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PARAMETER ESTIMATION FOR UNIFORM
MAXIMUM PROCESS

Miroslav M. Ristić1, Biljana Č. Popović1

Abstract. Lewis and McKenzie have described the maximum process
with marginal distribution U(′,∞). In this paper, we discuss some pro-
perties of this process. We also apply some estimation methods for es-
timating the parameter of the process. It is shown that the conditional
least squares estimator is strongly consistent and asymptotically normal.
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1. Introduction

The uniform maximum process was introduced by Lewis and McKenzie [4].
The process is defined by the equation

Xn = α max{Xn−1, Zn},(1)

where 0 < α < 1, {Zn} is an innovation process of independent and identically
distributed (i.i.d.) random variables chosen to ensure that {Xn} is a stationary
sequence whose marginal distribution is U(′,∞) and the sequences {Xn} and
{Zn} are semi-independent, i.e. the random variables Xm and Zn are indepen-
dent iff is m < n.

The innovation process {Zn} is given by

Zn =
{

0, w.p. α,
1 + 1−α

α Un, w.p. 1− α,

where {Un} is the sequence of i.i.d. random variables with U(′,∞) distribution
and the sequences {Xn} and {Zn} are semi-independent. We can now write
equation (1) as

Xn =
{

αXn−1, w.p. α,
α + (1− α)Un, w.p. 1− α,

(2)

and conclude that the process {Xn} is the first-order Markovian.
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18000 Nǐs, p.p. 224, Serbia and Montenegro, e-mail address: miristic@ptt.yu;

biljanap@ban.junis.ni.ac.yu



48 M. Ristić, B. Popović

2. Some properties of the uniform maximum process

In this section, we discuss some properties of the uniform maximum process,
as the autocovariance and the autocorrelation functions are. We also discuss
the regression and the conditional distribution function (transition distribution
function).

Theorem 2.1. The uniform maximum process has:

(i) the real-valued absolutely summable autocovariance function

γX(j) = α2j/12, j = 0, 1, . . .

(ii) the real-valued absolutely summable autocorrelation function

ρX(j) = α2j , j = 0, 1, . . . .

By using (2) and the Markovian properties of the process {Xn}, the joint
Laplace-Stieltjes transform of Xn and Xn−1 can be obtained as

ΦXn,Xn−1 (s, t) ≡ E
(
e−sXn−tXn−1

)

= αΦX (αs + t) + (1− α)e−αsΦU ((1− α)s)ΦX (t)

= α
1− e−(αs+t)

αs + t
+

e−αs − e−s

s
· 1− e−t

t
,

which is not symmetrical in s and t. As a consequence, the process {Xn} is not
a time-reversible one.

The process {Xn} has a conditional distribution function

P (Xn ≤ u|Xn−1 = x) = αI{x≤u/α} + (1− α)max
(

u− α

1− α
, 0

)
, 0 < u < 1.

The regression of Xn on Xn−1 = x and of Xn−1 on Xn = x follow the
theorem:

Theorem 2.2. Let {Xn} be the uniform maximum process defined by (2).

(i) The regression of Xn on Xn−1 = x is

E(Xn| Xn−1 = x) = α2x +
1− α2

2
, x ∈ (0, 1).

(ii) The regression of Xn−1 on Xn = x is

E(Xn−1| Xn = x) = I−1
(0,1)(x)

[
1
α

xI(0,α)(x) +
1
2
I(α,1)(x)

]
.
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(iii) From (i) and (ii) follows that the process {Xn} is not time-reversible.

Proof. (i) The best linear regression of Xn on Xn−1 by means of the conditional
expectation follows

E(Xn| Xn−1 = x) = α · αx + [α + (1− α)E(Un)] · (1− α)

= α2x +
1− α2

2
.

(ii) To obtain the regression of Xn−1 on Xn = x we differentiate (3) with
respect to t, set t → 0+, invert with respect to s and then divide by −I(0,1)(x).

2

3. Random coefficient representation and conditional least
squares estimation

Random coefficient representation gives linear form to the model (2). The
uniform maximum process given by equation (2) can be well represented by the
random coefficient model

Xn = AnXn−1 + BnWn,(3)

where the following conditions are satisfied:

(A1) {Wn} is the sequence of i.i.d. random variables with U(∞,∞/α) distri-
butions and Wn is independent of Ai and Bj for every n, i and j,

(A2) {(An, Bn)} is the sequence of i.i.d. random vectors distributions given by
P (An = α,Bn = 0) = α and P (An = 0, Bn = α) = 1− α.

(A3) {Xn} and {Wn} are semi-independent,

(A4) {Xn} and {An} are semi-independent,

(A5) {Xn} and {Bn} are semi-independent.

Let F\ be the σ-field generated by the set of vectors {(As, Bs,Ws), s ≤ n}.
The following lemma will be needed to prove Theorem 3.1.

Lemma 3.1. Under the conditions (A1)−(A5), the random difference equation
(3) has a unique, weakly and strictly stationary, F\-measurable and ergodic
solution of the form

Xn =
∞∑

i=0




i−1∏

j=0

An−j


 Bn−iWn−i + BnWn.
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Proof. The Proof follows from Nicholls and Quinn [5] and Doob [3], page 458.
2

We can now estimate the parameter α2 using conditional least squares
method. The equation (3) can be written as

Yn = α2Yn−1 + εn,(4)

where Yn = Xn − 1/2 and εn = (An − α2)Yn−1 + BnWn + (An − 1)/2.
Let (X1, . . . , XN ) be a sample of size N . If we translate each observation

of this sample in the following way Yn = Xn − 1/2, we obtain the sample
(Y1, . . . , YN ).

The conditional least squares estimator α̂2
N of the parameter α2 is obtained

by minimizing the function

S(α) =
N∑

n=1

{
Yn − α2Yn−1

}2

with respect to α2. So, it is of the form

α̂2
N =

N∑
n=1

YnYn−1

N∑
n=1

Y 2
n−1

.

The following theorem gives the limit distribution of the conditional least
squares estimator α̂2

N .

Theorem 3.1. If the conditions (A1)−(A5) are satisfied, then α̂2
N is a strongly

consistent estimator for α2 and
√

N − 1(α̂2 − α2) has asymptotically normal
distribution with zero mean and variance (5 + 4α3 − 9α4)/5), i.e. {α̂2

N} is
asymptotically normal with mean α2 and variance (5 + 4α3 − 9α4)/(5(N − 1)).

Proof. It follows from Nicholls and Quinn [5] that α̂2
N is consistent and asymp-

totically normal estimate of α2. 2

The asymptotic distribution of the estimator α̂N follows from Theorem 3.2
and Proposition 6.4.1 (Brockwell and Davis [2]). It follows that α̂N is asymp-
totically normal with mean α and variance (5 + 4α3 − 9α4)/(20α2(N − 1)).

4. Other estimation methods

In this section we give some other estimation methods to estimate the un-
known parameter α.

Consider the probability p = P{Xn < Xn−1}. After a calculation we obtain
that p = (1 + α2)/2. Let p̃N be the estimator of p given by

p̃N =
1

N − 1

N∑
n=2

I{Xn < Xn−1}, I{Xn < Xn−1} =
{

1, Xn < Xn−1,
0, Xn ≥ Xn−1.
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It is not hard to show that p̃N is an unbiased estimator for p. Also, using the
Chebychev’s inequality we can prove that p̃N is a consistent estimator for p.
Finally, from Proposition 6.1.4 (Brockwell and Davis [2]), we have that α̃N ,
given by α̃N =

√
2p̃N − 1, is a consistent estimator for α.

The fact that the transition distribution function has points of mass, which
vary with the parameter α, is an important observation: It shows that the Fisher
Information is ∞ and superfast estimators of α exist. Since Xi−1 < 1, it will
be αXi−1 < α + (1−α)Ui and min{αXi−1, α + (1−α)Ui} = αXi−1. It implies
that we can use

α̃ = min
1≤i≤N

{
Xi

Xi−1

}

as the estimator for α. It satisfies

P (α̃ 6= α) = (1− α)n.

This is about the fastest convergence one can think of: The probability that
the estimate is not equal to the true value decreases exponentially! A similar
phenomenon can be found in situations where the unknown parameter may take
only finitely many values.
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