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ON CONHARMONICALLY AND SPECIAL WEAKLY
RICCI SYMMETRIC SASAKIAN MANIFOLDS

Quddus Khan'

Abstract. We have studied some geometric properties of conharmoni-
cally flat Sasakian manifold and an Einstein-Sasakian manifold satisfying
R(X,Y).N = 0. We have also obtained some results on special weakly
Ricci symmetric Sasakian manifold and have shown that it is an Einstein
manifold.
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1. Introduction

Let (M™,g) be a contact Riemannian manifold with a contact form 7, the
associated vector field &, a (1,1) tensor field @ and the associated Riemannian
metric g. If £ is a killing vector field, then M™ is called a K —contact Riemannian
manifold (2], [1]). A K—contact Riemannian manifold is called a Sasakian
manifold [1] if

(1) (Dx2)(Y)=g(X,Y){ —n(Y)X

holds, where D denotes the operator of covariant differentiation with respect to
g. This paper deals with a type of Sasakian manifold in which

2) R(X,Y).N =0,

where N is the conharmonic curvature tensor [4] defined by

1
(3) N(X,Y)Z = R(X,Y)Z- m[Ric(Y, Z)X — Ric(X,2)Y
+9(Y, 2)r(X) — g(X, 2)r(Y)],
and R is the Riemannian curvature tensor. Here Ric and r are the Ricci tensors
of type (0,2) and (1,1), respectively, and R(X,Y) is considered as derivation

of the tensor algebra at each point of the manifold for tangent vectors X,Y.
In this connection we mention the works of K. Sekigawa [3] and Z.L. Szabo [6]
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who studied Riemannian manifold satisfying the conditions similar to it. It is
easy to see that R(X,Y).R = 0 implies R(X,Y).N = 0. So it is meaningful to
undertake the study of manifolds satisfying the condition (2).

In a Sasakian manifold M™, besides the relation (1), the following also hold

(see [2], [1]):

(4) g€ =0

(5) né€ = 1

(6) 9(@X,2Y) = g(X,Y)—n(X)nY)
(7) 9(§, X) = n(X)

(8) Ric(§,X) = (n—1)n(X)

(9) Dx¢ = -oX

(10) K X)Y = g(X,)V)§-n(Y)X
(11) K X)¢ = —X+n(X)§

(12) g(K(§,X)Y, &) = g(X,Y)—n(X)n(Y)
(13) n@X) = 0

for any vector fields X,Y.

2. Sasakian manifold satisfying N(X,Y)Z =0
We have the following;:

Theorem 2.1. A conharmonically flat Einstein Sasakian manifold M™ (n > 3)
is locally isometric with a unit sphere S™ (1).

Proof. Let us suppose that in a Sasakian manifold M",
(14) N(X,Y)Z =0.

Then, it follows from (3) that

(15) RX.Y)Z = - i 5 [Ric(Y. 2)X — Ric(X, 2)Y

+9(Y, Z2)r(X) — g(X, Z)r(Y)].

Let the manifold be Einstein, i.e. Ric(X,Y) = kg(X,Y), where k is a constant.
Then (15) reduces to

(16) RX,Y)Z = 25 1g(v, 2)X — (X, 2)Y)

or,

2k

(17) 9R(X,Y)2,V) = — [9(Y, Z)g(X, V) — 9(X, Z)g(Y, V)].



On conharmonically and . .. 73

Taking X =V = ¢ in (17) and then using (5), (7) and (12), we get

2k
T n-—2

9(Y, 2) =n(Y)n(Z) [9(Y, Z) = n(Y)n(Z)]

or,

2 -1 b2 - oz =o.

n —

This shows that either 2k = (n — 2) or, g(Y, Z) = n(Y)n(Z2).

Now, if g(Y, Z) = n(Y)n(Z), then from (6), we get g(@X,@Y) = 0, which is
not possible. Therefore, 2k = (n—2). Now, putting 2k = (n—2) in (16), we get
that the manifold is of constant curvature unity, whereby proving the result. O

3. An Einstein-Sasakian manifold satisfying R(X,Y).N =0

We have the following:

Theorem 3.1. If in an Einstein Sasakian manifold the relation R(X,Y).N =0
holds, then it is locally isometric with a unit sphere S™ (1).

Proof. Let a Sasakian manifold M™ be an Einstein manifold. Then (3) gives

(18) N(X,Y)Z =R(X,Y)Z — % gV, 2)X — g(X,2)Y].

We have,

n(N(X,Y)Z) 9(N(X,Y)Z,¢)

J(R(XY)Z — 22 (oY, 2)X — g(X, 2)Y],€)

n —

n(X)g(Z,Y) —n(Y)g(Z,X)

2 (X)g(2,Y) ~ (Y )a(Z, X))

or,

2k
n—2

19)  a(N(X.¥)Z) = [ - 1} n(Y)g(Z, X) — n(X)g(Z,Y)].

Putting X = ¢ in (19) and using (5) and (7), we get

2k _
n—2

(20) n(N(E.Y)Z) = [ 1} (Y )(Z) - 9(Z.Y)].

Again, putting Z = £ in (19) and using (5) and (7), we get

(21) n(N(X,Y)€) = 0.
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Now,
(RIX,)Y)N)(U, V)W = R(X,Y)NWU, V)W - NRX, YU V)W
- NURX,YYV)W - NU,V)R(X,Y)IW.
By virtue of (2), we get
(22) R(X,Y)N(U V)W — N(R(X, YU, V)W
- N({U,RX,YYV)W — N(U,V)R(X, Y)W = 0.
Therefore,
gIR(&, Y)N(U, V)W, &] = g(N(R(§, Y)U, V)W, ]
—g(N(U, R(E,Y)V)W,£] — g[N(U,V)R(§, Y)W, ] = 0.
From this it follows that
(23) 'N(U,V.W,Y) = n(Y)n(NU,VW) +n(U)n(N (Y, V)W)
+n(V)n(NU,Y)W) +n(W)n(N(U,V)Y) = g(Y,U)n(N(, V)W)
=g, V)n(N(U, W) — g(Y, W)n(N(U,V)§) =0,

where g(N (U, V)W,Y) =' N(U,V,W,Y).
Putting Y = U in (23), we get
(24) 'NU,V,W,U) = n(U)n(N U V)W) + n(U)n(N(U, V)W)
+n(V)n(NU,U)W) +n(W)n(N(U,V)U) = g(U, U)n(N(E, V)W)
—g(U,V)n(N(U, )W) — g(U,W)n(N(U,V)§) = 0.

Let {e;}, 1 =1,2,..., n be an orthonormal basis of the tangent space at any
point. Then the sum for 1 < i < n of the relation (24) for U = e; gives

(25)  ANEVIW) = — [Rie(v.W) - Zgvw)
+ (n(n—l) - 1) (n=1)n(W)n(V)| .

Using (19) and (25) in (23), we get
T

(26) 'N(U,V,W,Y) + O]

[g(Y,U)g(V, W) — g(Y,V)g(U, W)]

L [Ric(U, W)g(¥, V) ~ Ric(V, W)g(¥, U)] = 0.

By virtue of Ric(W,V) = kg(W,V) and r = nk, relation (26) reduces to

+

2k

n —

(27) Wwwmnﬂ:( Q—mevmawwwmvmwwm
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From (18) and (27), we get
'R(U,V,W,Y) = [g(Y,U)g(V, W) = g(Y,V)g(U,W)],

where 'R(U, V,W,Y) = g(R(U,V)W,Y), which proves the result. O
For a conharmonically symmetric Sasakian manifold, we have DN = 0.
Hence for such a manifold R(X,Y).N = 0 holds. Thus we have the following:

Corollary 3.1. A conharmonically symmetric Sasakian manifold is locally iso-
metric with a unit sphere S™ (1).
4. On special weakly Ricci symmetric Sasakian manifold

The notion of a special weakly Ricci symmetric manifold was introduced and
studied by Singh and Quddus [4].

An n—dimensional Riemannian manifold (M™, g) is called a special weakly
Ricci symmetric manifold (SWRS)n if

(28) (DxRic)(Y,Z) =2a(X)Ric(Y,Z) + a(Y)Ric(X,Z) + a(Z)Ric(Y, X) ,
where « is a 1—form and is defined by
(29) a(X) =g(X,p),

where p is the associated vector field.
Let (28) and (29) be satisfied in a Sasakian manifold M™. Taking cyclic sum
of (28), we get

(30)  (DxRic)(Y, Z) + (DyRic)(Z, X) + (DzRic)(X,Y)
= 4]a(X)Ric(Y, Z) + a(Y)Ric(Z, X) + a(Z)Ric(X,Y)].

Let M™ admits a cyclic Ricci tensor. Then (30) reduces to

(31) a(X)Ric(Y,Z) + a(Y)Ric(Z,X) + a(Z)Ric(X,Y) = 0.
Taking Z = £ in (31) and then using (8) and (29), we get

(32)  a(X)(n—1n(Y) +a(¥)(n— Dn(X) +n(p)Ric(X,Y) = 0.
Again, taking Y = £ in (32) and then using (5), (8) and (29), we get

(33) a(X) +n(p)n(X) +nlp)n(X) = 0.
Taking X = ¢ in (33) and using (5) and (29), we get
(34) n(p) = 0.

Using (34) in (33), we have a(X) =0, VX.
This leads us to the following:
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Theorem 4.1. If a special weakly Ricci symmetric Sasakian manifold admits
a cyclic Ricci tensor then the 1—form o must vanish.

Next, we have:

Theorem 4.2. A special weakly Ricci symmetric Sasakian manifold can not be
an Einstein manifold if the 1—form o # 0.

Proof. For an Einstein manifold, (Dx Ric)(Y, Z) =0 and Ric(Y, Z) = kg(Y, Z),
then (28) gives

(35) 20(X)g(Y, Z) + a(Y)g(X, Z) + a(Z)g(Y, X) = 0.
Taking Z = £ in (35) and then using (7) and (29), we get
(36) 22(X)n(Y) + a(Y)n(X) +n(p)g(Y, X) = 0.

Again, taking X = £ and using (5), (7) and (29), we get

(37) 3n(pn(Y) + oY) = 0.

Taking Y = ¢ in (28) and using (5) and (29), we get

(38) n(p) =0.

Using (38) in (37), we get a(Y) = 0, VY, which completes the proof. o

Finally, we have the following;:

Theorem 4.3. A special weakly Ricci symmetric Sasakian manifold is an Ein-
stein manifold.

Proof. Taking Z = ¢ in (28), we have
(39) (DxRic)(Y,§) =2a(X)Ric(Y, &) + a(Y)Ric(X, &) + a(§)Ric(Y, X) .
The left-hand side can be written in the form

(DxRic)(Y.€) = X Ric(Y,€) — Rie(DxY.€) — Ric(Y, Dx€).
Then, in view of (7), (8), (9) and (29), equation (39) becomes

(40) —(n—=1)g(Y,®X) + Ric(Y,®X)
= (n = D2a(X)n(Y) + a(Y)n(X)] + n(p) Ric(Y, X) .

Taking Y = ¢ in (40) and then using (5), (7), (8) and (29), we get

—(n=1)n(@X) + (n—1)n(@X) = (n—1)2a(X) +n(p)n(X)] + (n — L)n(p)n(X)
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or,

(41) a(X) +n(p)n(X) = 0.

Putting X = ¢ and in view of (2) and (29), equation (41) gives
(42) n(p) =0.

Using (42) in (41), we get
(43) a(X)=0.

Using (43) in (28), we get (Dx Ric) = 0, which proves the result. O
Acknowledgement. This work was supported by the Department of Science and
Technology, Government of India under SERC Fast Track Fellowship for Young
Scientist Scheme No.SR/FTP/MS-17, 2001.

References
[1] Blair, D. E., Contact manifold in Riemannian Geometry. Lecture Notes in Math-
ematics, 509, Springer Verlag, 1976.

[2] Sasaki, S., Lecture notes on almost contact manifolds, part 1. Tohoku University,
1975.

[3] Sekigawa, K., Almost Hermitian manifold satisfying some curvature conditions.
Kodai Math. J. 2(1979), 384-405.

[4] Singh, H., Khan, Q., On special weakly symmetric Riemannian manifolds. Publ.
Math. Debrecen, Hungary 58/3(2001), 523-536.

[5] Singh, H., Khan, Q., On symmetric Riemannian manifolds. Novi Sad J. Math.
29(3)(1999), 301-308.

[6] Szabo, Z. L., Structure theorem on Riemannian space satisfying K(X,Y).K = 0,
The local version. J. Diff. Geom. 17(1982), 531-582.

[7] Tamassy, L., Binh, T. Q., On weak symmetrics of Einstein and Sasakian mani-
folds. Tensor, N.S. 53(1993), 140-148.

[8] Tamassy, L., Binh, T. Q., Weakly symmetric and weakly projective symmetric
Riemannian manifold. Calloq. Math. Soc. J. Bolyai 56(1989), 663-670.

Received by the editors August 25, 2003



