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TURNING RETRACTIONS OF AN ALGEBRA INTO
AN ALGEBRA

Dragan Masulovié!

Abstract. One can turn the set of retractions of a lattice (L, <) into a
poset Rf(L) by letting f < g iff f(z) < g(z) for all z € L. In 1982 H.
Crapo raised the following two problems: (1) Is it true that R¢(L) is a
lattice for any lattice L? (2) Is it true that R;(L) is a complete lattice if
L is a complete lattice?

In 1990 and 1991 B. Li published two papers dealing with the above
two questions. He showed that Ry (L) is not necessarily a lattice and that
L is a complete lattice if and only if Ry(L) is a complete lattice.

Motivated by the idea of extending the structure from the base set to
the set of all retractions, we introduce the notion of R-algebra as follows.
Let Ry(A) denote the set of all retractions of an algebra A. We say that A
is an R-algebra if the set R¢(A) is closed with respect to operations of A
applied pointwise. We give some necessary and some sufficient conditions
for A to be an R-algebra. We show that the property of being an R-
algebra carries over to retracts of the algebra. In a set of examples we
show that almost no classical algebra is an R-algebra. In particular, a
lattice L is an R-algebra iff |L| < 2.
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1. Introduction

One can turn the set of retractions of a lattice (L, <) into a poset by letting
f<giff f(z) < g(x) for all z € L. In 1982 H. Crapo raised the following two
problems [1]: (1) Is it true that for any lattice L, the set of retractions of a
lattice partially ordered as above is again a lattice? (2) Is it true that the set of
retractions of a lattice is a complete lattice if the original lattice is a complete
lattice?

In 1990 and 1991 B. Li published two papers [2, 3] dealing with the above
two questions. He showed that the set of retractions of a lattice is not necessarily
a lattice, and that L is a complete lattice if and only if the set of retractions of
L is a complete lattice.

Motivated by the idea of extending the structure from the base set to the
set of all retractions, we introduce the notion of R-algebra as follows. Let
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A = (A, F) be an algebra. By a retraction of A we mean any idempotent
endomorphism of A. Let Ry(A) denote the set of all retractions of A. We say
that A is an R-algebra if Rf(A) is a subuniverse of A4. By R;(A) we denote
the corresponding algebra on the set of retractions. Lattices, groups etc. that
are R-algebras shall be referred to as R-lattices, R-groups and so on.

In this paper we give some necessary and some sufficient conditions for A to
be an R-algebra. We show that the property of being an R-algebra carries over
to retracts of the algebra. In a set of examples we show that almost no classical
algebra is an R-algebra. In particular, a lattice L is an R-algebra iff |L| < 2,
while a semilattice is an R-algebra iff it is a zero-semilattice.

Let Inv and Pol be the standard clone-theoretic operators. For an algebra
A let Clo A denote the clone of all term operations of A and Clo™ A the set
of all n-ary term operations of A. For an operation f : A" — A let f* =
{{z1,...;zn, f(T1,...,2n)) s {X1,...,2,) € A"} denote the graph of f; for a set
of operations F let F* = {f*: f € F}.

Proposition 1. Let (z, : a < A) be a well ordering of A with X = |A|. For
feAA letry = (f(xa):a < \) and for S C AX putrg = {r;: f € S}.

Now let A = (A, F) be an algebra and let S = {f € A% : f2 = f}n
Pol(Clo A)®*. Then A is an R-algebra if and only if re € InvClo A.

Let A and A’ be term equivalent algebras on the same carrier set A. Then
A is an R-algebra if and only if A’ is an R-algebra. If both A and A’ are
R-algebras then Ry(A) = Ry(A’), and moreover Ry(A) and Ry(A’) are term
equivalents.

Proof. For the first part of the proposition, note that S is exactly the set of
retractions of A and that rg € Inv Clo A means that S is closed with respect
to term operations on A applied pointwise. The second part of the proposition
now follows immediately. o

Proposition 2. If A = (A, F) is an R-algebra, then CloW A C Rs(A).

Proof. Take any g € Clo™ A. The proof proceeds by induction on the com-
plexity of the unary term giving rise to g. Let g = f(z,..., ) for some f € F.
Since id € Ry(A) and since Ry(A) is an algebra, f(id,...,id) € Ry(A). But,
fad,...,id)(z) = f(z,...,z) = g(z). So, g € Rp(A). If g = f(t1,...,tn)
for some f € F and some unary terms ¢;, induction hypothesis and the same
argument apply. O

Proposition 3. Let A = (A, F) be an algebra such that for all f, f1,fo € F
the following two identities hold on A:

(Z) f(f(xll,fElQ, o 7$1n),f($21,$227 e 7x2n)7 .. '7f(mn17xn2a s 7xnn)) -
f(xll,fL'QQ, ... 7xnn)7
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(”) fl(f?(xlla-~-7x1n)7~--7f2(xm17~-~733mn)) =
fg(fl(l‘ll, . ,J}ml), .. .,fl(xln, . ,.Tmn))

Then A is an R-algebra. In particular, every rectangular algebra is an R-algebra.

Proof. It suffices to show that Ry(A) is closed with respect to operations in F.
Let f € Fand ¢1,...,¢, € R¢(A) be arbitrary and let ¢ = f(¢1,...,¢n). We
shall prove that 1 is a retraction of A.

To prove that v is a homomorphism of A, let f; € F be arbitrary.

Y(fi(zy, ... m0)) =
= flor, - on)(fi(@r, ... 2m))
= fler(fi(@1, . zm)), - en(fi(@r, . 2m))
[because ¢;’s are homomorphisms of A]
= f(filer(@1), - 1(@m))s - filen(@1), - oo on(@m)))
[because of (i%)]
= filf(e1(@1), - on(@1)), -, f(o1(@m), - o, on(@m)))
= fi((z1),. .., ¥(zm))-

To complete the proof, let us show that v is idempotent:

V(@) = flo1,- - on) (P(2)) =
= [ (@), ... on(¥(x)))
= fler(f(er(@), - n(@))), - on(flp1(2), - on (@)
[because ¢;’s are homomorphisms of A]
= f(f(erp1(), s o100 (@), - Flonpr(2), s onipn(2)))
[because of ()]
= f((plwl ('7;)’ AR @n‘pn(x))

[because ¢;’s are idempotent]

:f(Cpl(x)aWOn(l’)) :7/1(@ a

Proposition 4. Let A be an R-algebra and let R be a retract of A. Then R is
an R-algebra.

Proof. Let ¢ : A — R be the corresponding retraction and let
Ry(A,R) :={¢ € Rf(A): ¢(A) C R}
Ry(A,R)|r :={¢|r: ¥ € Rf(A, R)}
Ri(R)op:={vop:9e Rf(R)}.

Clearly, R;(A,R) < A4 and R;(A,R)|r C Ry(R). Also, Rf(R)o ¢ C
Rf(A,R). To see this, it suffices to show that ¢ o ¢ is idempotent for all
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Y € Rf(R). Take any ¢ € Rf(R) and a € A. Then ¢ o ¢(a) € R, whence
pop(a) = p(x) for some z € A. Now porpop(a) = pop(x) = p(x) =1oyp(a)
and thus 1) o @ o) o p(a) = 1 o p(a).

To prove that R is an R-algebra, let f € F and 91,...,¢, € R;(R)
be arbitrary. Then ¢10¢,...,¥, 00 € Rf(R) o C Rf(A,R) implying
frop,...;p0p) € Rf(A,R) as well From this we get
fhrog,...;n00)|r € Rf(A,R)|r € Rf(R). Since ¢ is a retraction, we
have that ¢|g = idg, whence f(¥10¢,...,0n09)|lr = f(¥1,...,%n). So,
f(@/}l,,ﬂ}n)GRf(R) o

Lemma 5. If A is an idempotent R-algebra then A can be embedded into
Rs(A).

Proof. Let ¢, be the constant mapping ¢, (z) = a and let Const(A4) = {c, : a €
A}. Since A is an idempotent algebra, Const(A) C Rf(A) and @ : A — R¢(A)
defined by ®(a) = ¢, is an embedding of A into R;(A). O

For a class K of R-algebras let Ry(K) = {R;(A): A € K} (modulo abuse of
set notation). Let S(K) denote the class of all isomorphic copies of subalgebras
of algebras from K and V' (K) the variety generated by K.

Proposition 6. Let K be a class of idempotent R-algebras of the same type.
Then V(K) = V(R (K)).

Proof. Since Ry(A) < A4 for any algebra A, we have R¢(K) C V(K) and
thus V(R;(K)) C V(K). For the other inclusion take any A € K. According
to Lemma 5 algebra A embeds into Ry(A), whence £ C S(R;(K)). Thus
V(K) € V(R (K)). O

2. Examples

Unary algebras. Let A be a unary algebra. According to Proposition 2, if
A is an R-algebra, each fundamental operation of A is a retraction of A. The
converse is also obvious. Thus we have that a unary algebra A = (A, F) is an
R-algebra if and only if 7 C Ry(A).

Some semigroups. Let S = (S,-) be a semigroup such that S E zyz =
xz. One easily verifies that S satisfies both conditions listed in Proposition 3.
Therefore, S is an R-semigroup.

Bounded complemented algebras. We say that an algebra A = (A, F) is
bounded complemented if there are constants 0,1 € F and a unary operation
€ F such that 0 =1, 1 =0, and |A| =1 if and only if 0 = 1.

A bounded complemented algebra A is an R-algebra if and only if it is
|A] = 1.
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Proof. <: obvious.
=: Let A be a bounded complemented R-algebra. According to Propo-

sition 2, is a retraction of A, whence T = T for each + € A. Therefore
0=1=1=1, implying that |A] = 1. O
As a corollary, we have the following. Let L = (L,A,V, ,0,1) be a com-

plemented lattice. L is an R-algebra if and only if L = {0}. In particular, a
boolean algebra B is an R-algebra if and only if B = {0}.

Groups. Let C, denote the n-element cyclic group and let E denote the trivial
one element group.

A group is an R-group if and only if it isomorphic either to E or to Ca.

Proof. <: obvious.

=: Let us first show that Cs x Cs is not an R-group.

Consider @1, 3 : Cg x Cy — Cy x Cy defined by ¢ ({x,y)) = (z + y,0) and
w2({z,y)) = (0,2 + y). One easily verifies that ¢; and @9 are retractions of
C; x Cy. On the other hand, @1 + 2 is not since (1 + p2) o (w1 +p2)((1,0)) =
(0,0) # (1,1) = (1 + ¢2) ({1,0)).

Now, let G = (G, +, —,0) be an R-group and suppose that G is isomorphic
neither to E nor to Csy. According to Proposition 2, “—” is a retraction of G,
and that is possible if and only if —x = z for all x € G. Therefore, G is a
2-elementary abelian group and is isomorphic to a direct sum of certain number
of Cy’s. Since G is isomorphic neither to E nor to Cs, G is a direct sum of at
least two Cy’s. Without loss of generality we can assume that elements of G
are 01-sequences, the length of each being at least two. Consider the mapping
¢ : G — G given by

o((z1, 22, 23,24, . ..)) = (T1,22,0,0,...).

@ is a retraction of G onto its subalgebra isomorphic to Cy x Cs. According to
Proposition 4, G is not an R-group. O

Modules. Let pA be a P-module for some ring P. p A is an R-algebra if and
only if |A| = 1 or A = Cy and there is an ideal I of P such that P/I = GF(2).

Proof. <: obvious.

=: Let P be a ring. As in the case of groups we show that p(Cs x Cy) is
not an R-algebra.

Now, let A = (4,4, —,0) be a P-module that is an R-algebra and |A| > 1.
As in the case of groups we show that A = C,. For the sake of simplicity, let
A=Cy Let I ={peP:p-1=0}. Clearly, I is an ideal of P, so let us
show that P/I = GF(2). Take any r,s € P\ I. Thenr-1=s-1=1, whence
s —r € I and thus s + I C r + I. The other inclusion follows analogously. O
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In particular, we have the following
A vector space V is an R-vector space if and only either V = {0} or V is
isomorphic to Cq over GF(2).

Rings with unity. Let P = (P,+,—,0,-,1) be a ring with unity. P is an
R-ring if and only if |P| = 1.

Proof. <: obvious.

=: Let P = (R, +,—,0,-) be an R-ring. Then P =2 = —x, 2y = yx, 2* ~
x2. The first identity follows from the fact that “—” is a retraction of P, whence
—(—x) = —z. As for the last two identities, note that ¢(z) = 22 being a unary
term operation of P is also a retraction of P, whence ¢(z + y) = o(x) + ¢(y)
and o(p(x)) = p(x), for all z,y € P.

Let |[P| > 2 and P’ = {2% : € P}. Since ¢ : P — P’ given by ¢(z) = 22 is
a retraction of P, P’ is a retract of P. Note that 0,1 € P’, whence |P’| > 2. Let
us show that P’ is a boolean ring. Since P is a commutative ring with unity,
so is P’. For each y € P’ we have that y? = y since y? = (22)2 = 2 = 22 = 4.
Therefore, P’ is a boolean ring with at least two elements. Boolean rings are
term equivalent to boolean algebras so from |P’| > 2 it follows that P’ is not
an R-ring. Proposition 4 ensures that P is not an R-ring. O

3. Lattices and semilattices

In this paragraph we characterise R-lattices and R-semilattices. We show
that R-lattices have at most two elements, while R-semilattices coincide with
zero-semilattices.

Let us recall that ¢, denotes the constant mapping c,(z) = a and that
Const(A) denotes the set of all the constant mappings A — A.

Lattices. A sublattice I of a lattice L is said to be an ideal of L if i € I and
x <iimply x € I. Anideal Iis prime if t Vy € I impliesx € Tory e I. A
sublattice F of L is said to be a filter of L'if f € F and x > f imply x € F. A
filter F is prime if x Ay € F implies x € F or y € F. If I is a prime ideal of L,
then L\ I is a prime filter of L, and vice versa, if F is a prime filter of L, then
L\ F is a prime ideal of L. Let (a] denote the ideal of all the lattice elements
below a: (a] ={z € L:z <a}.

Lemma 7.
(a) Let L =(L,A,V) be a chain. L is an R-lattice if and only if |L| < 2.

(b) The following lattice is not an R-lattice:
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1

M22a<>b

0

Proof. (a) <: obvious.
=: Let |L| > 3 and choose 0,1,2 € L such that 0 < 1 < 2. Consider

@ : L — L given by:
() = 2, x>2
=10, z<2

Obviously ¢,c¢; € R¢(L). On the other hand, ¢ A¢; : 2 — 1 — 0, whence
@ Ac1 € Ry(L). Thus, L is not an R-lattice.
(b) Consider ¢, : L — L given by:

0 a b 1 0 a b 1
“’_<0a0a> and w‘(0011)'

It is a routine to check that ¢, 9 € R¢(L). On the other hand, A9 : 1+ a — 0,
whence ¢ A ¢ Ry(L). Thus, L is not an R-lattice. O

Lemma 8. IfL is an R-lattice, then L is a distributive lattice.

Proof. Let L = (L, A, V) be an R-lattice. Let us recall that {id} U Const(L) C
R;(L). Consider the following mappings: ¢,(z) = a A z and 9,(z) = a V .
Since L is an R-algebra, we have ¢, = ¢, Aid € R¢(L) and ¢, = ¢, Vid € Rs(L)
for each a € L. Therefore, ¢, and 1, are homomorphisms of L, i.e.:

0 (yV 2) =0 (y) Vu(z) and Pu(yAz) = Pa(y) Aa(2),

or, equivalently,
zA(yVz)=(@Ay)V(eAz) and zV(yAz)=(xVy A(xVvz). O

Theorem 9. Let L be a lattice. L is an R-lattice if and only if |L| < 2.

Proof. <: obvious.

=: Let L be an R-lattice. According to Lemma 8, L is a distributive lattice.
We shall show that L must be a chain. Suppose to the contrary that L is not a
chain and let a and b be two incomparable elements in L. Let I, be the prime
ideal of L such that (a] C I, Z b and let I, be the prime ideal of L such that
(b] C I, Z a. Obviously, I, Z I and I, Z I,.

Let F, :== L\ I, and F}, := L\ I,. F, and F;, are prime filters of L.
Furthermore, let 0 := aAband 1 :=aVb. We havethat 0 € I,N1I,, 1 € F,NFEy.
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Consider a mapping ¢ : L — L defined by:

0, z€l,Nl
_ a, rel,Nk
cp(x)— b, rel,NF,
1, zeF,NF,
It is easy to verify that ¢ is a retraction of L onto My. Hence, My is a retract
of L, which implies that L is not an R-lattice (Lemma 7(b), Proposition 4).
Therefore, L is a chain. According to Lemma 7(a), |L| < 2. a

Semilattices. A subsemilattice I of a semilattice S = (S, ) is said to be an
ideal of S'if i € I and x < i imply = € I. An ideal I is prime if zy € I implies
x €l oryel. A subsemilattice F of S is said to be a filter of S if f € F and
x > fimply z € F. If Lis a prime ideal of S, then S\ I is a filter of S, and vice
versa, if F is a filter of S, then S\ F is a prime ideal of S. Let [a) denote the
filter of all the semilattice elements above a: [a) = {x € L: x > a}.

The proof of the following lemma is analogous to the proof of Lemma 7(a):

Lemma 10. Let S = (S,-) be a chain. S is an R-semilattice if and only if
|S] < 2.

Lemma 11. Let S be an R-semilattice. Let I # I be distinct prime ideals of
S andlet ) #1; C Io. Then Iy =S.

Proof. Suppose to the contrary that I # S. Let Fy := S\ Iy be the corre-

sponding filter of S. It is obvious that Iy N F, = ) and I; U F5 # S. Choose

arbitrary 1 € Fy and ¢ € S\ (1 U F3). Set p:=1-¢. One easily verifies that

p € S\ (I1 UF). Choose arbitrary ¢ € I; and set 0 := p-4. Obviously, 0 € I;.
Consider the mapping ¢ : S — S defined by:

0, x€l
pl)y=<¢ p, z€S\({[1UF)
1, z€Fs.

p is a retraction of S onto the three element chain 0 < p < 1, which implies
that S is not an R-semilattice (Lemma 10, Proposition 4). Contradiction. O

Lemma 12. If a semilattice has a subsemilattice isomorphic to a three-element
chain, then the semilattice is not an R-semilattice.

Proof. Let a < b < ¢ be a three-element chain in S. Let I, = S\ [b) and
I. = S\ [c). I and I. are distinct prime ideals and a € I, C I.. According to
Lemma 11, I, = S. But, ¢ & I.. Contradiction. ]

A semilattice S = (5, ) is called a zero-semilattice if (30 € S)(Vz,y € S)(x #
y = xy =0).
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Theorem 13. Let S be a semilattice. S is an R-semilattice if and only if S is
a zero-semilattice.

Proof. =: Let S = (S,-) be an R-semilattice. If S is a chain, then |S| < 2
(Lemma 10) and every such chain is trivially a zero-semilattice.

Let S be a semilattice that is not a chain. Let a and b be arbitrary incom-
parable elements in S and put 0 := ab. Lemma 12 implies that S does not have
a three-element chain.

Note that 0 is the least element in S (if ¢ < 0 then ¢ < 0 < a is a three-
element chain; if ¢ and 0 are incomparable elements, then ¢-0 < 0 < a is a
three element chain). Using this fact, it is easy to prove that x # y = zy = 0.
If x =0ory =0, then xzy = 0 since 0 is the least element in S. Suppose
that x # 0, y # 0 and zy # 0. If x < y then 0 < x < y is a three-element
chain. If, on the other hand, z and y are incomparable, then 0 < zy < z is a
three-element chain. Therefore, if z # y then xy = 0.

«<: Let 0 be the zero of S. For X C S, let ¢x : .S — S denote the following
mapping:

0, z¢&X
(‘DX(LB):{ z, x¢eX.

If 0 € X, then ¢x is a retraction of S. We shall prove that R;(S) = Const(S)U
{ox:0€ X C S}

D: obvious.

C: Let ¢ : § — S be a retraction of S.

Case 1: ¢(0) # 0. Let ¥(0) = a # 0. We shall prove that ) = ¢,. Let = be
an arbitrary element of S. If © = a then ¥(x) = 9(a) = ¥((0)) = ¥(0) = a.
Suppose therefore that  # a. Since za = 0, we have ¢¥(z)(a) = Y(za) =
¥(0) = a. It is easy to see that ¥(a) = a: ¥(a) = ¥(¥(0)) = (0) = a. Thus,
¥(x) - a = a whence () = a. Thus, ¥ = ¢,.

Case 2: ¥(0) = 0. First, we shall prove that for each = € S, ¥(z) € {0,z}.
Let 2 be arbitrary element of S and suppose that ¢(z) =y ¢ {0,z}. Obviously,
b(y) = y. Since © # y, we have zy = 0 implying 1(0) = (zy) = Y(2)i(y) =
yy =y # 0. Contradiction.

Therefore, ¢(z) € {0,z} for each z € S. Let X = {x € S: ¢(z) = z}. It is
easy to verify that ¥ = ¢px.

Now, when we know that Ry(S) = Const(S) U {¢px : 0 € X C S}, in order
to complete the proof it suffices to show that R¢(S) is closed with respect to
“.”  This, however, follows easily from the following observations:

)

_ Co, a 7é b . i _ Co, a ¢ X . . —
Caq Ch = { Cay a=0b "’ Ca PX = { Ploa), @€ X PXPY = PXNY
(note that gy = co). a
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