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TURNING RETRACTIONS OF AN ALGEBRA INTO
AN ALGEBRA

Dragan Mašulović1

Abstract. One can turn the set of retractions of a lattice 〈L,≤〉 into a
poset Rf (L) by letting f ≤ g iff f(x) ≤ g(x) for all x ∈ L. In 1982 H.
Crapo raised the following two problems: (1) Is it true that Rf (L) is a
lattice for any lattice L? (2) Is it true that Rf (L) is a complete lattice if
L is a complete lattice?

In 1990 and 1991 B. Li published two papers dealing with the above
two questions. He showed that Rf (L) is not necessarily a lattice and that
L is a complete lattice if and only if Rf (L) is a complete lattice.

Motivated by the idea of extending the structure from the base set to
the set of all retractions, we introduce the notion of R-algebra as follows.
Let Rf (A) denote the set of all retractions of an algebra A. We say that A
is an R-algebra if the set Rf (A) is closed with respect to operations of A
applied pointwise. We give some necessary and some sufficient conditions
for A to be an R-algebra. We show that the property of being an R-
algebra carries over to retracts of the algebra. In a set of examples we
show that almost no classical algebra is an R-algebra. In particular, a
lattice L is an R-algebra iff |L| ≤ 2.
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1. Introduction

One can turn the set of retractions of a lattice 〈L,≤〉 into a poset by letting
f ≤ g iff f(x) ≤ g(x) for all x ∈ L. In 1982 H. Crapo raised the following two
problems [1]: (1) Is it true that for any lattice L, the set of retractions of a
lattice partially ordered as above is again a lattice? (2) Is it true that the set of
retractions of a lattice is a complete lattice if the original lattice is a complete
lattice?

In 1990 and 1991 B. Li published two papers [2, 3] dealing with the above
two questions. He showed that the set of retractions of a lattice is not necessarily
a lattice, and that L is a complete lattice if and only if the set of retractions of
L is a complete lattice.

Motivated by the idea of extending the structure from the base set to the
set of all retractions, we introduce the notion of R-algebra as follows. Let
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A = 〈A,F〉 be an algebra. By a retraction of A we mean any idempotent
endomorphism of A. Let Rf (A) denote the set of all retractions of A. We say
that A is an R-algebra if Rf (A) is a subuniverse of AA. By Rf (A) we denote
the corresponding algebra on the set of retractions. Lattices, groups etc. that
are R-algebras shall be referred to as R-lattices, R-groups and so on.

In this paper we give some necessary and some sufficient conditions for A to
be an R-algebra. We show that the property of being an R-algebra carries over
to retracts of the algebra. In a set of examples we show that almost no classical
algebra is an R-algebra. In particular, a lattice L is an R-algebra iff |L| ≤ 2,
while a semilattice is an R-algebra iff it is a zero-semilattice.

Let Inv and Pol be the standard clone-theoretic operators. For an algebra
A let CloA denote the clone of all term operations of A and Clo(n) A the set
of all n-ary term operations of A. For an operation f : An → A let f• =
{〈x1, . . . , xn, f(x1, . . . , xn)〉 : 〈x1, . . . , xn〉 ∈ An} denote the graph of f ; for a set
of operations F let F • = {f• : f ∈ F}.

Proposition 1. Let 〈xα : α < λ〉 be a well ordering of A with λ = |A|. For
f ∈ AA let rf = 〈f(xα) : α < λ〉 and for S ⊆ AA put rS = {rf : f ∈ S}.

Now let A = 〈A,F〉 be an algebra and let S = {f ∈ AA : f2 = f} ∩
Pol(CloA)•. Then A is an R-algebra if and only if rS ∈ Inv CloA.

Let A and A′ be term equivalent algebras on the same carrier set A. Then
A is an R-algebra if and only if A′ is an R-algebra. If both A and A′ are
R-algebras then Rf (A) = Rf (A′), and moreover Rf (A) and Rf (A′) are term
equivalents.

Proof. For the first part of the proposition, note that S is exactly the set of
retractions of A and that rS ∈ Inv CloA means that S is closed with respect
to term operations on A applied pointwise. The second part of the proposition
now follows immediately. 2

Proposition 2. If A = 〈A,F〉 is an R-algebra, then Clo(1) A ⊆ Rf (A).

Proof. Take any g ∈ Clo(1) A. The proof proceeds by induction on the com-
plexity of the unary term giving rise to g. Let g = f(x, . . . , x) for some f ∈ F .
Since id ∈ Rf (A) and since Rf (A) is an algebra, f(id, . . . , id) ∈ Rf (A). But,
f(id, . . . , id)(x) = f(x, . . . , x) = g(x). So, g ∈ Rf (A). If g = f(t1, . . . , tn)
for some f ∈ F and some unary terms ti, induction hypothesis and the same
argument apply. 2

Proposition 3. Let A = 〈A,F〉 be an algebra such that for all f, f1, f2 ∈ F
the following two identities hold on A:

(i) f(f(x11, x12, . . . , x1n), f(x21, x22, . . . , x2n), . . . , f(xn1, xn2, . . . , xnn)) =
f(x11, x22, . . . , xnn),
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(ii) f1(f2(x11, . . . , x1n), . . . , f2(xm1, . . . , xmn)) =
f2(f1(x11, . . . , xm1), . . . , f1(x1n, . . . , xmn)).

Then A is an R-algebra. In particular, every rectangular algebra is an R-algebra.

Proof. It suffices to show that Rf (A) is closed with respect to operations in F .
Let f ∈ F and ϕ1, . . . , ϕn ∈ Rf (A) be arbitrary and let ψ = f(ϕ1, . . . , ϕn). We
shall prove that ψ is a retraction of A.

To prove that ψ is a homomorphism of A, let f1 ∈ F be arbitrary.

ψ(f1(x1, . . . , xn)) =
= f(ϕ1, . . . , ϕn)(f1(x1, . . . , xm))
= f(ϕ1(f1(x1, . . . , xm)), . . . , ϕn(f1(x1, . . . , xm)))
[because ϕj ’s are homomorphisms of A]
= f(f1(ϕ1(x1), . . . , ϕ1(xm)), . . . , f1(ϕn(x1), . . . , ϕn(xm)))
[because of (ii)]
= f1(f(ϕ1(x1), . . . , ϕn(x1)), . . . , f(ϕ1(xm), . . . , ϕn(xm)))
= f1(ψ(x1), . . . , ψ(xm)).

To complete the proof, let us show that ψ is idempotent:

ψ(ψ(x)) = f(ϕ1, . . . , ϕn)(ψ(x)) =
= f(ϕ1(ψ(x)), . . . , ϕn(ψ(x)))
= f(ϕ1(f(ϕ1(x), . . . , ϕn(x))), . . . ϕn(f(ϕ1(x), . . . , ϕn(x))))
[because ϕj ’s are homomorphisms of A]
= f(f(ϕ1ϕ1(x), . . . , ϕ1ϕn(x)), . . . , f(ϕnϕ1(x), . . . , ϕnϕn(x)))
[because of (i)]
= f(ϕ1ϕ1(x), . . . , ϕnϕn(x))
[because ϕj ’s are idempotent]
= f(ϕ1(x), . . . , ϕn(x)) = ψ(x). 2

Proposition 4. Let A be an R-algebra and let R be a retract of A. Then R is
an R-algebra.

Proof. Let ϕ : A → R be the corresponding retraction and let

Rf (A, R) := {ψ ∈ Rf (A) : ψ(A) ⊆ R}
Rf (A, R)|R := {ψ|R : ψ ∈ Rf (A, R)}
Rf (R) ◦ ϕ := {ψ ◦ ϕ : ψ ∈ Rf (R)}.

Clearly, Rf (A, R) ≤ AA and Rf (A, R)|R ⊆ Rf (R). Also, Rf (R) ◦ ϕ ⊆
Rf (A, R). To see this, it suffices to show that ψ ◦ ϕ is idempotent for all
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ψ ∈ Rf (R). Take any ψ ∈ Rf (R) and a ∈ A. Then ψ ◦ ϕ(a) ∈ R, whence
ψ ◦ϕ(a) = ϕ(x) for some x ∈ A. Now ϕ ◦ψ ◦ϕ(a) = ϕ ◦ϕ(x) = ϕ(x) = ψ ◦ϕ(a)
and thus ψ ◦ ϕ ◦ ψ ◦ ϕ(a) = ψ ◦ ϕ(a).

To prove that R is an R-algebra, let f ∈ F and ψ1, . . . , ψn ∈ Rf (R)
be arbitrary. Then ψ1 ◦ ϕ, . . . , ψn ◦ ϕ ∈ Rf (R) ◦ ϕ ⊆ Rf (A, R) implying
f(ψ1 ◦ ϕ, . . . , ψn ◦ ϕ) ∈ Rf (A, R) as well. From this we get
f(ψ1 ◦ ϕ, . . . , ψn ◦ ϕ)|R ∈ Rf (A, R)|R ⊆ Rf (R). Since ϕ is a retraction, we
have that ϕ|R = idR, whence f(ψ1 ◦ ϕ, . . . , ψn ◦ ϕ)|R = f(ψ1, . . . , ψn). So,
f(ψ1, . . . , ψn) ∈ Rf (R). 2

Lemma 5. If A is an idempotent R-algebra then A can be embedded into
Rf (A).

Proof. Let ca be the constant mapping ca(x) = a and let Const(A) = {ca : a ∈
A}. Since A is an idempotent algebra, Const(A) ⊆ Rf (A) and Φ : A → Rf (A)
defined by Φ(a) = ca is an embedding of A into Rf (A). 2

For a class K of R-algebras let Rf (K) = {Rf (A) : A ∈ K} (modulo abuse of
set notation). Let S(K) denote the class of all isomorphic copies of subalgebras
of algebras from K and V (K) the variety generated by K.

Proposition 6. Let K be a class of idempotent R-algebras of the same type.
Then V (K) = V (Rf (K)).

Proof. Since Rf (A) ≤ AA for any algebra A, we have Rf (K) ⊆ V (K) and
thus V (Rf (K)) ⊆ V (K). For the other inclusion take any A ∈ K. According
to Lemma 5 algebra A embeds into Rf (A), whence K ⊆ S(Rf (K)). Thus
V (K) ⊆ V (Rf (K)). 2

2. Examples

Unary algebras. Let A be a unary algebra. According to Proposition 2, if
A is an R-algebra, each fundamental operation of A is a retraction of A. The
converse is also obvious. Thus we have that a unary algebra A = 〈A,F〉 is an
R-algebra if and only if F ⊆ Rf (A).

Some semigroups. Let S = 〈S, ·〉 be a semigroup such that S |= xyz =
xz. One easily verifies that S satisfies both conditions listed in Proposition 3.
Therefore, S is an R-semigroup.

Bounded complemented algebras. We say that an algebra A = 〈A,F〉 is
bounded complemented if there are constants 0, 1 ∈ F and a unary operation
∈ F such that 0 = 1, 1 = 0, and |A| = 1 if and only if 0 = 1.

A bounded complemented algebra A is an R-algebra if and only if it is
|A| = 1.
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Proof. ⇐: obvious.
⇒: Let A be a bounded complemented R-algebra. According to Propo-

sition 2, is a retraction of A, whence x = x for each x ∈ A. Therefore
0 = 1 = 1 = 1, implying that |A| = 1. 2

As a corollary, we have the following. Let L = 〈L,∧,∨, , 0, 1〉 be a com-
plemented lattice. L is an R-algebra if and only if L = {0}. In particular, a
boolean algebra B is an R-algebra if and only if B = {0}.

Groups. Let Cn denote the n-element cyclic group and let E denote the trivial
one element group.

A group is an R-group if and only if it isomorphic either to E or to C2.

Proof. ⇐: obvious.
⇒: Let us first show that C2 ×C2 is not an R-group.
Consider ϕ1, ϕ2 : C2 × C2 → C2 × C2 defined by ϕ1(〈x, y〉) = 〈x + y, 0〉 and

ϕ2(〈x, y〉) = 〈0, x + y〉. One easily verifies that ϕ1 and ϕ2 are retractions of
C2×C2. On the other hand, ϕ1 +ϕ2 is not since (ϕ1 +ϕ2)◦ (ϕ1 +ϕ2)(〈1, 0〉) =
〈0, 0〉 6= 〈1, 1〉 = (ϕ1 + ϕ2)(〈1, 0〉).

Now, let G = 〈G, +,−, 0〉 be an R-group and suppose that G is isomorphic
neither to E nor to C2. According to Proposition 2, “−” is a retraction of G,
and that is possible if and only if −x = x for all x ∈ G. Therefore, G is a
2-elementary abelian group and is isomorphic to a direct sum of certain number
of C2’s. Since G is isomorphic neither to E nor to C2, G is a direct sum of at
least two C2’s. Without loss of generality we can assume that elements of G
are 01-sequences, the length of each being at least two. Consider the mapping
ϕ : G → G given by

ϕ(〈x1, x2, x3, x4, . . .〉) = 〈x1, x2, 0, 0, . . .〉.
ϕ is a retraction of G onto its subalgebra isomorphic to C2×C2. According to
Proposition 4, G is not an R-group. 2

Modules. Let PA be a P-module for some ring P. PA is an R-algebra if and
only if |A| = 1 or A ∼= C2 and there is an ideal I of P such that P/I ∼= GF(2).

Proof. ⇐: obvious.
⇒: Let P be a ring. As in the case of groups we show that P(C2 ×C2) is

not an R-algebra.
Now, let A = 〈A, +,−, 0〉 be a P-module that is an R-algebra and |A| > 1.

As in the case of groups we show that A ∼= C2. For the sake of simplicity, let
A = C2. Let I = {p ∈ P : p · 1 = 0}. Clearly, I is an ideal of P, so let us
show that P/I ∼= GF(2). Take any r, s ∈ P \ I. Then r · 1 = s · 1 = 1, whence
s− r ∈ I and thus s + I ⊆ r + I. The other inclusion follows analogously. 2
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In particular, we have the following
A vector space V is an R-vector space if and only either V = {0} or V is

isomorphic to C2 over GF(2).

Rings with unity. Let P = 〈P, +,−, 0, ·, 1〉 be a ring with unity. P is an
R-ring if and only if |P | = 1.

Proof. ⇐: obvious.
⇒: Let P = 〈R, +,−, 0, ·〉 be an R-ring. Then P |= x = −x, xy = yx, x4 ≈

x2. The first identity follows from the fact that “−” is a retraction of P, whence
−(−x) = −x. As for the last two identities, note that ϕ(x) = x2 being a unary
term operation of P is also a retraction of P, whence ϕ(x + y) = ϕ(x) + ϕ(y)
and ϕ(ϕ(x)) = ϕ(x), for all x, y ∈ P .

Let |P | ≥ 2 and P ′ = {x2 : x ∈ P}. Since ϕ : P → P ′ given by ϕ(x) = x2 is
a retraction of P, P′ is a retract of P. Note that 0, 1 ∈ P ′, whence |P ′| ≥ 2. Let
us show that P′ is a boolean ring. Since P is a commutative ring with unity,
so is P′. For each y ∈ P ′ we have that y2 = y since y2 = (x2)2 = x4 = x2 = y.
Therefore, P′ is a boolean ring with at least two elements. Boolean rings are
term equivalent to boolean algebras so from |P ′| ≥ 2 it follows that P′ is not
an R-ring. Proposition 4 ensures that P is not an R-ring. 2

3. Lattices and semilattices

In this paragraph we characterise R-lattices and R-semilattices. We show
that R-lattices have at most two elements, while R-semilattices coincide with
zero-semilattices.

Let us recall that ca denotes the constant mapping ca(x) = a and that
Const(A) denotes the set of all the constant mappings A → A.

Lattices. A sublattice I of a lattice L is said to be an ideal of L if i ∈ I and
x ≤ i imply x ∈ I. An ideal I is prime if x ∨ y ∈ I implies x ∈ I or y ∈ I. A
sublattice F of L is said to be a filter of L if f ∈ F and x ≥ f imply x ∈ F . A
filter F is prime if x ∧ y ∈ F implies x ∈ F or y ∈ F . If I is a prime ideal of L,
then L \ I is a prime filter of L, and vice versa, if F is a prime filter of L, then
L \ F is a prime ideal of L. Let (a] denote the ideal of all the lattice elements
below a: (a] = {x ∈ L : x ≤ a}.

Lemma 7.

(a) Let L = 〈L,∧,∨〉 be a chain. L is an R-lattice if and only if |L| ≤ 2.

(b) The following lattice is not an R-lattice:



Turning retractions of an algebra into an algebra 95
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Proof. (a) ⇐: obvious.
⇒: Let |L| ≥ 3 and choose 0, 1, 2 ∈ L such that 0 < 1 < 2. Consider

ϕ : L → L given by:

ϕ(x) =
{

2, x ≥ 2
0, x < 2.

Obviously ϕ, c1 ∈ Rf (L). On the other hand, ϕ ∧ c1 : 2 7→ 1 7→ 0, whence
ϕ ∧ c1 6∈ Rf (L). Thus, L is not an R-lattice.

(b) Consider ϕ,ψ : L → L given by:

ϕ =
(

0 a b 1
0 a 0 a

)
and ψ =

(
0 a b 1
0 0 1 1

)
.

It is a routine to check that ϕ,ψ ∈ Rf (L). On the other hand, ϕ∧ψ : 1 7→ a 7→ 0,
whence ϕ ∧ ψ 6∈ Rf (L). Thus, L is not an R-lattice. 2

Lemma 8. If L is an R-lattice, then L is a distributive lattice.

Proof. Let L = 〈L,∧,∨〉 be an R-lattice. Let us recall that {id} ∪ Const(L) ⊆
Rf (L). Consider the following mappings: ϕa(x) = a ∧ x and ψa(x) = a ∨ x.
Since L is an R-algebra, we have ϕa = ca∧ id ∈ Rf (L) and ψa = ca∨ id ∈ Rf (L)
for each a ∈ L. Therefore, ϕa and ψa are homomorphisms of L, i.e.:

ϕx(y ∨ z) = ϕx(y) ∨ ϕx(z) and ψx(y ∧ z) = ψx(y) ∧ ψx(z),

or, equivalently,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). 2

Theorem 9. Let L be a lattice. L is an R-lattice if and only if |L| ≤ 2.

Proof. ⇐: obvious.
⇒: Let L be an R-lattice. According to Lemma 8, L is a distributive lattice.

We shall show that L must be a chain. Suppose to the contrary that L is not a
chain and let a and b be two incomparable elements in L. Let Ia be the prime
ideal of L such that (a] ⊆ Ia 63 b and let Ib be the prime ideal of L such that
(b] ⊆ Ib 63 a. Obviously, Ia 6⊆ Ib and Ib 6⊆ Ia.

Let Fa := L \ Ia and Fb := L \ Ib. Fa and Fb are prime filters of L.
Furthermore, let 0 := a∧ b and 1 := a∨ b. We have that 0 ∈ Ia∩ Ib, 1 ∈ Fa∩Fb.
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Consider a mapping ϕ : L → L defined by:

ϕ(x) =





0, x ∈ Ia ∩ Ib

a, x ∈ Ia ∩ Fb

b, x ∈ Ib ∩ Fa

1, x ∈ Fa ∩ Fb.

It is easy to verify that ϕ is a retraction of L onto M2. Hence, M2 is a retract
of L, which implies that L is not an R-lattice (Lemma 7(b), Proposition 4).
Therefore, L is a chain. According to Lemma 7(a), |L| ≤ 2. 2

Semilattices. A subsemilattice I of a semilattice S = 〈S, ·〉 is said to be an
ideal of S if i ∈ I and x ≤ i imply x ∈ I. An ideal I is prime if xy ∈ I implies
x ∈ I or y ∈ I. A subsemilattice F of S is said to be a filter of S if f ∈ F and
x ≥ f imply x ∈ F . If I is a prime ideal of S, then S \ I is a filter of S, and vice
versa, if F is a filter of S, then S \ F is a prime ideal of S. Let [a) denote the
filter of all the semilattice elements above a: [a) = {x ∈ L : x ≥ a}.

The proof of the following lemma is analogous to the proof of Lemma 7(a):

Lemma 10. Let S = 〈S, ·〉 be a chain. S is an R-semilattice if and only if
|S| ≤ 2.

Lemma 11. Let S be an R-semilattice. Let I1 6= I2 be distinct prime ideals of
S and let ∅ 6= I1 ⊂ I2. Then I2 = S.

Proof. Suppose to the contrary that I2 6= S. Let F2 := S \ I2 be the corre-
sponding filter of S. It is obvious that I1 ∩ F2 = ∅ and I1 ∪ F2 6= S. Choose
arbitrary 1 ∈ F2 and q ∈ S \ (I1 ∪ F2). Set p := 1 · q. One easily verifies that
p ∈ S \ (I1 ∪ F2). Choose arbitrary i ∈ I1 and set 0 := p · i. Obviously, 0 ∈ I1.

Consider the mapping ϕ : S → S defined by:

ϕ(x) =





0, x ∈ I1

p, x ∈ S \ (I1 ∪ F2)
1, x ∈ F2.

ϕ is a retraction of S onto the three element chain 0 < p < 1, which implies
that S is not an R-semilattice (Lemma 10, Proposition 4). Contradiction. 2

Lemma 12. If a semilattice has a subsemilattice isomorphic to a three-element
chain, then the semilattice is not an R-semilattice.

Proof. Let a < b < c be a three-element chain in S. Let Ib = S \ [b) and
Ic = S \ [c). Ib and Ic are distinct prime ideals and a ∈ Ib ⊂ Ic. According to
Lemma 11, Ic = S. But, c 6∈ Ic. Contradiction. 2

A semilattice S = 〈S, ·〉 is called a zero-semilattice if (∃0 ∈ S)(∀x, y ∈ S)(x 6=
y ⇒ xy = 0).
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Theorem 13. Let S be a semilattice. S is an R-semilattice if and only if S is
a zero-semilattice.

Proof. ⇒: Let S = 〈S, ·〉 be an R-semilattice. If S is a chain, then |S| ≤ 2
(Lemma 10) and every such chain is trivially a zero-semilattice.

Let S be a semilattice that is not a chain. Let a and b be arbitrary incom-
parable elements in S and put 0 := ab. Lemma 12 implies that S does not have
a three-element chain.

Note that 0 is the least element in S (if c < 0 then c < 0 < a is a three-
element chain; if c and 0 are incomparable elements, then c · 0 < 0 < a is a
three element chain). Using this fact, it is easy to prove that x 6= y ⇒ xy = 0.
If x = 0 or y = 0, then xy = 0 since 0 is the least element in S. Suppose
that x 6= 0, y 6= 0 and xy 6= 0. If x < y then 0 < x < y is a three-element
chain. If, on the other hand, x and y are incomparable, then 0 < xy < x is a
three-element chain. Therefore, if x 6= y then xy = 0.

⇐: Let 0 be the zero of S. For X ⊆ S, let ϕX : S → S denote the following
mapping:

ϕX(x) =
{

0, x 6∈ X
x, x ∈ X.

If 0 ∈ X, then ϕX is a retraction of S. We shall prove that Rf (S) = Const(S)∪
{ϕX : 0 ∈ X ⊆ S}.

⊇: obvious.
⊆: Let ψ : S → S be a retraction of S.
Case 1: ψ(0) 6= 0. Let ψ(0) = a 6= 0. We shall prove that ψ = ca. Let x be

an arbitrary element of S. If x = a then ψ(x) = ψ(a) = ψ(ψ(0)) = ψ(0) = a.
Suppose therefore that x 6= a. Since xa = 0, we have ψ(x)ψ(a) = ψ(xa) =
ψ(0) = a. It is easy to see that ψ(a) = a: ψ(a) = ψ(ψ(0)) = ψ(0) = a. Thus,
ψ(x) · a = a whence ψ(x) = a. Thus, ψ = ca.

Case 2: ψ(0) = 0. First, we shall prove that for each x ∈ S, ψ(x) ∈ {0, x}.
Let x be arbitrary element of S and suppose that ψ(x) = y /∈ {0, x}. Obviously,
ψ(y) = y. Since x 6= y, we have xy = 0 implying ψ(0) = ψ(xy) = ψ(x)ψ(y) =
yy = y 6= 0. Contradiction.

Therefore, ψ(x) ∈ {0, x} for each x ∈ S. Let X = {x ∈ S : ψ(x) = x}. It is
easy to verify that ψ = ϕX .

Now, when we know that Rf (S) = Const(S) ∪ {ϕX : 0 ∈ X ⊆ S}, in order
to complete the proof it suffices to show that Rf (S) is closed with respect to
“·”. This, however, follows easily from the following observations:

ca ·cb =
{

c0, a 6= b
ca, a = b

; ca ·ϕX =
{

c0, a 6∈ X
ϕ{0,a}, a ∈ X

; ϕX ·ϕY = ϕX∩Y

(note that ϕ{0} = c0). 2
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