TURNING RETRACTIONS OF AN ALGEBRA INTO AN ALGEBRA

Dragan Mašulović¹

Abstract. One can turn the set of retractions of a lattice $\langle L, \leq \rangle$ into a poset $R_f(\mathbf{L})$ by letting $f \leq g$ iff $f(x) \leq g(x)$ for all $x \in L$. In 1982 H. Crapo raised the following two problems: (1) Is it true that $R_f(\mathbf{L})$ is a lattice for any lattice \mathbf{L} ? (2) Is it true that $R_f(\mathbf{L})$ is a complete lattice if \mathbf{L} is a complete lattice?

In 1990 and 1991 B. Li published two papers dealing with the above two questions. He showed that $R_f(\mathbf{L})$ is not necessarily a lattice and that \mathbf{L} is a complete lattice if and only if $R_f(\mathbf{L})$ is a complete lattice.

Motivated by the idea of extending the structure from the base set to the set of all retractions, we introduce the notion of R-algebra as follows. Let $R_f(\mathbf{A})$ denote the set of all retractions of an algebra \mathbf{A} . We say that \mathbf{A} is an R-algebra if the set $R_f(\mathbf{A})$ is closed with respect to operations of \mathbf{A} applied pointwise. We give some necessary and some sufficient conditions for \mathbf{A} to be an R-algebra. We show that the property of being an Ralgebra carries over to retracts of the algebra. In a set of examples we show that almost no classical algebra is an R-algebra. In particular, a lattice \mathbf{L} is an R-algebra iff $|L| \leq 2$.

AMS Mathematics Subject Classification (2000): 08A35 Key words and phrases: retractions, algebras, lattices

1. Introduction

One can turn the set of retractions of a lattice $\langle L, \leq \rangle$ into a poset by letting $f \leq g$ iff $f(x) \leq g(x)$ for all $x \in L$. In 1982 H. Crapo raised the following two problems [1]: (1) Is it true that for any lattice **L**, the set of retractions of a lattice partially ordered as above is again a lattice? (2) Is it true that the set of retractions of a lattice is a complete lattice if the original lattice is a complete lattice?

In 1990 and 1991 B. Li published two papers [2, 3] dealing with the above two questions. He showed that the set of retractions of a lattice is not necessarily a lattice, and that **L** is a complete lattice if and only if the set of retractions of **L** is a complete lattice.

Motivated by the idea of extending the structure from the base set to the set of all retractions, we introduce the notion of R-algebra as follows. Let

 $^{^1 \}rm Department$ of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia and Montenegro, e-mail: masul@im.ns.ac.yu

 $\mathbf{A} = \langle A, \mathcal{F} \rangle$ be an algebra. By a *retraction* of \mathbf{A} we mean any idempotent endomorphism of \mathbf{A} . Let $R_f(\mathbf{A})$ denote the set of all retractions of \mathbf{A} . We say that \mathbf{A} is an *R*-algebra if $R_f(\mathbf{A})$ is a subuniverse of \mathbf{A}^A . By $\mathbf{R}_f(\mathbf{A})$ we denote the corresponding algebra on the set of retractions. Lattices, groups etc. that are R-algebras shall be referred to as R-lattices, R-groups and so on.

In this paper we give some necessary and some sufficient conditions for **A** to be an R-algebra. We show that the property of being an R-algebra carries over to retracts of the algebra. In a set of examples we show that almost no classical algebra is an R-algebra. In particular, a lattice **L** is an R-algebra iff $|L| \leq 2$, while a semilattice is an R-algebra iff it is a zero-semilattice.

Let Inv and Pol be the standard clone-theoretic operators. For an algebra **A** let Clo **A** denote the clone of all term operations of **A** and $\operatorname{Clo}^{(n)} \mathbf{A}$ the set of all *n*-ary term operations of **A**. For an operation $f : A^n \to A$ let $f^{\bullet} = \{\langle x_1, \ldots, x_n, f(x_1, \ldots, x_n) \rangle : \langle x_1, \ldots, x_n \rangle \in A^n \}$ denote the graph of f; for a set of operations F let $F^{\bullet} = \{f^{\bullet} : f \in F\}$.

Proposition 1. Let $\langle x_{\alpha} : \alpha < \lambda \rangle$ be a well ordering of A with $\lambda = |A|$. For $f \in A^A$ let $\mathbf{r}_f = \langle f(x_{\alpha}) : \alpha < \lambda \rangle$ and for $S \subseteq A^A$ put $\mathbf{r}_S = \{\mathbf{r}_f : f \in S\}$.

Now let $\mathbf{A} = \langle A, \mathcal{F} \rangle$ be an algebra and let $S = \{f \in A^A : f^2 = f\} \cap$ Pol(Clo $\mathbf{A})^{\bullet}$. Then \mathbf{A} is an *R*-algebra if and only if $\mathbf{r}_S \in$ Inv Clo \mathbf{A} .

Let \mathbf{A} and \mathbf{A}' be term equivalent algebras on the same carrier set A. Then \mathbf{A} is an R-algebra if and only if \mathbf{A}' is an R-algebra. If both \mathbf{A} and \mathbf{A}' are R-algebras then $R_f(\mathbf{A}) = R_f(\mathbf{A}')$, and moreover $\mathbf{R}_f(\mathbf{A})$ and $\mathbf{R}_f(\mathbf{A}')$ are term equivalents.

Proof. For the first part of the proposition, note that S is exactly the set of retractions of \mathbf{A} and that $\mathbf{r}_S \in \text{Inv Clo } \mathbf{A}$ means that S is closed with respect to term operations on \mathbf{A} applied pointwise. The second part of the proposition now follows immediately. \Box

Proposition 2. If $\mathbf{A} = \langle A, \mathcal{F} \rangle$ is an *R*-algebra, then $\operatorname{Clo}^{(1)} \mathbf{A} \subseteq R_f(\mathbf{A})$.

Proof. Take any $g \in \operatorname{Clo}^{(1)} \mathbf{A}$. The proof proceeds by induction on the complexity of the unary term giving rise to g. Let $g = f(x, \ldots, x)$ for some $f \in \mathcal{F}$. Since $\operatorname{id} \in R_f(\mathbf{A})$ and since $\mathbf{R}_f(\mathbf{A})$ is an algebra, $f(\operatorname{id}, \ldots, \operatorname{id}) \in R_f(\mathbf{A})$. But, $f(\operatorname{id}, \ldots, \operatorname{id})(x) = f(x, \ldots, x) = g(x)$. So, $g \in R_f(\mathbf{A})$. If $g = f(t_1, \ldots, t_n)$ for some $f \in \mathcal{F}$ and some unary terms t_i , induction hypothesis and the same argument apply.

Proposition 3. Let $\mathbf{A} = \langle A, \mathcal{F} \rangle$ be an algebra such that for all $f, f_1, f_2 \in \mathcal{F}$ the following two identities hold on \mathbf{A} :

(i) $f(f(x_{11}, x_{12}, \dots, x_{1n}), f(x_{21}, x_{22}, \dots, x_{2n}), \dots, f(x_{n1}, x_{n2}, \dots, x_{nn})) = f(x_{11}, x_{22}, \dots, x_{nn}),$

Turning retractions of an algebra into an algebra

(*ii*)
$$f_1(f_2(x_{11},\ldots,x_{1n}),\ldots,f_2(x_{m1},\ldots,x_{mn})) = f_2(f_1(x_{11},\ldots,x_{m1}),\ldots,f_1(x_{1n},\ldots,x_{mn}))$$

 $Then \ \mathbf{A} \ is \ an \ R-algebra. \ In \ particular, \ every \ rectangular \ algebra \ is \ an \ R-algebra.$

Proof. It suffices to show that $R_f(\mathbf{A})$ is closed with respect to operations in \mathcal{F} . Let $f \in \mathcal{F}$ and $\varphi_1, \ldots, \varphi_n \in R_f(\mathbf{A})$ be arbitrary and let $\psi = f(\varphi_1, \ldots, \varphi_n)$. We shall prove that ψ is a retraction of \mathbf{A} .

To prove that ψ is a homomorphism of \mathbf{A} , let $f_1 \in \mathcal{F}$ be arbitrary.

$$\begin{split} \psi(f_1(x_1,\ldots,x_n)) &= \\ &= f(\varphi_1,\ldots,\varphi_n)(f_1(x_1,\ldots,x_m)) \\ &= f(\varphi_1(f_1(x_1,\ldots,x_m)),\ldots,\varphi_n(f_1(x_1,\ldots,x_m))) \\ &[\text{because } \varphi_j\text{'s are homomorphisms of } \mathbf{A}] \\ &= f(f_1(\varphi_1(x_1),\ldots,\varphi_1(x_m)),\ldots,f_1(\varphi_n(x_1),\ldots,\varphi_n(x_m))) \\ &[\text{because of } (ii)] \\ &= f_1(f(\varphi_1(x_1),\ldots,\varphi_n(x_1)),\ldots,f(\varphi_1(x_m),\ldots,\varphi_n(x_m))) \\ &= f_1(\psi(x_1),\ldots,\psi(x_m)). \end{split}$$

To complete the proof, let us show that ψ is idempotent:

$$\begin{split} \psi(\psi(x)) &= f(\varphi_1, \dots, \varphi_n)(\psi(x)) = \\ &= f(\varphi_1(\psi(x)), \dots, \varphi_n(\psi(x))) \\ &= f(\varphi_1(f(\varphi_1(x), \dots, \varphi_n(x))), \dots \varphi_n(f(\varphi_1(x), \dots, \varphi_n(x)))) \\ &\text{[because } \varphi_j \text{'s are homomorphisms of } \mathbf{A}] \\ &= f(f(\varphi_1\varphi_1(x), \dots, \varphi_1\varphi_n(x)), \dots, f(\varphi_n\varphi_1(x), \dots, \varphi_n\varphi_n(x))) \\ &\text{[because of } (i)] \\ &= f(\varphi_1\varphi_1(x), \dots, \varphi_n\varphi_n(x)) \\ &\text{[because } \varphi_j \text{'s are idempotent]} \\ &= f(\varphi_1(x), \dots, \varphi_n(x)) = \psi(x). \end{split}$$

Proposition 4. Let \mathbf{A} be an R-algebra and let \mathbf{R} be a retract of \mathbf{A} . Then \mathbf{R} is an R-algebra.

Proof. Let $\varphi : A \to R$ be the corresponding retraction and let

$$R_f(\mathbf{A}, R) := \{ \psi \in R_f(\mathbf{A}) : \psi(A) \subseteq R \}$$
$$R_f(\mathbf{A}, R)|_R := \{ \psi|_R : \psi \in R_f(\mathbf{A}, R) \}$$
$$R_f(\mathbf{R}) \circ \varphi := \{ \psi \circ \varphi : \psi \in R_f(\mathbf{R}) \}.$$

Clearly, $R_f(\mathbf{A}, R) \leq \mathbf{A}^A$ and $R_f(\mathbf{A}, R)|_R \subseteq R_f(\mathbf{R})$. Also, $R_f(\mathbf{R}) \circ \varphi \subseteq R_f(\mathbf{A}, R)$. To see this, it suffices to show that $\psi \circ \varphi$ is idempotent for all

 $\psi \in R_f(\mathbf{R})$. Take any $\psi \in R_f(\mathbf{R})$ and $a \in A$. Then $\psi \circ \varphi(a) \in R$, whence $\psi \circ \varphi(a) = \varphi(x)$ for some $x \in A$. Now $\varphi \circ \psi \circ \varphi(a) = \varphi \circ \varphi(x) = \varphi(x) = \psi \circ \varphi(a)$ and thus $\psi \circ \varphi \circ \psi \circ \varphi(a) = \psi \circ \varphi(a)$.

To prove that **R** is an R-algebra, let $f \in \mathcal{F}$ and $\psi_1, \ldots, \psi_n \in R_f(\mathbf{R})$ be arbitrary. Then $\psi_1 \circ \varphi, \ldots, \psi_n \circ \varphi \in R_f(\mathbf{R}) \circ \varphi \subseteq R_f(\mathbf{A}, R)$ implying $f(\psi_1 \circ \varphi, \ldots, \psi_n \circ \varphi) \in R_f(\mathbf{A}, R)$ as well. From this we get $f(\psi_1 \circ \varphi, \ldots, \psi_n \circ \varphi)|_R \in R_f(\mathbf{A}, R)|_R \subseteq R_f(\mathbf{R})$. Since φ is a retraction, we have that $\varphi|_R = \operatorname{id}_R$, whence $f(\psi_1 \circ \varphi, \ldots, \psi_n \circ \varphi)|_R = f(\psi_1, \ldots, \psi_n)$. So, $f(\psi_1, \ldots, \psi_n) \in R_f(\mathbf{R})$.

Lemma 5. If **A** is an idempotent R-algebra then **A** can be embedded into $\mathbf{R}_{f}(\mathbf{A})$.

Proof. Let c_a be the constant mapping $c_a(x) = a$ and let $Const(A) = \{c_a : a \in A\}$. Since **A** is an idempotent algebra, $Const(A) \subseteq R_f(\mathbf{A})$ and $\Phi : A \to R_f(\mathbf{A})$ defined by $\Phi(a) = c_a$ is an embedding of **A** into $\mathbf{R}_f(\mathbf{A})$.

For a class \mathcal{K} of R-algebras let $R_f(\mathcal{K}) = {\mathbf{R}_f(\mathbf{A}) : \mathbf{A} \in \mathcal{K}}$ (modulo abuse of set notation). Let $S(\mathcal{K})$ denote the class of all isomorphic copies of subalgebras of algebras from \mathcal{K} and $V(\mathcal{K})$ the variety generated by \mathcal{K} .

Proposition 6. Let \mathcal{K} be a class of idempotent *R*-algebras of the same type. Then $V(\mathcal{K}) = V(R_f(\mathcal{K}))$.

Proof. Since $\mathbf{R}_f(\mathbf{A}) \leq \mathbf{A}^A$ for any algebra \mathbf{A} , we have $R_f(\mathcal{K}) \subseteq V(\mathcal{K})$ and thus $V(R_f(\mathcal{K})) \subseteq V(\mathcal{K})$. For the other inclusion take any $\mathbf{A} \in \mathcal{K}$. According to Lemma 5 algebra \mathbf{A} embeds into $\mathbf{R}_f(\mathbf{A})$, whence $\mathcal{K} \subseteq S(R_f(\mathcal{K}))$. Thus $V(\mathcal{K}) \subseteq V(R_f(\mathcal{K}))$.

2. Examples

Unary algebras. Let \mathbf{A} be a unary algebra. According to Proposition 2, if \mathbf{A} is an R-algebra, each fundamental operation of \mathbf{A} is a retraction of \mathbf{A} . The converse is also obvious. Thus we have that a unary algebra $\mathbf{A} = \langle A, \mathcal{F} \rangle$ is an R-algebra if and only if $\mathcal{F} \subseteq R_f(\mathbf{A})$.

Some semigroups. Let $\mathbf{S} = \langle S, \cdot \rangle$ be a semigroup such that $\mathbf{S} \models xyz = xz$. One easily verifies that \mathbf{S} satisfies both conditions listed in Proposition 3. Therefore, \mathbf{S} is an R-semigroup.

Bounded complemented algebras. We say that an algebra $\mathbf{A} = \langle A, \mathcal{F} \rangle$ is bounded complemented if there are constants $0, 1 \in \mathcal{F}$ and a unary operation $\overline{\in \mathcal{F}}$ such that $\overline{0} = 1$, $\overline{1} = 0$, and |A| = 1 if and only if 0 = 1.

A bounded complemented algebra **A** is an R-algebra if and only if it is |A| = 1.

Proof. \Leftarrow : obvious.

⇒: Let **A** be a bounded complemented R-algebra. According to Proposition 2, is a retraction of **A**, whence $\overline{\overline{x}} = \overline{x}$ for each $x \in A$. Therefore $0 = \overline{1} = \overline{\overline{1}} = 1$, implying that |A| = 1. \Box

As a corollary, we have the following. Let $\mathbf{L} = \langle L, \wedge, \vee, \overline{0}, 0, 1 \rangle$ be a complemented lattice. **L** is an R-algebra if and only if $L = \{0\}$. In particular, a boolean algebra **B** is an R-algebra if and only if $B = \{0\}$.

Groups. Let \mathbf{C}_n denote the *n*-element cyclic group and let \mathbf{E} denote the trivial one element group.

A group is an R-group if and only if it isomorphic either to \mathbf{E} or to \mathbf{C}_2 .

Proof. \Leftarrow : obvious.

 \Rightarrow : Let us first show that $\mathbf{C}_2 \times \mathbf{C}_2$ is not an R-group.

Consider $\varphi_1, \varphi_2 : C_2 \times C_2 \to C_2 \times C_2$ defined by $\varphi_1(\langle x, y \rangle) = \langle x + y, 0 \rangle$ and $\varphi_2(\langle x, y \rangle) = \langle 0, x + y \rangle$. One easily verifies that φ_1 and φ_2 are retractions of $\mathbf{C}_2 \times \mathbf{C}_2$. On the other hand, $\varphi_1 + \varphi_2$ is not since $(\varphi_1 + \varphi_2) \circ (\varphi_1 + \varphi_2)(\langle 1, 0 \rangle) = \langle 0, 0 \rangle \neq \langle 1, 1 \rangle = (\varphi_1 + \varphi_2)(\langle 1, 0 \rangle).$

Now, let $\mathbf{G} = \langle G, +, -, 0 \rangle$ be an R-group and suppose that \mathbf{G} is isomorphic neither to \mathbf{E} nor to \mathbf{C}_2 . According to Proposition 2, "-" is a retraction of \mathbf{G} , and that is possible if and only if -x = x for all $x \in G$. Therefore, \mathbf{G} is a 2-elementary abelian group and is isomorphic to a direct sum of certain number of \mathbf{C}_2 's. Since \mathbf{G} is isomorphic neither to \mathbf{E} nor to \mathbf{C}_2 , \mathbf{G} is a direct sum of at least two \mathbf{C}_2 's. Without loss of generality we can assume that elements of \mathbf{G} are 01-sequences, the length of each being at least two. Consider the mapping $\varphi: \mathbf{G} \to \mathbf{G}$ given by

$$\varphi(\langle x_1, x_2, x_3, x_4, \ldots \rangle) = \langle x_1, x_2, 0, 0, \ldots \rangle.$$

 φ is a retraction of **G** onto its subalgebra isomorphic to $\mathbf{C}_2 \times \mathbf{C}_2$. According to Proposition 4, **G** is not an R-group.

Modules. Let $_{\mathbf{P}}\mathbf{A}$ be a \mathbf{P} -module for some ring \mathbf{P} . $_{\mathbf{P}}\mathbf{A}$ is an R-algebra if and only if |A| = 1 or $\mathbf{A} \cong \mathbf{C}_2$ and there is an ideal I of \mathbf{P} such that $\mathbf{P}/I \cong \mathbf{GF}(2)$.

Proof. \Leftarrow : obvious.

 \Rightarrow : Let **P** be a ring. As in the case of groups we show that $_{\mathbf{P}}(\mathbf{C}_2 \times \mathbf{C}_2)$ is not an R-algebra.

Now, let $\mathbf{A} = \langle A, +, -, 0 \rangle$ be a **P**-module that is an R-algebra and |A| > 1. As in the case of groups we show that $\mathbf{A} \cong \mathbf{C}_2$. For the sake of simplicity, let $\mathbf{A} = \mathbf{C}_2$. Let $I = \{p \in P : p \cdot 1 = 0\}$. Clearly, I is an ideal of **P**, so let us show that $\mathbf{P}/I \cong \mathbf{GF}(2)$. Take any $r, s \in P \setminus I$. Then $r \cdot 1 = s \cdot 1 = 1$, whence $s - r \in I$ and thus $s + I \subseteq r + I$. The other inclusion follows analogously. \Box In particular, we have the following

A vector space V is an R-vector space if and only either $V = \{0\}$ or V is isomorphic to C_2 over GF(2).

Rings with unity. Let $\mathbf{P} = \langle P, +, -, 0, \cdot, 1 \rangle$ be a ring with unity. \mathbf{P} is an *R*-ring if and only if |P| = 1.

Proof. \Leftarrow : obvious.

⇒: Let $\mathbf{P} = \langle R, +, -, 0, \cdot \rangle$ be an R-ring. Then $\mathbf{P} \models x = -x, xy = yx, x^4 \approx x^2$. The first identity follows from the fact that "−" is a retraction of \mathbf{P} , whence -(-x) = -x. As for the last two identities, note that $\varphi(x) = x^2$ being a unary term operation of \mathbf{P} is also a retraction of \mathbf{P} , whence $\varphi(x + y) = \varphi(x) + \varphi(y)$ and $\varphi(\varphi(x)) = \varphi(x)$, for all $x, y \in P$.

Let $|P| \ge 2$ and $P' = \{x^2 : x \in P\}$. Since $\varphi : P \to P'$ given by $\varphi(x) = x^2$ is a retraction of \mathbf{P}, \mathbf{P}' is a retract of \mathbf{P} . Note that $0, 1 \in P'$, whence $|P'| \ge 2$. Let us show that \mathbf{P}' is a boolean ring. Since \mathbf{P} is a commutative ring with unity, so is \mathbf{P}' . For each $y \in P'$ we have that $y^2 = y$ since $y^2 = (x^2)^2 = x^4 = x^2 = y$. Therefore, \mathbf{P}' is a boolean ring with at least two elements. Boolean rings are term equivalent to boolean algebras so from $|P'| \ge 2$ it follows that \mathbf{P}' is not an R-ring. Proposition 4 ensures that \mathbf{P} is not an R-ring. \Box

3. Lattices and semilattices

In this paragraph we characterise R-lattices and R-semilattices. We show that R-lattices have at most two elements, while R-semilattices coincide with zero-semilattices.

Let us recall that c_a denotes the constant mapping $c_a(x) = a$ and that Const(A) denotes the set of all the constant mappings $A \to A$.

Lattices. A sublattice **I** of a lattice **L** is said to be an *ideal* of **L** if $i \in I$ and $x \leq i$ imply $x \in I$. An ideal **I** is *prime* if $x \lor y \in I$ implies $x \in I$ or $y \in I$. A sublattice **F** of **L** is said to be a *filter* of **L** if $f \in F$ and $x \geq f$ imply $x \in F$. A filter **F** is *prime* if $x \land y \in F$ implies $x \in F$ or $y \in F$. If **I** is a prime ideal of **L**, then $L \setminus I$ is a prime filter of **L**, and vice versa, if **F** is a prime filter of **L**, then $L \setminus F$ is a prime ideal of **L**. Let (a] denote the ideal of all the lattice elements below $a: (a] = \{x \in L : x \leq a\}$.

Lemma 7.

- (a) Let $\mathbf{L} = \langle L, \wedge, \vee \rangle$ be a chain. \mathbf{L} is an R-lattice if and only if $|L| \leq 2$.
- (b) The following lattice is not an R-lattice:

Turning retractions of an algebra into an algebra

Proof. $(a) \Leftarrow$: obvious.

⇒: Let $|L| \ge 3$ and choose $0, 1, 2 \in L$ such that 0 < 1 < 2. Consider $\varphi : L \to L$ given by:

$$\varphi(x) = \begin{cases} 2, & x \ge 2\\ 0, & x < 2. \end{cases}$$

Obviously $\varphi, c_1 \in R_f(\mathbf{L})$. On the other hand, $\varphi \wedge c_1 : 2 \mapsto 1 \mapsto 0$, whence $\varphi \wedge c_1 \notin R_f(\mathbf{L})$. Thus, **L** is not an R-lattice.

(b) Consider $\varphi, \psi: L \to L$ given by:

$$\varphi = \left(\begin{array}{ccc} 0 & a & b & 1 \\ 0 & a & 0 & a \end{array}\right) \quad \text{and} \quad \psi = \left(\begin{array}{ccc} 0 & a & b & 1 \\ 0 & 0 & 1 & 1 \end{array}\right).$$

It is a routine to check that $\varphi, \psi \in R_f(\mathbf{L})$. On the other hand, $\varphi \wedge \psi : 1 \mapsto a \mapsto 0$, whence $\varphi \wedge \psi \notin R_f(\mathbf{L})$. Thus, \mathbf{L} is not an R-lattice.

Lemma 8. If L is an R-lattice, then L is a distributive lattice.

Proof. Let $\mathbf{L} = \langle L, \wedge, \vee \rangle$ be an R-lattice. Let us recall that $\{\mathrm{id}\} \cup \mathrm{Const}(L) \subseteq R_f(\mathbf{L})$. Consider the following mappings: $\varphi_a(x) = a \wedge x$ and $\psi_a(x) = a \vee x$. Since \mathbf{L} is an R-algebra, we have $\varphi_a = c_a \wedge \mathrm{id} \in R_f(\mathbf{L})$ and $\psi_a = c_a \vee \mathrm{id} \in R_f(\mathbf{L})$ for each $a \in L$. Therefore, φ_a and ψ_a are homomorphisms of \mathbf{L} , i.e.:

$$\varphi_x(y \lor z) = \varphi_x(y) \lor \varphi_x(z) \text{ and } \psi_x(y \land z) = \psi_x(y) \land \psi_x(z),$$

or, equivalently,

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$
 and $x \lor (y \land z) = (x \lor y) \land (x \lor z)$. \Box

Theorem 9. Let **L** be a lattice. **L** is an *R*-lattice if and only if $|L| \leq 2$.

Proof. \Leftarrow : obvious.

⇒: Let **L** be an R-lattice. According to Lemma 8, **L** is a distributive lattice. We shall show that **L** must be a chain. Suppose to the contrary that **L** is not a chain and let *a* and *b* be two incomparable elements in **L**. Let **I**_a be the prime ideal of **L** such that $(a] \subseteq I_a \not\supseteq b$ and let **I**_b be the prime ideal of **L** such that $(b] \subseteq I_b \not\supseteq a$. Obviously, $I_a \not\subseteq I_b$ and $I_b \not\subseteq I_a$.

Let $F_a := L \setminus I_a$ and $F_b := L \setminus I_b$. \mathbf{F}_a and \mathbf{F}_b are prime filters of \mathbf{L} . Furthermore, let $0 := a \wedge b$ and $1 := a \vee b$. We have that $0 \in I_a \cap I_b$, $1 \in F_a \cap F_b$.

Consider a mapping $\varphi: L \to L$ defined by:

$$\varphi(x) = \begin{cases} 0, & x \in I_a \cap I_b \\ a, & x \in I_a \cap F_b \\ b, & x \in I_b \cap F_a \\ 1, & x \in F_a \cap F_b. \end{cases}$$

It is easy to verify that φ is a retraction of **L** onto **M**₂. Hence, **M**₂ is a retract of **L**, which implies that **L** is not an R-lattice (Lemma 7(*b*), Proposition 4). Therefore, **L** is a chain. According to Lemma 7(*a*), $|L| \leq 2$.

Semilattices. A subsemilattice \mathbf{I} of a semilattice $\mathbf{S} = \langle S, \cdot \rangle$ is said to be an *ideal* of \mathbf{S} if $i \in I$ and $x \leq i$ imply $x \in I$. An ideal \mathbf{I} is *prime* if $xy \in I$ implies $x \in I$ or $y \in I$. A subsemilattice \mathbf{F} of \mathbf{S} is said to be a *filter* of \mathbf{S} if $f \in F$ and $x \geq f$ imply $x \in F$. If \mathbf{I} is a prime ideal of \mathbf{S} , then $S \setminus I$ is a filter of \mathbf{S} , and vice versa, if \mathbf{F} is a filter of \mathbf{S} , then $S \setminus F$ is a prime ideal of \mathbf{S} . Let [a) denote the filter of all the semilattice elements above a: $[a) = \{x \in L : x \geq a\}$.

The proof of the following lemma is analogous to the proof of Lemma 7(a):

Lemma 10. Let $\mathbf{S} = \langle S, \cdot \rangle$ be a chain. \mathbf{S} is an *R*-semilattice if and only if $|S| \leq 2$.

Lemma 11. Let **S** be an *R*-semilattice. Let $\mathbf{I}_1 \neq \mathbf{I}_2$ be distinct prime ideals of **S** and let $\emptyset \neq I_1 \subset I_2$. Then $\mathbf{I}_2 = \mathbf{S}$.

Proof. Suppose to the contrary that $\mathbf{I}_2 \neq \mathbf{S}$. Let $F_2 := S \setminus I_2$ be the corresponding filter of \mathbf{S} . It is obvious that $I_1 \cap F_2 = \emptyset$ and $I_1 \cup F_2 \neq S$. Choose arbitrary $1 \in F_2$ and $q \in S \setminus (I_1 \cup F_2)$. Set $p := 1 \cdot q$. One easily verifies that $p \in S \setminus (I_1 \cup F_2)$. Choose arbitrary $i \in I_1$ and set $0 := p \cdot i$. Obviously, $0 \in I_1$.

Consider the mapping $\varphi:S\to S$ defined by:

$$\varphi(x) = \begin{cases} 0, & x \in I_1 \\ p, & x \in S \setminus (I_1 \cup F_2) \\ 1, & x \in F_2. \end{cases}$$

 φ is a retraction of **S** onto the three element chain 0 , which implies that**S**is not an R-semilattice (Lemma 10, Proposition 4). Contradiction.

Lemma 12. If a semilattice has a subsemilattice isomorphic to a three-element chain, then the semilattice is not an *R*-semilattice.

Proof. Let a < b < c be a three-element chain in **S**. Let $I_b = S \setminus [b)$ and $I_c = S \setminus [c]$. **I**_b and **I**_c are distinct prime ideals and $a \in I_b \subset I_c$. According to Lemma 11, $\mathbf{I}_c = \mathbf{S}$. But, $c \notin I_c$. Contradiction.

A semilattice $\mathbf{S} = \langle S, \cdot \rangle$ is called a zero-semilattice if $(\exists 0 \in S)(\forall x, y \in S)(x \neq y \Rightarrow xy = 0)$.

Theorem 13. Let S be a semilattice. S is an R-semilattice if and only if S is a zero-semilattice.

Proof. \Rightarrow : Let $\mathbf{S} = \langle S, \cdot \rangle$ be an R-semilattice. If \mathbf{S} is a chain, then $|S| \leq 2$ (Lemma 10) and every such chain is trivially a zero-semilattice.

Let **S** be a semilattice that is not a chain. Let *a* and *b* be arbitrary incomparable elements in **S** and put 0 := ab. Lemma 12 implies that **S** does not have a three-element chain.

Note that 0 is the least element in **S** (if c < 0 then c < 0 < a is a threeelement chain; if c and 0 are incomparable elements, then $c \cdot 0 < 0 < a$ is a three element chain). Using this fact, it is easy to prove that $x \neq y \Rightarrow xy = 0$. If x = 0 or y = 0, then xy = 0 since 0 is the least element in **S**. Suppose that $x \neq 0$, $y \neq 0$ and $xy \neq 0$. If x < y then 0 < x < y is a three-element chain. If, on the other hand, x and y are incomparable, then 0 < xy < x is a three-element chain. Therefore, if $x \neq y$ then xy = 0.

 \Leftarrow : Let 0 be the zero of **S**. For $X \subseteq S$, let $\varphi_X : S \to S$ denote the following mapping:

$$\varphi_X(x) = \begin{cases} 0, & x \notin X \\ x, & x \in X. \end{cases}$$

If $0 \in X$, then φ_X is a retraction of **S**. We shall prove that $R_f(\mathbf{S}) = \text{Const}(\mathbf{S}) \cup \{\varphi_X : 0 \in X \subseteq S\}.$

 \supseteq : obvious.

 \subseteq : Let $\psi: S \to S$ be a retraction of **S**.

Case 1: $\psi(0) \neq 0$. Let $\psi(0) = a \neq 0$. We shall prove that $\psi = c_a$. Let x be an arbitrary element of S. If x = a then $\psi(x) = \psi(a) = \psi(\psi(0)) = \psi(0) = a$. Suppose therefore that $x \neq a$. Since xa = 0, we have $\psi(x)\psi(a) = \psi(xa) = \psi(0) = a$. It is easy to see that $\psi(a) = a$: $\psi(a) = \psi(\psi(0)) = \psi(0) = a$. Thus, $\psi(x) \cdot a = a$ whence $\psi(x) = a$. Thus, $\psi = c_a$.

Case 2: $\psi(0) = 0$. First, we shall prove that for each $x \in S$, $\psi(x) \in \{0, x\}$. Let x be arbitrary element of S and suppose that $\psi(x) = y \notin \{0, x\}$. Obviously, $\psi(y) = y$. Since $x \neq y$, we have xy = 0 implying $\psi(0) = \psi(xy) = \psi(x)\psi(y) = yy = y \neq 0$. Contradiction.

Therefore, $\psi(x) \in \{0, x\}$ for each $x \in S$. Let $X = \{x \in S : \psi(x) = x\}$. It is easy to verify that $\psi = \varphi_X$.

Now, when we know that $R_f(\mathbf{S}) = \text{Const}(\mathbf{S}) \cup \{\varphi_X : 0 \in X \subseteq S\}$, in order to complete the proof it suffices to show that $R_f(\mathbf{S})$ is closed with respect to ".". This, however, follows easily from the following observations:

$$c_a \cdot c_b = \begin{cases} c_0, & a \neq b \\ c_a, & a = b \end{cases}; \qquad c_a \cdot \varphi_X = \begin{cases} c_0, & a \notin X \\ \varphi_{\{0,a\}}, & a \in X \end{cases}; \qquad \varphi_X \cdot \varphi_Y = \varphi_{X \cap Y} \end{cases}$$

(note that $\varphi_{\{0\}} = c_0$).

Acknowledgement. I would like to thank Dr. Rozália Sz. Madarász who drew my attention to this problem and discussed with me the paper in its various stages of development.

References

- Crapo, H., Ordered sets: retractions and connections. J. Pure Appl. Algebra 23(1982), 13–28.
- [2] Li, B., All retraction operators on a lattice need not form a lattice. J. Pure Appl. Algebra 67(1990), 201–208.
- [3] Li, B., All retraction operators on a complete lattice form a complete lattice. Acta Mathematica Sinica, New Series 7(3)(1991), 247–251.

Received by the editors October 23, 2003.