TURNING RETRACTIONS OF AN ALGEBRA INTO AN ALGEBRA

Dragan Mašulović ${ }^{1}$

Abstract

One can turn the set of retractions of a lattice $\langle L, \leq\rangle$ into a poset $R_{f}(\mathbf{L})$ by letting $f \leq g$ iff $f(x) \leq g(x)$ for all $x \in L$. In 1982 H. Crapo raised the following two problems: (1) Is it true that $R_{f}(\mathbf{L})$ is a lattice for any lattice \mathbf{L} ? (2) Is it true that $R_{f}(\mathbf{L})$ is a complete lattice if \mathbf{L} is a complete lattice?

In 1990 and 1991 B . Li published two papers dealing with the above two questions. He showed that $R_{f}(\mathbf{L})$ is not necessarily a lattice and that \mathbf{L} is a complete lattice if and only if $R_{f}(\mathbf{L})$ is a complete lattice.

Motivated by the idea of extending the structure from the base set to the set of all retractions, we introduce the notion of R -algebra as follows. Let $R_{f}(\mathbf{A})$ denote the set of all retractions of an algebra \mathbf{A}. We say that \mathbf{A} is an R-algebra if the set $R_{f}(\mathbf{A})$ is closed with respect to operations of \mathbf{A} applied pointwise. We give some necessary and some sufficient conditions for \mathbf{A} to be an R-algebra. We show that the property of being an R algebra carries over to retracts of the algebra. In a set of examples we show that almost no classical algebra is an R-algebra. In particular, a lattice \mathbf{L} is an R-algebra iff $|L| \leq 2$.

AMS Mathematics Subject Classification (2000): 08A35
Key words and phrases: retractions, algebras, lattices

1. Introduction

One can turn the set of retractions of a lattice $\langle L, \leq\rangle$ into a poset by letting $f \leq g$ iff $f(x) \leq g(x)$ for all $x \in L$. In 1982 H . Crapo raised the following two problems [1]: (1) Is it true that for any lattice \mathbf{L}, the set of retractions of a lattice partially ordered as above is again a lattice? (2) Is it true that the set of retractions of a lattice is a complete lattice if the original lattice is a complete lattice?

In 1990 and 1991 B. Li published two papers [2, 3] dealing with the above two questions. He showed that the set of retractions of a lattice is not necessarily a lattice, and that \mathbf{L} is a complete lattice if and only if the set of retractions of \mathbf{L} is a complete lattice.

Motivated by the idea of extending the structure from the base set to the set of all retractions, we introduce the notion of R-algebra as follows. Let

[^0]$\mathbf{A}=\langle A, \mathcal{F}\rangle$ be an algebra. By a retraction of \mathbf{A} we mean any idempotent endomorphism of \mathbf{A}. Let $R_{f}(\mathbf{A})$ denote the set of all retractions of \mathbf{A}. We say that \mathbf{A} is an R-algebra if $R_{f}(\mathbf{A})$ is a subuniverse of \mathbf{A}^{A}. By $\mathbf{R}_{f}(\mathbf{A})$ we denote the corresponding algebra on the set of retractions. Lattices, groups etc. that are R-algebras shall be referred to as R-lattices, R-groups and so on.

In this paper we give some necessary and some sufficient conditions for \mathbf{A} to be an R-algebra. We show that the property of being an R-algebra carries over to retracts of the algebra. In a set of examples we show that almost no classical algebra is an R-algebra. In particular, a lattice \mathbf{L} is an R-algebra iff $|L| \leq 2$, while a semilattice is an R-algebra iff it is a zero-semilattice.

Let Inv and Pol be the standard clone-theoretic operators. For an algebra \mathbf{A} let $\operatorname{Clo} \mathbf{A}$ denote the clone of all term operations of \mathbf{A} and $\mathrm{Clo}^{(n)} \mathbf{A}$ the set of all n-ary term operations of \mathbf{A}. For an operation $f: A^{n} \rightarrow A$ let $f^{\bullet}=$ $\left\{\left\langle x_{1}, \ldots, x_{n}, f\left(x_{1}, \ldots, x_{n}\right)\right\rangle:\left\langle x_{1}, \ldots, x_{n}\right\rangle \in A^{n}\right\}$ denote the graph of f; for a set of operations F let $F^{\bullet}=\left\{f^{\bullet}: f \in F\right\}$.

Proposition 1. Let $\left\langle x_{\alpha}: \alpha<\lambda\right\rangle$ be a well ordering of A with $\lambda=|A|$. For $f \in A^{A}$ let $\mathbf{r}_{f}=\left\langle f\left(x_{\alpha}\right): \alpha<\lambda\right\rangle$ and for $S \subseteq A^{A}$ put $\mathbf{r}_{S}=\left\{\mathbf{r}_{f}: f \in S\right\}$.

Now let $\mathbf{A}=\langle A, \mathcal{F}\rangle$ be an algebra and let $S=\left\{f \in A^{A}: f^{2}=f\right\} \cap$ $\operatorname{Pol}(\operatorname{Clo} \mathbf{A})^{\bullet}$. Then \mathbf{A} is an R-algebra if and only if $\mathbf{r}_{S} \in \operatorname{Inv} \operatorname{Clo} \mathbf{A}$.

Let \mathbf{A} and \mathbf{A}^{\prime} be term equivalent algebras on the same carrier set A. Then \mathbf{A} is an R-algebra if and only if \mathbf{A}^{\prime} is an R-algebra. If both \mathbf{A} and \mathbf{A}^{\prime} are R-algebras then $R_{f}(\mathbf{A})=R_{f}\left(\mathbf{A}^{\prime}\right)$, and moreover $\mathbf{R}_{f}(\mathbf{A})$ and $\mathbf{R}_{f}\left(\mathbf{A}^{\prime}\right)$ are term equivalents.

Proof. For the first part of the proposition, note that S is exactly the set of retractions of \mathbf{A} and that $\mathbf{r}_{S} \in \operatorname{Inv}$ Clo \mathbf{A} means that S is closed with respect to term operations on \mathbf{A} applied pointwise. The second part of the proposition now follows immediately.
Proposition 2. If $\mathbf{A}=\langle A, \mathcal{F}\rangle$ is an R-algebra, then $\mathrm{Clo}^{(1)} \mathbf{A} \subseteq R_{f}(\mathbf{A})$.
Proof. Take any $g \in \mathrm{Clo}^{(1)} \mathbf{A}$. The proof proceeds by induction on the complexity of the unary term giving rise to g. Let $g=f(x, \ldots, x)$ for some $f \in \mathcal{F}$. Since id $\in R_{f}(\mathbf{A})$ and since $\mathbf{R}_{f}(\mathbf{A})$ is an algebra, $f(\mathrm{id}, \ldots$, id $) \in R_{f}(\mathbf{A})$. But, $f(\mathrm{id}, \ldots, \mathrm{id})(x)=f(x, \ldots, x)=g(x)$. So, $g \in R_{f}(\mathbf{A})$. If $g=f\left(t_{1}, \ldots, t_{n}\right)$ for some $f \in \mathcal{F}$ and some unary terms t_{i}, induction hypothesis and the same argument apply.
Proposition 3. Let $\mathbf{A}=\langle A, \mathcal{F}\rangle$ be an algebra such that for all $f, f_{1}, f_{2} \in \mathcal{F}$ the following two identities hold on \mathbf{A} :
(i) $f\left(f\left(x_{11}, x_{12}, \ldots, x_{1 n}\right), f\left(x_{21}, x_{22}, \ldots, x_{2 n}\right), \ldots, f\left(x_{n 1}, x_{n 2}, \ldots, x_{n n}\right)\right)=$ $f\left(x_{11}, x_{22}, \ldots, x_{n n}\right)$,
(ii) $f_{1}\left(f_{2}\left(x_{11}, \ldots, x_{1 n}\right), \ldots, f_{2}\left(x_{m 1}, \ldots, x_{m n}\right)\right)=$

$$
f_{2}\left(f_{1}\left(x_{11}, \ldots, x_{m 1}\right), \ldots, f_{1}\left(x_{1 n}, \ldots, x_{m n}\right)\right)
$$

Then \mathbf{A} is an R-algebra. In particular, every rectangular algebra is an R-algebra.
Proof. It suffices to show that $R_{f}(\mathbf{A})$ is closed with respect to operations in \mathcal{F}. Let $f \in \mathcal{F}$ and $\varphi_{1}, \ldots, \varphi_{n} \in R_{f}(\mathbf{A})$ be arbitrary and let $\psi=f\left(\varphi_{1}, \ldots, \varphi_{n}\right)$. We shall prove that ψ is a retraction of \mathbf{A}.

To prove that ψ is a homomorphism of \mathbf{A}, let $f_{1} \in \mathcal{F}$ be arbitrary.

$$
\begin{aligned}
& \psi\left(f_{1}\left(x_{1}, \ldots, x_{n}\right)\right)= \\
& \quad=f\left(\varphi_{1}, \ldots, \varphi_{n}\right)\left(f_{1}\left(x_{1}, \ldots, x_{m}\right)\right) \\
& \quad=f\left(\varphi_{1}\left(f_{1}\left(x_{1}, \ldots, x_{m}\right)\right), \ldots, \varphi_{n}\left(f_{1}\left(x_{1}, \ldots, x_{m}\right)\right)\right)
\end{aligned}
$$

[because φ_{j} 's are homomorphisms of \mathbf{A}]

$$
=f\left(f_{1}\left(\varphi_{1}\left(x_{1}\right), \ldots, \varphi_{1}\left(x_{m}\right)\right), \ldots, f_{1}\left(\varphi_{n}\left(x_{1}\right), \ldots, \varphi_{n}\left(x_{m}\right)\right)\right)
$$

[because of $(i i)$]

$$
\begin{aligned}
& =f_{1}\left(f\left(\varphi_{1}\left(x_{1}\right), \ldots, \varphi_{n}\left(x_{1}\right)\right), \ldots, f\left(\varphi_{1}\left(x_{m}\right), \ldots, \varphi_{n}\left(x_{m}\right)\right)\right) \\
& =f_{1}\left(\psi\left(x_{1}\right), \ldots, \psi\left(x_{m}\right)\right)
\end{aligned}
$$

To complete the proof, let us show that ψ is idempotent:

$$
\begin{aligned}
\psi(\psi(x)) & =f\left(\varphi_{1}, \ldots, \varphi_{n}\right)(\psi(x))= \\
& =f\left(\varphi_{1}(\psi(x)), \ldots, \varphi_{n}(\psi(x))\right) \\
& =f\left(\varphi_{1}\left(f\left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right)\right), \ldots \varphi_{n}\left(f\left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right)\right)\right)
\end{aligned}
$$

[because φ_{j} 's are homomorphisms of \mathbf{A}]

$$
=f\left(f\left(\varphi_{1} \varphi_{1}(x), \ldots, \varphi_{1} \varphi_{n}(x)\right), \ldots, f\left(\varphi_{n} \varphi_{1}(x), \ldots, \varphi_{n} \varphi_{n}(x)\right)\right)
$$

[because of (i)]

$$
=f\left(\varphi_{1} \varphi_{1}(x), \ldots, \varphi_{n} \varphi_{n}(x)\right)
$$

[because φ_{j} 's are idempotent]

$$
=f\left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right)=\psi(x)
$$

Proposition 4. Let \mathbf{A} be an R-algebra and let \mathbf{R} be a retract of \mathbf{A}. Then \mathbf{R} is an R-algebra.

Proof. Let $\varphi: A \rightarrow R$ be the corresponding retraction and let

$$
\begin{aligned}
R_{f}(\mathbf{A}, R) & :=\left\{\psi \in R_{f}(\mathbf{A}): \psi(A) \subseteq R\right\} \\
\left.R_{f}(\mathbf{A}, R)\right|_{R} & :=\left\{\left.\psi\right|_{R}: \psi \in R_{f}(\mathbf{A}, R)\right\} \\
R_{f}(\mathbf{R}) \circ \varphi & :=\left\{\psi \circ \varphi: \psi \in R_{f}(\mathbf{R})\right\}
\end{aligned}
$$

Clearly, $R_{f}(\mathbf{A}, R) \leq \mathbf{A}^{A}$ and $\left.R_{f}(\mathbf{A}, R)\right|_{R} \subseteq R_{f}(\mathbf{R})$. Also, $R_{f}(\mathbf{R}) \circ \varphi \subseteq$ $R_{f}(\mathbf{A}, R)$. To see this, it suffices to show that $\psi \circ \varphi$ is idempotent for all
$\psi \in R_{f}(\mathbf{R})$. Take any $\psi \in R_{f}(\mathbf{R})$ and $a \in A$. Then $\psi \circ \varphi(a) \in R$, whence $\psi \circ \varphi(a)=\varphi(x)$ for some $x \in A$. Now $\varphi \circ \psi \circ \varphi(a)=\varphi \circ \varphi(x)=\varphi(x)=\psi \circ \varphi(a)$ and thus $\psi \circ \varphi \circ \psi \circ \varphi(a)=\psi \circ \varphi(a)$.

To prove that \mathbf{R} is an R-algebra, let $f \in \mathcal{F}$ and $\psi_{1}, \ldots, \psi_{n} \in R_{f}(\mathbf{R})$ be arbitrary. Then $\psi_{1} \circ \varphi, \ldots, \psi_{n} \circ \varphi \in R_{f}(\mathbf{R}) \circ \varphi \subseteq R_{f}(\mathbf{A}, R)$ implying $f\left(\psi_{1} \circ \varphi, \ldots, \psi_{n} \circ \varphi\right) \in R_{f}(\mathbf{A}, R)$ as well. From this we get $\left.\left.f\left(\psi_{1} \circ \varphi, \ldots, \psi_{n} \circ \varphi\right)\right|_{R} \in R_{f}(\mathbf{A}, R)\right|_{R} \subseteq R_{f}(\mathbf{R})$. Since φ is a retraction, we have that $\left.\varphi\right|_{R}=\operatorname{id}_{R}$, whence $\left.f\left(\psi_{1} \circ \varphi, \ldots, \psi_{n} \circ \varphi\right)\right|_{R}=f\left(\psi_{1}, \ldots, \psi_{n}\right)$. So, $f\left(\psi_{1}, \ldots, \psi_{n}\right) \in R_{f}(\mathbf{R})$.

Lemma 5. If \mathbf{A} is an idempotent R-algebra then \mathbf{A} can be embedded into $\mathbf{R}_{f}(\mathbf{A})$.

Proof. Let c_{a} be the constant mapping $c_{a}(x)=a$ and let $\operatorname{Const}(A)=\left\{c_{a}: a \in\right.$ $A\}$. Since \mathbf{A} is an idempotent algebra, $\operatorname{Const}(A) \subseteq R_{f}(\mathbf{A})$ and $\Phi: A \rightarrow R_{f}(\mathbf{A})$ defined by $\Phi(a)=c_{a}$ is an embedding of \mathbf{A} into $\mathbf{R}_{f}(\mathbf{A})$.

For a class \mathcal{K} of R-algebras let $R_{f}(\mathcal{K})=\left\{\mathbf{R}_{f}(\mathbf{A}): \mathbf{A} \in \mathcal{K}\right\}$ (modulo abuse of set notation). Let $S(\mathcal{K})$ denote the class of all isomorphic copies of subalgebras of algebras from \mathcal{K} and $V(\mathcal{K})$ the variety generated by \mathcal{K}.

Proposition 6. Let \mathcal{K} be a class of idempotent R-algebras of the same type. Then $V(\mathcal{K})=V\left(R_{f}(\mathcal{K})\right)$.
Proof. Since $\mathbf{R}_{f}(\mathbf{A}) \leq \mathbf{A}^{A}$ for any algebra \mathbf{A}, we have $R_{f}(\mathcal{K}) \subseteq V(\mathcal{K})$ and thus $V\left(R_{f}(\mathcal{K})\right) \subseteq V(\mathcal{K})$. For the other inclusion take any $\mathbf{A} \in \mathcal{K}$. According to Lemma 5 algebra \mathbf{A} embeds into $\mathbf{R}_{f}(\mathbf{A})$, whence $\mathcal{K} \subseteq S\left(R_{f}(\mathcal{K})\right)$. Thus $V(\mathcal{K}) \subseteq V\left(R_{f}(\mathcal{K})\right)$.

2. Examples

Unary algebras. Let A be a unary algebra. According to Proposition 2, if \mathbf{A} is an R-algebra, each fundamental operation of \mathbf{A} is a retraction of \mathbf{A}. The converse is also obvious. Thus we have that a unary algebra $\mathbf{A}=\langle A, \mathcal{F}\rangle$ is an R-algebra if and only if $\mathcal{F} \subseteq R_{f}(\mathbf{A})$.

Some semigroups. Let $\mathbf{S}=\langle S, \cdot\rangle$ be a semigroup such that $\mathbf{S} \models x y z=$ $x z$. One easily verifies that \mathbf{S} satisfies both conditions listed in Proposition 3. Therefore, \mathbf{S} is an R-semigroup.

Bounded complemented algebras. We say that an algebra $\mathbf{A}=\langle A, \mathcal{F}\rangle$ is bounded complemented if there are constants $0,1 \in \mathcal{F}$ and a unary operation $\in \mathcal{F}$ such that $\overline{0}=1, \overline{1}=0$, and $|A|=1$ if and only if $0=1$.

A bounded complemented algebra \mathbf{A} is an R-algebra if and only if it is $|A|=1$.

Proof. \Leftarrow : obvious.
\Rightarrow : Let A be a bounded complemented R-algebra. According to Proposition $2,{ }^{-}$is a retraction of \mathbf{A}, whence $\overline{\bar{x}}=\bar{x}$ for each $x \in A$. Therefore $0=\overline{1}=\overline{\overline{1}}=1$, implying that $|A|=1$.

As a corollary, we have the following. Let $\mathbf{L}=\langle L, \wedge, \vee,-, 0,1\rangle$ be a complemented lattice. \mathbf{L} is an R-algebra if and only if $L=\{0\}$. In particular, a boolean algebra \mathbf{B} is an R -algebra if and only if $B=\{0\}$.

Groups. Let \mathbf{C}_{n} denote the n-element cyclic group and let \mathbf{E} denote the trivial one element group.

A group is an R-group if and only if it isomorphic either to \mathbf{E} or to \mathbf{C}_{2}.
Proof. \Leftarrow : obvious.
\Rightarrow : Let us first show that $\mathbf{C}_{2} \times \mathbf{C}_{2}$ is not an R-group.
Consider $\varphi_{1}, \varphi_{2}: C_{2} \times C_{2} \rightarrow C_{2} \times C_{2}$ defined by $\varphi_{1}(\langle x, y\rangle)=\langle x+y, 0\rangle$ and $\varphi_{2}(\langle x, y\rangle)=\langle 0, x+y\rangle$. One easily verifies that φ_{1} and φ_{2} are retractions of $\mathbf{C}_{2} \times \mathbf{C}_{2}$. On the other hand, $\varphi_{1}+\varphi_{2}$ is not since $\left(\varphi_{1}+\varphi_{2}\right) \circ\left(\varphi_{1}+\varphi_{2}\right)(\langle 1,0\rangle)=$ $\langle 0,0\rangle \neq\langle 1,1\rangle=\left(\varphi_{1}+\varphi_{2}\right)(\langle 1,0\rangle)$.

Now, let $\mathbf{G}=\langle G,+,-, 0\rangle$ be an R -group and suppose that \mathbf{G} is isomorphic neither to \mathbf{E} nor to \mathbf{C}_{2}. According to Proposition 2, "-" is a retraction of \mathbf{G}, and that is possible if and only if $-x=x$ for all $x \in G$. Therefore, \mathbf{G} is a 2-elementary abelian group and is isomorphic to a direct sum of certain number of \mathbf{C}_{2} 's. Since \mathbf{G} is isomorphic neither to \mathbf{E} nor to $\mathbf{C}_{2}, \mathbf{G}$ is a direct sum of at least two \mathbf{C}_{2} 's. Without loss of generality we can assume that elements of \mathbf{G} are 01-sequences, the length of each being at least two. Consider the mapping $\varphi: G \rightarrow G$ given by

$$
\varphi\left(\left\langle x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right\rangle\right)=\left\langle x_{1}, x_{2}, 0,0, \ldots\right\rangle
$$

φ is a retraction of \mathbf{G} onto its subalgebra isomorphic to $\mathbf{C}_{2} \times \mathbf{C}_{2}$. According to Proposition 4, \mathbf{G} is not an R-group.

Modules. Let ${ }_{\mathbf{P}} \mathbf{A}$ be a \mathbf{P}-module for some ring $\mathbf{P} .{ }_{\mathbf{P}} \mathbf{A}$ is an R-algebra if and only if $|A|=1$ or $\mathbf{A} \cong \mathbf{C}_{2}$ and there is an ideal I of \mathbf{P} such that $\mathbf{P} / I \cong \mathbf{G F}(2)$.

Proof. \Leftarrow : obvious.
\Rightarrow : Let \mathbf{P} be a ring. As in the case of groups we show that $\mathbf{P}\left(\mathbf{C}_{2} \times \mathbf{C}_{2}\right)$ is not an R-algebra.

Now, let $\mathbf{A}=\langle A,+,-, 0\rangle$ be a \mathbf{P}-module that is an R-algebra and $|A|>1$. As in the case of groups we show that $\mathbf{A} \cong \mathbf{C}_{2}$. For the sake of simplicity, let $\mathbf{A}=\mathbf{C}_{2}$. Let $I=\{p \in P: p \cdot 1=0\}$. Clearly, I is an ideal of \mathbf{P}, so let us show that $\mathbf{P} / I \cong \mathbf{G F}(2)$. Take any $r, s \in P \backslash I$. Then $r \cdot 1=s \cdot 1=1$, whence $s-r \in I$ and thus $s+I \subseteq r+I$. The other inclusion follows analogously.

In particular, we have the following
A vector space \mathbf{V} is an R-vector space if and only either $V=\{0\}$ or \mathbf{V} is isomorphic to \mathbf{C}_{2} over $\mathbf{G F}(2)$.

Rings with unity. Let $\mathbf{P}=\langle P,+,-, 0, \cdot, 1\rangle$ be a ring with unity. \mathbf{P} is an R-ring if and only if $|P|=1$.

Proof. \Leftarrow : obvious.
\Rightarrow : Let $\mathbf{P}=\langle R,+,-, 0, \cdot\rangle$ be an R-ring. Then $\mathbf{P} \models x=-x, x y=y x, x^{4} \approx$ x^{2}. The first identity follows from the fact that "-" is a retraction of \mathbf{P}, whence $-(-x)=-x$. As for the last two identities, note that $\varphi(x)=x^{2}$ being a unary term operation of \mathbf{P} is also a retraction of \mathbf{P}, whence $\varphi(x+y)=\varphi(x)+\varphi(y)$ and $\varphi(\varphi(x))=\varphi(x)$, for all $x, y \in P$.

Let $|P| \geq 2$ and $P^{\prime}=\left\{x^{2}: x \in P\right\}$. Since $\varphi: P \rightarrow P^{\prime}$ given by $\varphi(x)=x^{2}$ is a retraction of $\mathbf{P}, \mathbf{P}^{\prime}$ is a retract of \mathbf{P}. Note that $0,1 \in P^{\prime}$, whence $\left|P^{\prime}\right| \geq 2$. Let us show that \mathbf{P}^{\prime} is a boolean ring. Since \mathbf{P} is a commutative ring with unity, so is \mathbf{P}^{\prime}. For each $y \in P^{\prime}$ we have that $y^{2}=y$ since $y^{2}=\left(x^{2}\right)^{2}=x^{4}=x^{2}=y$. Therefore, \mathbf{P}^{\prime} is a boolean ring with at least two elements. Boolean rings are term equivalent to boolean algebras so from $\left|P^{\prime}\right| \geq 2$ it follows that \mathbf{P}^{\prime} is not an R-ring. Proposition 4 ensures that \mathbf{P} is not an R-ring.

3. Lattices and semilattices

In this paragraph we characterise R -lattices and R -semilattices. We show that R-lattices have at most two elements, while R -semilattices coincide with zero-semilattices.

Let us recall that c_{a} denotes the constant mapping $c_{a}(x)=a$ and that Const (A) denotes the set of all the constant mappings $A \rightarrow A$.

Lattices. A sublattice \mathbf{I} of a lattice \mathbf{L} is said to be an $i d e a l$ of \mathbf{L} if $i \in I$ and $x \leq i$ imply $x \in I$. An ideal \mathbf{I} is prime if $x \vee y \in I$ implies $x \in I$ or $y \in I$. A sublattice \mathbf{F} of \mathbf{L} is said to be a filter of \mathbf{L} if $f \in F$ and $x \geq f$ imply $x \in F$. A filter \mathbf{F} is prime if $x \wedge y \in F$ implies $x \in F$ or $y \in F$. If \mathbf{I} is a prime ideal of \mathbf{L}, then $L \backslash I$ is a prime filter of \mathbf{L}, and vice versa, if \mathbf{F} is a prime filter of \mathbf{L}, then $L \backslash F$ is a prime ideal of \mathbf{L}. Let $(a]$ denote the ideal of all the lattice elements below a : $(a]=\{x \in L: x \leq a\}$.

Lemma 7.

(a) Let $\mathbf{L}=\langle L, \wedge, \vee\rangle$ be a chain. \mathbf{L} is an R-lattice if and only if $|L| \leq 2$.
(b) The following lattice is not an R-lattice:

Proof. $(a) \Leftarrow$: obvious.
\Rightarrow : Let $|L| \geq 3$ and choose $0,1,2 \in L$ such that $0<1<2$. Consider $\varphi: L \rightarrow L$ given by:

$$
\varphi(x)= \begin{cases}2, & x \geq 2 \\ 0, & x<2\end{cases}
$$

Obviously $\varphi, c_{1} \in R_{f}(\mathbf{L})$. On the other hand, $\varphi \wedge c_{1}: 2 \mapsto 1 \mapsto 0$, whence $\varphi \wedge c_{1} \notin R_{f}(\mathbf{L})$. Thus, \mathbf{L} is not an R-lattice.
(b) Consider $\varphi, \psi: L \rightarrow L$ given by:

$$
\varphi=\left(\begin{array}{cccc}
0 & a & b & 1 \\
0 & a & 0 & a
\end{array}\right) \quad \text { and } \quad \psi=\left(\begin{array}{cccc}
0 & a & b & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

It is a routine to check that $\varphi, \psi \in R_{f}(\mathbf{L})$. On the other hand, $\varphi \wedge \psi: 1 \mapsto a \mapsto 0$, whence $\varphi \wedge \psi \notin R_{f}(\mathbf{L})$. Thus, \mathbf{L} is not an R-lattice.

Lemma 8. If \mathbf{L} is an R-lattice, then \mathbf{L} is a distributive lattice.
Proof. Let $\mathbf{L}=\langle L, \wedge, \vee\rangle$ be an R-lattice. Let us recall that $\{\operatorname{id}\} \cup \operatorname{Const}(L) \subseteq$ $R_{f}(\mathbf{L})$. Consider the following mappings: $\varphi_{a}(x)=a \wedge x$ and $\psi_{a}(x)=a \vee x$. Since \mathbf{L} is an R-algebra, we have $\varphi_{a}=c_{a} \wedge \mathrm{id} \in R_{f}(\mathbf{L})$ and $\psi_{a}=c_{a} \vee \mathrm{id} \in R_{f}(\mathbf{L})$ for each $a \in L$. Therefore, φ_{a} and ψ_{a} are homomorphisms of \mathbf{L}, i.e.:

$$
\varphi_{x}(y \vee z)=\varphi_{x}(y) \vee \varphi_{x}(z) \quad \text { and } \quad \psi_{x}(y \wedge z)=\psi_{x}(y) \wedge \psi_{x}(z)
$$

or, equivalently,

$$
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \quad \text { and } \quad x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)
$$

Theorem 9. Let \mathbf{L} be a lattice. \mathbf{L} is an R-lattice if and only if $|L| \leq 2$.
Proof. \Leftarrow : obvious.
\Rightarrow : Let \mathbf{L} be an R-lattice. According to Lemma $8, \mathbf{L}$ is a distributive lattice. We shall show that \mathbf{L} must be a chain. Suppose to the contrary that \mathbf{L} is not a chain and let a and b be two incomparable elements in \mathbf{L}. Let \mathbf{I}_{a} be the prime ideal of \mathbf{L} such that $(a] \subseteq I_{a} \not \supset b$ and let \mathbf{I}_{b} be the prime ideal of \mathbf{L} such that $(b] \subseteq I_{b} \not \supset a$. Obviously, $I_{a} \nsubseteq I_{b}$ and $I_{b} \nsubseteq I_{a}$.

Let $F_{a}:=L \backslash I_{a}$ and $F_{b}:=L \backslash I_{b} . \quad \mathbf{F}_{a}$ and \mathbf{F}_{b} are prime filters of \mathbf{L}. Furthermore, let $0:=a \wedge b$ and $1:=a \vee b$. We have that $0 \in I_{a} \cap I_{b}, 1 \in F_{a} \cap F_{b}$.

Consider a mapping $\varphi: L \rightarrow L$ defined by:

$$
\varphi(x)= \begin{cases}0, & x \in I_{a} \cap I_{b} \\ a, & x \in I_{a} \cap F_{b} \\ b, & x \in I_{b} \cap F_{a} \\ 1, & x \in F_{a} \cap F_{b}\end{cases}
$$

It is easy to verify that φ is a retraction of \mathbf{L} onto \mathbf{M}_{2}. Hence, \mathbf{M}_{2} is a retract of \mathbf{L}, which implies that \mathbf{L} is not an R-lattice (Lemma $7(b)$, Proposition 4). Therefore, \mathbf{L} is a chain. According to Lemma $7(a),|L| \leq 2$.

Semilattices. A subsemilattice \mathbf{I} of a semilattice $\mathbf{S}=\langle S, \cdot\rangle$ is said to be an ideal of \mathbf{S} if $i \in I$ and $x \leq i$ imply $x \in I$. An ideal \mathbf{I} is prime if $x y \in I$ implies $x \in I$ or $y \in I$. A subsemilattice \mathbf{F} of \mathbf{S} is said to be a filter of \mathbf{S} if $f \in F$ and $x \geq f$ imply $x \in F$. If \mathbf{I} is a prime ideal of \mathbf{S}, then $S \backslash I$ is a filter of \mathbf{S}, and vice versa, if \mathbf{F} is a filter of \mathbf{S}, then $S \backslash F$ is a prime ideal of \mathbf{S}. Let $[a)$ denote the filter of all the semilattice elements above $a:[a)=\{x \in L: x \geq a\}$.

The proof of the following lemma is analogous to the proof of Lemma 7(a):
Lemma 10. Let $\mathbf{S}=\langle S, \cdot\rangle$ be a chain. \mathbf{S} is an R-semilattice if and only if $|S| \leq 2$.

Lemma 11. Let \mathbf{S} be an R-semilattice. Let $\mathbf{I}_{1} \neq \mathbf{I}_{2}$ be distinct prime ideals of \mathbf{S} and let $\emptyset \neq I_{1} \subset I_{2}$. Then $\mathbf{I}_{2}=\mathbf{S}$.

Proof. Suppose to the contrary that $\mathbf{I}_{2} \neq \mathbf{S}$. Let $F_{2}:=S \backslash I_{2}$ be the corresponding filter of \mathbf{S}. It is obvious that $I_{1} \cap F_{2}=\emptyset$ and $I_{1} \cup F_{2} \neq S$. Choose arbitrary $1 \in F_{2}$ and $q \in S \backslash\left(I_{1} \cup F_{2}\right)$. Set $p:=1 \cdot q$. One easily verifies that $p \in S \backslash\left(I_{1} \cup F_{2}\right)$. Choose arbitrary $i \in I_{1}$ and set $0:=p \cdot i$. Obviously, $0 \in I_{1}$.

Consider the mapping $\varphi: S \rightarrow S$ defined by:

$$
\varphi(x)= \begin{cases}0, & x \in I_{1} \\ p, & x \in S \backslash\left(I_{1} \cup F_{2}\right) \\ 1, & x \in F_{2}\end{cases}
$$

φ is a retraction of \mathbf{S} onto the three element chain $0<p<1$, which implies that \mathbf{S} is not an R-semilattice (Lemma 10, Proposition 4). Contradiction.

Lemma 12. If a semilattice has a subsemilattice isomorphic to a three-element chain, then the semilattice is not an R-semilattice.

Proof. Let $a<b<c$ be a three-element chain in \mathbf{S}. Let $I_{b}=S \backslash[b]$ and $I_{c}=S \backslash[c) . \mathbf{I}_{b}$ and \mathbf{I}_{c} are distinct prime ideals and $a \in I_{b} \subset I_{c}$. According to Lemma 11, $\mathbf{I}_{c}=\mathbf{S}$. But, $c \notin I_{c}$. Contradiction.

A semilattice $\mathbf{S}=\langle S, \cdot\rangle$ is called a zero-semilattice if $(\exists 0 \in S)(\forall x, y \in S)(x \neq$ $y \Rightarrow x y=0$).

Theorem 13. Let \mathbf{S} be a semilattice. \mathbf{S} is an R-semilattice if and only if \mathbf{S} is a zero-semilattice.

Proof. \Rightarrow : Let $\mathbf{S}=\langle S, \cdot\rangle$ be an R-semilattice. If \mathbf{S} is a chain, then $|S| \leq 2$ (Lemma 10) and every such chain is trivially a zero-semilattice.

Let \mathbf{S} be a semilattice that is not a chain. Let a and b be arbitrary incomparable elements in \mathbf{S} and put $0:=a b$. Lemma 12 implies that \mathbf{S} does not have a three-element chain.

Note that 0 is the least element in \mathbf{S} (if $c<0$ then $c<0<a$ is a threeelement chain; if c and 0 are incomparable elements, then $c \cdot 0<0<a$ is a three element chain). Using this fact, it is easy to prove that $x \neq y \Rightarrow x y=0$. If $x=0$ or $y=0$, then $x y=0$ since 0 is the least element in \mathbf{S}. Suppose that $x \neq 0, y \neq 0$ and $x y \neq 0$. If $x<y$ then $0<x<y$ is a three-element chain. If, on the other hand, x and y are incomparable, then $0<x y<x$ is a three-element chain. Therefore, if $x \neq y$ then $x y=0$.
\Leftarrow : Let 0 be the zero of \mathbf{S}. For $X \subseteq S$, let $\varphi_{X}: S \rightarrow S$ denote the following mapping:

$$
\varphi_{X}(x)= \begin{cases}0, & x \notin X \\ x, & x \in X\end{cases}
$$

If $0 \in X$, then φ_{X} is a retraction of \mathbf{S}. We shall prove that $R_{f}(\mathbf{S})=\operatorname{Const}(\mathbf{S}) \cup$ $\left\{\varphi_{X}: 0 \in X \subseteq S\right\}$.

〇: obvious.
\subseteq : Let $\psi: S \rightarrow S$ be a retraction of \mathbf{S}.
Case 1: $\psi(0) \neq 0$. Let $\psi(0)=a \neq 0$. We shall prove that $\psi=c_{a}$. Let x be an arbitrary element of S. If $x=a$ then $\psi(x)=\psi(a)=\psi(\psi(0))=\psi(0)=a$. Suppose therefore that $x \neq a$. Since $x a=0$, we have $\psi(x) \psi(a)=\psi(x a)=$ $\psi(0)=a$. It is easy to see that $\psi(a)=a: \psi(a)=\psi(\psi(0))=\psi(0)=a$. Thus, $\psi(x) \cdot a=a$ whence $\psi(x)=a$. Thus, $\psi=c_{a}$.

Case 2: $\psi(0)=0$. First, we shall prove that for each $x \in S, \psi(x) \in\{0, x\}$. Let x be arbitrary element of S and suppose that $\psi(x)=y \notin\{0, x\}$. Obviously, $\psi(y)=y$. Since $x \neq y$, we have $x y=0$ implying $\psi(0)=\psi(x y)=\psi(x) \psi(y)=$ $y y=y \neq 0$. Contradiction.

Therefore, $\psi(x) \in\{0, x\}$ for each $x \in S$. Let $X=\{x \in S: \psi(x)=x\}$. It is easy to verify that $\psi=\varphi_{X}$.

Now, when we know that $R_{f}(\mathbf{S})=\operatorname{Const}(\mathbf{S}) \cup\left\{\varphi_{X}: 0 \in X \subseteq S\right\}$, in order to complete the proof it suffices to show that $R_{f}(\mathbf{S})$ is closed with respect to ".". This, however, follows easily from the following observations:
$c_{a} \cdot c_{b}=\left\{\begin{array}{ll}c_{0}, & a \neq b \\ c_{a}, & a=b\end{array} ; \quad c_{a} \cdot \varphi_{X}=\left\{\begin{array}{ll}c_{0}, & a \notin X \\ \varphi_{\{0, a\}}, & a \in X\end{array} ; \quad \varphi_{X} \cdot \varphi_{Y}=\varphi_{X \cap Y}\right.\right.$
$\left(\right.$ note that $\left.\varphi_{\{0\}}=c_{0}\right)$.
Acknowledgement. I would like to thank Dr. Rozália Sz. Madarász who drew my attention to this problem and discussed with me the paper in its various stages of development.

References

[1] Crapo, H., Ordered sets: retractions and connections. J. Pure Appl. Algebra 23(1982), 13-28.
[2] Li, B., All retraction operators on a lattice need not form a lattice. J. Pure Appl. Algebra 67(1990), 201-208.
[3] Li, B., All retraction operators on a complete lattice form a complete lattice. Acta Mathematica Sinica, New Series 7(3)(1991), 247-251.

Received by the editors October 23, 2003.

[^0]: ${ }^{1}$ Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia and Montenegro, e-mail: masul@im.ns.ac.yu

