such a case each algebra A ∈ V is a direct product A ∼= A1 × . . .×Am, where
Ai ∈ Vi for all 1 ≤ i ≤ m, and the factors Ai are unique up to an isomorphism
(see p.12 of [5]). A quite straightforward consequence of the latter fact is that

L(V) ∼= L(V1)× . . .× L(Vm),

where L(U) denotes the lattice of all subvarieties of a variety U .
Now assume that a variety V has a term definable structure of a left Z-

module, which means that there is a binary term f(x, y) and unary terms ga(x),
a ∈ Z, in the language of V, such that for each algebra A ∈ V, A = (A, F ),
the algebra (A, fA, gA

a )a∈Z is a left Z-module (this is trivially the case in any
variety of rings, involution rings, abelian groups, etc.). For a prime p, let Vp

denote the subvariety of V determined by the identity gp(x) = 0. Then for any
finite sequence of mutually distinct primes p1, . . . , pk, the varieties Vp1 , . . . ,Vpk

are independent. Indeed, define, as in [1], qi = p1 . . . pi−1pi+1 . . . pk. Since
(pi, qi) = 1, we have αipi + βiqi = 1 for some αi, βi ∈ Z and for all 1 ≤ i ≤ k.
Consider the term

t(x1, . . . , xk) = β1q1x1 + . . . + βkqkxk,

where x + y means f(x, y), and ax means ga(x) (a ∈ Z). Since pi | qj if i 6= j,
and Vpi satisfies pixi = 0, we have that

t(x1, . . . , xk) = βiqixi = (1− αipi)xi = xi
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holds in Vpi
. Hence, Vp1 ∨ . . . ∨ Vpk

= Vp1 ⊗ . . . ⊗ Vpk
, which immediately

implies Theorem 2. It is not hard to see that the above considerations can be
generalized for varieties having term definable K-module structures, where K
is an arbitrary commutative ring with an identity element.

Turning back to our aim, write R ↪→ S for (involution) rings R, S if R embeds
into S. This relation turns immediately Fp and F∗p into partially ordered sets.
Note that since Fpk ↪→ Fp` if and only if k | `, we have (Fp, ↪→) ∼= (N, |). Our
main result is now as follows.

Theorem 3. Let n ≥ 1 be an integer and p a prime such that (p − 1) | n.
Then the lattice L

(n)
p of all (involution) ring varieties satisfying xn+1 = x and

px = 0 is isomorphic to the lattice of all ideals of the ordered set (Fp(n), ↪→)
(resp. (F∗p (n), ↪→)).

Of course, the sets Fp(n) and F∗p (n) can be effectively determined for each n.
Moreover, we have (a quite easy) effective description of the relation ↪→ on Fp,
and so the (finite) poset (Fp(n), ↪→) can be effectively computed, along with all
of its order ideals, which – in conjunction with the above theorem – establishes
our goal for the ring case. To have the same situation with involution ring
varieties, we need to determine ↪→ on F∗p .

Lemma 4. Let k, ` ≥ 1 be integers.

(1) Fpk ↪→ Fp` if and only if k | `.
(2) Fpk ↪→ F∗p` , ` = 2m, if and only if k | m.

(3) Fpk ↪→ Ex(Fp`) if and only if k | `.
(4) F∗pk , k = 2r, does not embed into Fp` .

(5) F∗pk ↪→ F∗p` , k = 2r, ` = 2m, if and only if r | m and m
r is an odd number.

(6) F∗pk ↪→ Ex(Fp`), k = 2r, if and only if k | `.

(7) Ex(Fpk) does not embed into Fp` .

(8) Ex(Fpk) does not embed into F∗p` , ` = 2m.

(9) Ex(Fpk) ↪→ Ex(Fp`) if and only if k | `.

Proof. (1) Since Fpk and Fp` both have the identity mapping as the involution,
this follows from the classical result on finite field embeddings.

(2) Note that in Fp` , all fixed points of the involution satisfy the equation
xpm

= x. Therefore, they form a subfield isomorphic to Fpm . So, Fpk ↪→ F∗p` if
and only if Fpk ↪→ Fpm .
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(3) Similarly as in (2), consider the fixed points of the involution in Ex(Fp`):
these are the pairs (a, a), a ∈ Fp` . They form a field, isomorphic to Fp` , and
thus Fpk ↪→ Ex(Fp`) if and only if Fpk ↪→ Fp` .

(4) Since x∗ = xpr

in F∗pk , there is at least one element in this involution
field which is not fixed by the involution (this is, e.g. the generator of the
multiplicative cyclic group of the underlying field Fpk), and so the assertion
follows.

(5) Clearly, since each involution ring embedding is at the same time an
embedding of rings, if F∗pk ↪→ F∗p` then k | `. In that case, there is only one copy
of Fpk in Fp` and it is formed by those elements of the latter field which are
roots of xpk − x = 0. Of course, the involution in F∗p` is defined by x∗ = xpm

,
but the required embedding will be possible if and only if for each root of the
above polynomial we have x∗ = xpr

, i.e. if and only if the implication

xpk

= x ⇒ xpr

= xpm

holds (in the multiplicative group of Fp`). However, the latter condition is
equivalent to (pk − 1) | (pm − pr). As pm − pr = pr(pm−r − 1) and k = 2r, this
will be true if and only if 2r | (m− r), i.e. m = r(2s + 1) for some s ≥ 0.

(6) By Lemma 10 of [1], F∗pk embeds in Ex(Fpk), and so if k | `, by (9)
it follows that Fpk ↪→ Ex(Fp`). On the other hand, each element of Ex(Fp`)
satisfies xp`

= x, and if F∗pk ↪→ Ex(Fp`), so must each element of F∗pk , i.e. of the
underlying field Fpk . This is, however, possible only if k | `.

(7) This is analogous to (4), since Ex(Fpk) has a nonidentical involution for
each k ≥ 1.

(8) This follows from the fact that (a, 0)pm

= (apm

, 0) 6= (0, a) = (a, 0)∗

holds in Ex(Fpk) for any non-zero a ∈ Fpk .
(9) If k | ` and ϕ : Fpk → Fp` is an embedding, then it is easy to see that

ψ : Ex(Fpk) → Ex(Fp`), defined by ψ((a, b)) = (ϕ(a), ϕ(b)), is an embedding
too, which preserves the exchange involution. On the other hand, if Ex(Fpk) ↪→
Ex(Fp`), then by considering the identity xp`

= x one concludes, analogously
as in (6), that k | `. 2

Let us stop just for a minute to visualize the ordered set (F∗p , ↪→). First of
all, every integer k ≥ 1 can be in a unique way decomposed as k = 2ij, where
j is an odd number. According to this decomposition, we attach some labels
to involution rings in F∗p : Fpk will be denoted by (ai, j), F∗p2k by (bi, j), and
Ex(Fpk) by (ci, j). Let A = {ai : i ≥ 0} ∪ {bi : i ≥ 0} ∪ {ci : i ≥ 0}, and
define an ordering ≤ on A by:

(1) ai ≤ α, α ∈ {am, bm, cm}, if and only if i ≤ m,

(2) bi 6≤ am for all i,m ≥ 0,

(3) bi ≤ bm if and only if i ≤ m,
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(4) bi ≤ cm if and only if i + 1 ≤ m,

(5) ci 6≤ α, α ∈ {am, bm}, for all i, m ≥ 0,

(6) ci ≤ cm if and only if i ≤ m.

It is easy to deduce from the above lemma that in F∗p we have (α, j1) ↪→
(β, j2) if and only α ≤ β in A and j1 | j2. Hence, (F∗p , ↪→) is isomorphic to
the direct product of the lattice of all odd numbers with the divisibility order
(which is, in turn, isomorphic to (N, |)) and (A,≤). The latter order is depicted
in Figure 1.
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• a0

•c0 • b0
• a1

•c1 • b1
• a2

•c2 ···

Figure 1. The partially ordered set (A,≤)

Now it is fairly obvious that the relation ↪→ is defined effectively on F∗p , so
that there is an algorithm which for each n ≥ 1 computes the finite partial order
(F∗p (n), ↪→).

In the proof of our Theorem 3, we are going to use the following two lemmas.
We recall that if C is a class of algebras (of a given similarity type), then V(C)
denotes the variety generated by C, the smallest variety containing C.
Lemma 5. Let R be an (involution) ring with no zero divisors. If

R ∈ V(R1, . . . , Rk)

for some (involution) rings R1, . . . , Rk, then R ∈ V(Ri) for some 1 ≤ i ≤ k.

Proof. Assume that R 6∈ V(Ri) for all 1 ≤ i ≤ k. This means that for each i,
there is an identity

pi(x1, . . . , xmi) = 0

which holds in Ri, but fails in R. Here pi is an (involution) ring term, that
is, a polynomial in non-commuting variables with coefficients from Z, while in
the involutorial case one must include also the stars of variables x∗1, x

∗
2, . . .. So,

there are elements a
(i)
1 , . . . , a

(i)
mi ∈ R such that

bi = pi(a
(i)
1 , . . . , a(i)

mi
) 6= 0.

Now consider the identity

p1(x1,1, . . . , xm1,1)p2(x1,2, . . . , xm2,2) . . . pk(x1,k, . . . , xmk,k) = 0.
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Clearly, this identity holds in each Ri, and thus in the variety V(R1, . . . , Rk).
On the other hand, in R we have

p1(a
(1)
1 , . . . , x(1)

m1
)p2(x

(2)
1 , . . . , x(2)

m2
) . . . pk(x(k)

1 , . . . , x(k)
mk

) = b1b2 . . . bk 6= 0,

since R has no zero divisors. Hence, the considered identity is false in R, and
so R 6∈ V(R1, . . . , Rk). 2

Remark 6. If R has zero divisors, but we can find terms pi(x1, . . . , xmi) and
elements a

(i)
j ∈ R as in the above proof, such that b1, . . . , bk are not zero divisors,

then we obtain the same conclusion as in the lemma just proved. This fact will
be used later, in dealing with involution rings of the form Ex(F), where F is a
finite field.

Lemma 7. Let R,S be subdirectly irreducible (involution) rings form Fp (F∗p )
such that R ∈ V(S). Then R ↪→ S.

Proof. While assuming that R 6↪→ S, we shall prove that there is an identity
which holds in S and fails in R.

For the ring case, this is immediately clear, as Fpk 6↪→ Fp` means that ` is
not divisible by k, whence

xp` − x = 0

is the required identity. In the involutorial case, the above identity will work
just fine (under the same non-divisibility assumption) for the cases

(R, S) ∈ {(Fpk ,Fp`), (Fpk , Ex(Fp`)), (F∗pk , Ex(Fp`)), (Ex(Fpk), Ex(Fp`))},
because Ex(Fp`) satisfies the above identity too (as its ring reduct is just a
direct sum of two copies of Fp`). In fact, if R is a commutative ring, Ex(R)
satisfies the very same ring identities as R does.

Furthermore, it is obvious that the identity x− x∗ = 0 will take care of the
cases (R, S) ∈ {(F∗pk ,Fp`), (Ex(Fpk),Fp`)}. So, consider the identity

xpm − x∗ = 0.

By definition, this identity is true in F∗p` , where ` = 2m. On the other hand, if
it holds in Fpk then (since we have x = x∗ in the latter involution field) k | m,
i.e. Fpk ↪→ F∗p` , by Lemma 4, (2). If the above identity holds in F∗pk , k = 2r,
then

0 = (xpm

)∗ − x = (xpm

)pr − x = xpm+r − x

is satisfied as well, so k | m + r, and m is an odd multiple of r, as required in
Lemma 4, (5). Finally, the above identity is false in Ex(Fpk), since

(a, 0)pm − (a, 0)∗ = (apm

, 0)− (0, a) = (apm

,−a) 6= (0, 0)

for any non-zero a ∈ Fpk . 2
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Remark 8. In the above proof, in case when R is Ex(Fpk), the polynomials
showing that R 6∈ V(S) are indeed constructed such that they have at least one
value which is not a zero divisor in R (the zero divisors in Ex(Fpk) are of the
form (a, 0) and (0, a), a ∈ Fpk). Namely, this is explicitly shown for xpm − x∗

in the last displayed formula above. For x − x∗, it suffices to take (a, 0) for x,
where a 6= 0, to obtain (a, 0) − (a, 0)∗ = (a,−a). Finally, evaluate x as (a, a),
where a 6= 0 in xp` − x. Since the assumption is that k does not divide `, we
have (a, a)p` − (a, a) = (ap` − a, ap` − a), and ap` − a 6= 0.

Therefore, by Remark 6, Lemma 5 holds also in the case when R is of the
form Ex(Fpt), and R1, . . . , Rk are from F∗p .

Proof of Theorem 3. Let LI(p, n) denote the lattice of order ideals of (Fp(n), ↪→)
(of (F∗p (n), ↪→)) and define a mapping f : LI(p, n) → L

(n)
p by

f(I) = V(I)

for each I ∈ LI(p, n). We show that f is a lattice isomorphism. Indeed, f

is onto, since each variety V from L
(n)
p is generated by its set of subdirectly

irreducible members VSI , which is an order ideal in Fp(n) (F∗p (n)). Thus, we
need to prove that

I1 ⊆ I2 if and only if V(I1) ⊆ V(I2).

The direct implication is obvious (and holds even if I1, I2 are arbitrary classes
of algebras), so assume that V(I1) ⊆ V(I2). Then for each (involution) ring
R ∈ I1 we have R ∈ V(I2). By Lemma 5 and Remark 8, there is an S ∈ I2

such that R ∈ V(S), which by Lemma 7 implies R ↪→ S, i.e. R ∈ I2. In other
words, I1 ⊆ I2, as wanted. 2

As already pointed out, the ordered sets (Fp(n), ↪→) and (F∗p (n), ↪→) are
effectively constructible (the latter by Lemma 4). Hence, the same is true for
the lattices of their ideals, and, by Theorem 3, for L

(n)
p . Finally, it remains to

use Theorem 2 to complete the construction of L(n).
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