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LAGUERRE-LIKE METHODS WITH CORRECTIONS
FOR THE INCLUSION OF POLYNOMIAL ZEROS

Miodrag S. Petković1, Dušan M. Milošević1

Abstract. Iterative methods of Laguerre’s type for the simultaneous in-
clusion of all zeros of a polynomial are proposed. Using Newton’s and Hal-
ley’s corrections, the order of convergence of the basic method is increased
from 4 to 5 and 6, respectively. Further improvements are achieved by the
Gauss-Seidel approach. Using the concept of the R-order of convergence
of mutually dependent sequences, we present the convergence analysis of
total-step and single-step methods. The suggested algorithms possess a
great computational efficiency since the increase of the convergence rate
is attained without additional calculations. The case of multiple zeros is
also studied. Two numerical examples are given to demonstrate the con-
vergence properties of the proposed methods.
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1. Introduction

This paper is devoted to the construction of inclusion methods with very
high computational efficiency for the simultaneous inclusion of polynomial zeros
and presents the continuation of a research exposed recently in [8]. We recall
that iterative methods for the simultaneous determination of polynomial zeros,
realized in interval arithmetic, produce resulting real or complex intervals (disks
or rectangles) containing the wanted zeros. In this manner the information
about upper error bounds of approximations to the zeros are provided (see the
books [1], [10], [14] for more details).

The presentation of the paper is organized as follows. The basic properties
of circular complex arithmetic, necessary for the development and convergence
analysis of the presented inclusion methods, are given in the introduction. The
basic Laguerre-like total-step method of the fourth order, recently proposed in
[8], is presented in short in Section 2. The main goal of our study is to achieve
remarkably faster convergence with only few additional numerical operations,
which significantly increases the computational efficiency. For this purpose, the
modified total-step methods with the increased convergence speed is developed
in Section 3 using Newton’s and Halley’s correction. The convergence analysis
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and Montenegro



136 M. S. Petković, D. M. Milošević

of these improved methods is given in Section 4. Some important tasks, as the
construction of Laguerre-like methods with corrections in single-step mode and
modified variants for the inclusion of multiple zeros, are studied in Section 5.
Numerical results obtained by the considered methods are given in Section 6.

The construction of inclusion methods in circular complex arithmetic and
their convergence analysis require the basic properties of circular complex arith-
metic. A circular closed region (disk) Z := {z : |z − c| ≤ r} with the center
c := mid Z and radius r := rad Z we will denote by parametric notation
Z := {c; r}. If Zk := {ck; rk} (k = 1, 2), then

Z1 ± Z2 = {c1 ± c2; r1 + r2},
Z1 · Z2 = {c1c2; |c1|r2 + |c2|r1 + r1r2}.

The addition and subtraction of disks are exact operations.
The inversion of a non-zero disk Z is defined by the Möbius transformation,

Z−1 = {c; r}−1 =
{c̄; r}
|c|2 − r2

(|c| > r, i.e. 0 /∈ Z).(1)

The inversion Z−1 is also an exact operation, that is, Z−1 = {z−1 : z ∈ Z}.
Beside the exact inversion Z−1 of a disk Z, the so-called centered inversion

ZIc defined by

ZIc = {c; r}Ic :=
{1

c
;

r

|c|(|c| − r)

}
⊇ Z−1 (0 /∈ Z)(2)

is often used. Sometimes, we will use the symbol INV to denote both inversions,
that is INV ∈ {()−1, ()Ic}.

Having in mind (1) and (2) the division is defined by

Z1 : Z2 = Z1 · INVZ2 (0 /∈ Z2, INV ∈ {()−1, ()Ic}.
The square root of a disk {c; r} in the centered form, where c = |c|eiθ and
|c| > r, is defined as the union of two disjoint disks (see [3]):

{c; r}1/2 :=
{√

|c|eiθ/2; R
} ⋃{

−
√
|c|eiθ/2; R

}
,(3)

where R =
r√

|c|+
√
|c| − r

.

In this paper we will use the following obvious properties:

z ∈ {c; r} ⇐⇒ |z − c| ≤ r,(4)
{c1; r1} ∩ {c2; r2} = ∅ ⇐⇒ |c1 − c2| > r1 + r2,(5)
|mid Z| − rad Z ≤ |z| ≤ |mid Z|+ rad Z (z ∈ Z).(6)

More details about circular arithmetic can be found in the books [1, Ch.
5] and [14, Ch. 2]. Throughout this paper disks in the complex plane will be
denoted by capital letters.
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2. Total–step method without corrections

Let P (z) = zn + an−1z
n−1 + . . . + a1z + a0 be a monic polynomial with

simple zeros ζ1, . . . , ζn and let In := {1, . . . , n} be the index set. For the point
z = zi (i ∈ In) let us introduce

Σk,i =
n∑

j=1
j 6=i

1
(zi − ζj)k

(k = 1, 2), q∗i = nT2,i − n

n− 1
T 2

1,i,

δ1,i =
P ′(zi)
P (zi)

, δ2,i =
P ′(zi)2 − P (zi)P ′′(zi)

P (zi)2
, εi = zi − ζi.

The following identity

nδ2,i − δ2
1,i − q∗i =

1
n− 1

( n

εi
− δ1,i

)2

(7)

was proved in [8]. From (7) we obtain the fixed point relation

ζi = zi − n

δ1,i ±
√

(n− 1)(nδ2,i − δ2
1,i − q∗i )

(i ∈ In),(8)

which is the base for the construction of inclusion methods of Laguerre’s type.
To simplify the notation, let us introduce the following vectors of disks

Z (m) =
(
Z

(m)
1 , . . . , Z(m)

n

)
(inclusion disks),

Z
(m)
N =

(
Z

(m)
N,1 , . . . , Z

(m)
N,n

)
, Z

(m)
N,i = Z

(m)
i −N

(
z
(m)
i

)
(Newton’s disks),

Z
(m)
H =

(
Z

(m)
H,1 , . . . , Z

(m)
H,n

)
, Z

(m)
H,i = Z

(m)
i −H

(
z
(m)
i

)
(Halley’s disks),

where m = 0, 1, 2 . . . is the iteration index and

N(z) =
P (z)
P ′(z)

(Newton’s correction),

H(z) =
[
P ′(z)
P (z)

− P ′′(z)
2P ′(z)

]−1

(Halley’s correction).

For brevity, we will write sometimes zi, ri, ẑi, r̂i, Zi, Ẑi, ZN,i, ZH,i instead of
z
(m)
i , r

(m)
i , z

(m+1)
i , r

(m+1)
i , Z

(m)
i , Z

(m+1)
i , Z

(m)
N,i , Z

(m)
H,i . In what follows we will

write w1 ∼ w2 or w1 = OM (w2) (the same order of magnitude) for two complex
numbers w1 and w2 that satisfy |w1| = O(|w2|).

Let us define the disk

Sk,i(X,W) :=
i−1∑

j=1

(
INV1(zi −Xj)

)k

+
n∑

j=i+1

(
INV1(zi −Wj)

)k

,(9)
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for k = 1, 2, where X = (X1, ..., Xn) and W = (W1, ...,Wn) are vectors whose
components are disks and INV1 ∈ {()−1, ()Ic}, and define the disk

Qi(X,W) = nS2,i(X,W)− n

n− 1
S2

1,i(X,W).

Then, using (9) and the definition of q∗i , according to the inclusion isotonicity
we have q∗i ∈ Qi(X,W).

Let Z
(0)
1 , ..., Z

(0)
n be initial disjoint disks containing the zeros ζ1, ..., ζn, that

is, ζi ∈ Z
(0)
i for i ∈ In. Taking inclusion disks Z

(m)
1 , . . . , Z

(m)
n instead of these

zeros in (8), we define the disk

A
(m)
i = δ

(m)
1,i +

[
(n− 1)

(
nδ

(m)
2,i − (

δ
(m)
1,i

)2 −Qi

(
Z(m),Z(m)

)]1/2

∗

and state the following total-step method for the simultaneous inclusion of all
zeros of P,

Z
(m+1)
i = z

(m)
i − n INV2(A

(m)
i ) (i ∈ In),(10)

where z
(m)
i = mid Z

(m)
i , INV2 ∈ {()−1, ()Ic}. In the realization of the iterative

formula (10) we first apply the inversion INV1 to the sums (9), and then the
inversion INV2 in the final step. The interval Laguerre-like method (10) was
recently stated in [8].

According to (3), the square root of a disk in (10) produces two disks; the
symbol ∗ indicates that one of the two disks has to be chosen. That disk will
be called a “proper” disk. From (7) and the inclusion q∗i ∈ Qi we conclude that
the proper disk is one which contains n/εi − δ1,i. Taking into account (3), we
have
(
(n− 1)

(
nδ2,i − δ2

1,i −Qi)
)1/2

= G1,i ∪G2,i, mid Gk,i = gk,i, g1,i = −g2,i

for i ∈ In, k = 1, 2. The criterion for the choice of a proper disk is considered
in [3] (see also [9]) and reads:

If the disks Z1, . . . , Zn are reasonably small, then we have to choose that disk
(between G1,i and G2,i), whose center minimizes |P ′(zi)/P (zi)−gk,i| (k = 1, 2).

The iterative method (10) with INV1, INV2 = ()−1 or ()Ic has the order of
convergence equal to four (see [8]). The convergence of this method can be
accelerated using already calculated disks in the current iteration (Gauss-Seidel
approach). In this manner we obtain the single-step method

Z
(m+1)
i = z

(m)
i − n INV2(B

(m)
i ) (i ∈ In),(11)

where

B
(m)
i = δ

(m)
1,i +

[
(n− 1)

(
nδ

(m)
2,i − (

δ
(m)
1,i

)2 −Qi

(
Z(m+1),Z(m)

)]1/2

∗
.
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The R-order of convergence of the single-step method (11) is at least 3 + xn,
where xn > 1 is the unique positive root of the equation xn − x − 3 = 0 (see
[10]).

3. Laguerre-like methods with corrections

Let us introduce the abbreviations

r(m) = max
1≤i≤n

r
(m)
i , ρ(m) = min

1≤i,j≤n
i 6=j

{∣∣z(m)
i − z

(m)
j

∣∣− r
(m)
j

}
,

ε
(m)
i = z

(m)
i − ζi,

∣∣ε(m)
∣∣ = max

1≤i≤n

∣∣ε(m)
i

∣∣

for i ∈ In, m = 0, 1, ... . Further increase of the convergence speed of the iterative
methods (10) and (11) can be achieved using Newton’s or Halley’s correction in
the similar way as in [2], [11] and [12]. In this construction we assume that initial
inclusion disks Z

(0)
1 , . . . , Z

(0)
n , containing the zeros ζ1, . . . , ζn, have been chosen

in such a way that each disk Z
(0)
i − N

(
mid

(
Z

(0)
i

))
or Z

(0)
i − H

(
mid

(
Z

(0)
i

))
also contains the zero ζi (i ∈ In). This point is the subject of the following
assertion where, for simplicity, the iteration indices are omitted.

Lemma 1. Let Z1, ..., Zn be inclusion disks for the zeros ζ1, ..., ζn, ζi ∈ Zi, and
let zi = mid Zi, ri = rad Zi. If the inclusion disks Z1, ..., Zn are chosen so
that the inequality

ρ > 3(n− 1)r(12)

is satisfied, then for i ∈ In we have the implications:

(i) ζi ∈ Zi ⇒ ζi ∈ ZN,i := Zi −N(zi);

(ii) ζi ∈ Zi ⇒ ζi ∈ ZH,i := Zi −H(zi).

This lemma can be proved in a similar way as in [13] so that we omit the proof.

Starting from the fixed-point relation (8) we can construct the total-step
Laguerre-like inclusion methods with Newton’s and Halley’s corrections. We
will study the convergence rate of these methods simultaneously, using a uni-
form approach. For this purpose we indicate these methods with the additional
superscript indices λ = 1 (for Newton’s correction) and λ = 2 (for Halley’s
correction). Consequently, we denote the corresponding vectors of disk approx-
imations as follows:

Z(1) =
(
Z

(1)
1 , . . . , Z(1)

n

)
=

(
ZN,1, . . . , ZN,n

)

Z(2) =
(
Z

(2)
1 , . . . , Z(2)

n

)
=

(
ZH,1, . . . , ZH,n

)
.
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Both corrections N(zi) and H(zi) will be also denoted by C(1)(zi) and
C(2)(zi), respectively. For simplicity, we will omit the iteration index for all
quantities at the m-th iteration, while the quantities at the (m + 1)-st iteration
will be denoted with the additional symbol ˆ (“hat”). Now we can write both
methods in the unique form as

Ẑi = zi − nINV2

(
δ1,i +

[
(n− 1)

(
nδ2,i − δ2

1,i −Qi

(
Z(λ),Z(λ)

)]1/2

∗

)
(13)

for i ∈ In and λ = 1, 2. Since we can apply two types of inversions in the
calculation of the sums (9), by combining the inversions ()−1 and ()Ic in (13)
we are in the possibility to construct four inclusion methods.

4. Convergence of the improved methods

Before considering convergence properties of the simultaneous interval method
(13) and initial conditions for its convergence, we will give some necessary esti-
mates.

It is easy to show that

zi − Zj + C(λ)(zj) = {zi − ζj + ξ
(λ)
j ελ+1

j ; rj},
where

ξ
(1)
j = − Σ1,j

1 + εjΣ1,j
and ξ

(2)
j = − Σ2

1,j + Σ2,j

2 + 2εjΣ1,j + ε2
j (Σ

2
1,j + Σ2,j)

.

For brevity, let us set for λ = 1, 2:

h
(λ)
ij = mid

(
zi − Zj + C(λ)(zj)

)
= zi − ζj + ξ

(λ)
j ελ+1

j , w
(λ)
ij =

1

h
(λ)
ij

,

d
(λ)
ij =

rj∣∣h(λ)
ij

∣∣(∣∣h(λ)
ij

∣∣− rj

) , s
(λ)
k,i =

n∑
j=1
j 6=i

1(
zi − zj + C

(λ)
j

)k
(k = 1, 2),

q
(λ)
i = ns

(λ)
2,i −

n

n− 1
(
s
(λ)
1,i

)2
, f

(λ)
i = nδ2,i − δ2

1,i − q
(λ)
i ,

v
(λ)
i =

(n− 1)
(
q∗i − q

(λ)
i

)

(n/εi − δ1,i)2
, η =

25
2

n(n− 1)
r|ε|
ρ3

, γ =
41n(n− 1)

5ρ3
.

Lemma 2. Let the inequality (12) hold. Then

(i) d
(λ)
ij <

5r

3ρ2
;

(ii)
∣∣w(λ)

ij

∣∣ <
12
11ρ

;
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(iii)
∣∣f (λ)

i

∣∣− γr >
1
ε2
i

(
n− 5

2

)
> 0.

(iv)
√

(n− 1)
{
f

(λ)
i ; γr

} ⊂
{√

(n− 1)f (λ)
i ; η

}
;

(v)
√

1 + v
(λ)
i ∈

{
1;
|εi|
5ρ

}
;

The proofs of the assertions (i)–(v) are similar with those given in [13] and will
be omitted to save a space.

Let IM be an iterative numerical method which generates k sequences
{z(m)

1 }, . . . , {z(m)
k } for the approximation of the solutions z∗1 , . . . , z∗k. To esti-

mate the order of convergence of the iterative method IM we usually introduce
the error-sequences

ε
(m)
i = ||z(m)

i − z∗i || (i = 1, . . . , k).

The convergence analysis of inclusion methods with corrections needs the
following assertion, which is a special case of Theorem 3 given in [5]:

Theorem 1. Given the error-recursion

ε
(m+1)
i ≤ αi

k∏

j=1

(
ε
(m)
j

)tij
, (i ∈ Ik; m = 0, 1, 2, . . .),(14)

where tij ≥ 0, αi > 0, 1 ≤ i, j ≤ k. Denote the matrix of exponents appearing in
(14) with Tk, that is Tk = [tij ]k×k. If the non-negative matrix Tk has the spectral
radius ρ(Tk) > 1 and a corresponding eigenvector xρ > 0, then the R-order of
all sequences {ε(m)

i } (i ∈ Ik) is at least ρ(Tk).

In the sequel the matrix Tk = [tij ] will be called the R-matrix because of its
connection with the R-order of convergence.

Let OR(IM) denote the R-order of convergence of an iteration method IM .
For the total-step methods (13) we can state

Theorem 2. Assume that initial disks Z
(0)
1 , ..., Z

(0)
n are chosen so that ζi ∈

Z
(0)
i (i ∈ In) and the inequality

ρ(0) > 3(n− 1)r(0)(15)

holds. Then the inclusion methods (13) are convergent and the following is true
for each i ∈ In and m = 1, 2, . . . :

1◦ ρ(m) > 3(n− 1)r(m);
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2◦ ζi ∈ Z
(m)
i for each i ∈ In and m = 1, 2, ... ;

3◦ the lower bound of the R-order of convergence of the interval methods (13)
is

OR(13) ≥
{

λ + 4 (λ = 1, 2), if INV1 = ()Ic ,

2 +
√

7 ∼= 4.646, if INV1 = ()−1.

Proof. Let us note that the condition (15) provides that initial disks Z
(0)
1 , . . . , Z

(0)
n

be disjoint. Indeed, for arbitrary pair i, j ∈ In (i 6= j) we have

|z(0)
i − z

(0)
j | > ρ(0) > 3(n− 1)r(0) > 2r(0) ≥ r

(0)
i + r

(0)
j ,

which means that Z
(0)
i ∩ Z

(0)
j = ∅ (according to (5)).

The assertions of Theorem 2 will be proved by mathematical induction. In
the sequel we will often use the inequality (12) in the form

r

ρ
<

1
3(n− 1)

≤ 1
6
,(16)

often without explicit citation.
First, let m = 0 and let us take into consideration the initial condition (15).

Then, according to Lemma 1, we immediately obtain the implications

ζi ∈ Zi ⇒ ζi ∈ Z
(λ)
i := Zi − C(λ)(zi) (i ∈ In; λ = 1, 2).

We should also prove that the inclusion disks Z
(λ)
1 , . . . , Z

(λ)
n (λ = 1, 2) are also

disjoint. It is not difficult to estimate

|N(zi)| < 2r, |H(zi)| < 2r,

so that we have

|mid Z
(λ)
i −mid Z

(λ)
j | = |zi − C(λ)(zi)− zj + C(λ)(zj)|

≥ |zi − zj | − |C(λ)(zi)| − |C(λ)(zj)|
> ρ− 4r > 3(n− 1)r − 4r ≥ ri + rj .

Thus, Z
(λ)
i ∩Z

(λ)
j = ∅ (i 6= j) because of (5). The above facts are necessary for

the inclusion method (13) to be well defined.
As mentioned above, we can combine two types of inversions in the iterative

formulas (13). In what follows super(sub)script indices “e” and “c” will be used
to mark the type of the used inversion in (13).

1) The case INV1 = ()Ic
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Let us consider first the case INV1, INV2 = ()Ic . Applying the centered
inversion (2) and using circular arithmetic operations, we get

S1,i

(
Z(λ),Z(λ)

)
=

n∑
j=1
j 6=i

1
zi − Zj + C(λ)(zj)

=
n∑

j=1
j 6=i

1{
h

(λ)
ij ; rj

}

=
n∑

j=1
j 6=i

{
u

(λ)
ij ; d(λ)

ij

} ⊂
{

s
(λ)
1,i ;

5(n− 1)r
3ρ2

}
,

wherefrom

S2
1,i

(
Z(λ),Z(λ)

) ⊂
{

(
s
(λ)
1,i

)2; 2
∣∣s(λ)

1,i

∣∣5(n− 1)r
3ρ2

+
(5(n− 1)r

3ρ2

)2
}

⊂
{(

s
(λ)
1,i

)2; γ1r
}

, γ1 =
41(n− 1)2

10ρ3
.

Applying (i) and (ii) of Lemma 2, we get

S2,i

(
Z(λ),Z(λ)

)
=

n∑
j=1
j 6=i

( 1
zi − Zj + C(λ)(zj)

)2

=
n∑

j=1
j 6=i

{
u

(λ)
ij ; d(λ)

ij

}2

⊂
{

s
(λ)
2,i ; γ2r

}
, γ2 =

41(n− 1)
10ρ3

.

Using the above inclusions of the sums S2
1,i and S2,i, we obtain

Qi

(
Z(λ),Z(λ)

)
= nS2,i

(
Z(λ),Z(λ)

)− n

n− 1
S2

1,i

(
Z(λ),Z(λ)

)

⊂
{

ns
(λ)
2,i −

n

n− 1
(
s
(λ)
1,i

)2; γr

}
= {q(λ)

i ; γr}.

Since f
(λ)
i = nδ2,i − δ2

1,i − q
(λ)
i , according to the assertion (iii) of Lemma 2 we

conclude that 0 6∈ {f (λ)
i ; γr}, so that we can calculate square root of a disk

(n− 1)
(
nδ2,i − δ2

1,i −Qi

(
Z(λ),Z(λ)

))
= (n− 1)

{
f

(λ)
i ; γr

}
.

Further, putting u
(λ)
i = δ1,i +

[
(n − 1)f (λ)

i

]1/2

∗ , and using the assertion (iv) of
Lemma 2, from the iterative formula (13) we obtain

Ẑi ⊂ zi − nINV2

({
u

(λ)
i ; η

})
.(17)

Using the identity (7) we find

f
(λ)
i = nδ2,i − δ2

1,i − q∗i + q∗i − q
(λ)
i =

1
n− 1

(n/εi − δ1,i)2 + q∗i − q
(λ)
i

=
1

n− 1
(n/εi − δ1,i)2

(
1 + v

(λ)
i

)
.
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According to this and (v) of Lemma 2 we obtain

u
(λ)
i = δ1,i +

[
(n− 1)f (λ)

i

]1/2

∗ = δ1,i + (n/εi − δ1,i)
√

1 + v
(λ)
i

∈ δ1,i + (n/εi − δ1,i)
{

1;
|εi|
5ρ

}

=
{

n/εi;
|n− εiδ1,i|

5ρ

}
=: Ui.

Here we have taken into account the criterion for the selection of the proper
value of the square root which yields

√
(n/εi − δ1,i)2 = +(n/εi − δ1,i). Using

(6) and the inequality

|n− εiδ1,i| ≤ n− 1 + |εi|
n∑

j=1
j 6=i

1
|zi − ζj | ≤ (n− 1)

(
1 +

r

ρ

)
<

7(n− 1)
6

,

we find
∣∣u(λ)

i

∣∣ > |mid Ui| − rad Ui =
n

|εi| −
|n− εiδ1,i|

5ρ
>

n

r
− 7(n− 1)

6
· 1
5ρ

=
1
r

(
n− 7(n− 1)r

30ρ

)
>

1
r

(
n− 7

90

)
.(18)

By (12) and (18) we obtain

∣∣u(λ)
i

∣∣− η >
90n− 7

90r
− 25

2
n(n− 1)

r2

ρ3

>
1
r

(
n− 7

90
− 25

2
n(n− 1)

( 1
3(n− 1)

)3
)

=
1
r

(
n− 7

90
− 25n

54(n− 1)2
)

>
1
r

(
n− 11

20

)
> 0.

According to the last inequality we conclude that 0 /∈ {
u

(λ)
i ; η

}
so that the

iterative processes (13) are well defined and Ẑi is a closed disk. Then from (17)
we obtain

Ẑi ⊂ D̂
(c)
i := zi − n

{
1

u
(λ)
i

;
η∣∣u(λ)

i

∣∣(∣∣u(λ)
i

∣∣− η
)
}

.

Hence

r̂i = rad Ẑi <
nη∣∣u(λ)

i

∣∣(∣∣u(λ)
i

∣∣− η
) =

25n2(n− 1)|εi|3r
2ρ3

(
n− 7

90

)
·
(
n− 11

20

)

<
16(n− 1)|εi|3r

ρ3
,
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because of
25n2

2
(
n− 7

90

)(
n− 11

20

) < 16, for all n ≥ 3.

From the above relation we conclude that

r̂ = O
(
ε3r

)
(19)

and also, by (12),

r̂ <
r

6
.(20)

Since ξ
(λ)
j = OM (1), we have

Σ1,i − s
(λ)
1,i =

n∑
j=1
j 6=i

( 1
zi − ζj

− w
(λ)
ij

)
=

n∑
j=1
j 6=i

ξ
(λ)
j ελ+1

j

(zi − ζj)h
(λ)
ij

= OM

(
ελ+1

)
,

wherefrom

Σ2
1,i −

(
s
(λ)
1,i

)2 =
(
Σ1,i − s

(λ)
1,i

)(
Σ1,i + s

(λ)
1,i

)
= OM

(
ελ+1

)

and

Σ2,i − s
(λ)
2,i =

n∑
j=1
j 6=i

(
1

(zi − ζj)2
− (

w
(λ)
ij

)2
)

=
n∑

j=1
j 6=i

(
1

zi − ζj
− w

(λ)
ij

)(
1

zi − ζj
+ w

(λ)
ij

)
= OM

(
ελ+1

)
.

Furthermore, using the relation

q∗i − q
(λ)
i = n

(
Σ2,i − s

(λ)
2,i

)
− n

n− 1

(
Σ2

1,i −
(
s
(λ)
1,i

)2
)
,

we conclude that
q∗i − q

(λ)
i = OM

(
ελ+1

)

and
vi = OM

(
ελ+3

)
.

Therefore, the quantity v
(λ)
i is very small so that we can use the approximation

[
1 + v

(λ)
i

]1/2

∗
∼= 1 +

v
(λ)
i

2
.



146 M. S. Petković, D. M. Milošević

According to this we have

u
(λ)
i = δ1,i +

( n

εi
− δ1,i

)√
1 + v

(λ)
i = δ1,i +

( n

εi
− δ1,i

)√
1 + O

(
ελ+3

)

=
n

εi
+ OM

(
ελ+2

)
.

For the center ẑi of Ẑi we obtain from (13) and (17)

ẑi = mid Ẑi = zi − n

u
(λ)
i

,

whence

|ε̂i| = |ẑi − ζi| ∼=
∣∣∣εi − nεi

n + OM

(
ελ+3

)
∣∣∣ =

∣∣∣ OM

(
ελ+4

)

n + OM

(
ελ+3

)
∣∣∣ = O

(
ελ+4

)
(21)

since n + OM

(
ελ+3

)
is bounded.

Using a geometric construction and the fact that the disks Z
(m)
i and Z

(m+1)
i

must have at least one joint point (the zero ζi), the following relation can be
derived (see [4])

ρ(m+1) ≥ ρ(m) − r(m) − 3r(m+1).

Using (4.7) and the last inequality (for m = 0), we find

ρ(1) ≥ ρ(0) − r(0) − 3r(1) > 3(n− 1)r(0) − r(0) − r(0)

2
> 6r(1)

(
3(n− 1)− 1− 1

2

)
,

wherefrom it follows

ρ(1) > 4(n− 1)r(1).(22)

This is the condition (14) for the index m = 1, which means that all assertions
of Lemmas 1 and 2 are valid for m = 1. Especially, the inequality (20) of the
form r(1) < r(0)/6 points to the contraction of the new circular approximations
Z

(1)
1 , . . . , Z

(1)
n .

Using the definition of ρ and (28), for arbitrary pair of indices i, j ∈ In (i 6= j)
we have

|z(1)
i − z

(1)
j | ≥ ρ(1) > 3(n− 1)r(1) > 2r(1) ≥ r

(1)
i + r

(1)
j .

Therefore, in regard to (5), the disks Z
(1)
1 , . . . , Z

(1)
n produced by (13) are disjoint.

Repeating the above procedure and the argumentation for an arbitrary index
m ≥ 0 we can derive all above relations for the index m+1. Since these relations
have already been proved for m = 0, by mathematical induction it follows that,
if the condition (12) holds, they are valid for all m ≥ 1. In particular, we have

ρ(m) > 3(n− 1)r(m)(23)
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(the assertion 1◦) and

r(m+1) <
r(m)

6
.(24)

With regard to the inequality (24) we conclude that the sequence {r(m)}
tends to 0; consequently, the inclusion methods (13) are convergent . Further-
more, taking into account that (23) holds, the assertions of Lemmas 1 and 2
are valid for arbitrary m, which means that the Laguerre-like methods (13) are
well defined at each iterative step.

Suppose that ζi ∈ Z
(m)
i for each i ∈ In. Then from (8) and (13) it follows

that ζi ∈ Z
(m+1)
i (according to the inclusion isotonicity). Since ζi ∈ Z

(0)
i (the

assumption of the theorem), by mathematical induction we prove that ζi ∈ Z
(m)
i

for each i ∈ In and m = 0, 1, ... (the assertion 2◦).
Finally, we will determine the lower bound for the R-order of convergence

of the methods (13) (the assertion 3◦). The sequences {z(m)
i } and {r(m)

i } of
the centers and radii of the disks Z

(m)
i produced by the algorithms (13) are

mutually dependent. For simplicity, we adopt 1 > ε(0) = r(0) > 0, which means
that we deal with the “worst case” model. We note that such assumption is
usual in this type of analysis and has no influence on the final result of the limit
process which we apply in order to obtain the lower bound for the R-order of
convergence. By virtue of (19) and (21) we notice that these sequences behave
as follows

ε(m+1) ∼ (
ε(m)

)λ+4
, r(m+1) ∼ (

ε(m)
)3

r(m).

From these relations we form the R-matrix T
(c)
2 =

[
λ + 4 0

3 1

]
. Its spectral ra-

dius is ρ(T (c)
2 ) = λ+4 and the corresponding eigenvector x

(c)
ρ =

(
(λ+3)/3, 1

)
>

0. Hence, according to Theorem 1, we get

OR((13)c) ≥ ρ (T (c)
2 ) = λ + 4 (λ = 1, 2).

It remains to discuss the case when the exact inversion (1) is applied in the
final step, that is, INV2 = ()−1. Starting from the inclusion (17) we obtain

Ẑi ⊂ D̂
(e)
i := zi − n

{
ū

(λ)
i∣∣u(λ)

i

∣∣2 − η2
;

η∣∣u(λ)
i

∣∣2 − η2

}
(25)

and

r̂i = rad Ẑi <
nη∣∣u(λ)

i

∣∣2 − η2
<

14(n− 1)|εi|3r
ρ3

.(26)
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From (25) we find

ẑi = mid Ẑi
∼= mid D̂

(e)
i = zi − nū

(λ)
i∣∣u(λ)

i

∣∣2 − η2

= zi − n

u
(λ)
i

(
1− η2/

∣∣u(λ)
i

∣∣2
) .(27)

According to the estimations derived above, we have η = O(rε) and u
(λ)
i =

OM (1/ε), which gives η2/
∣∣u(λ)

i

∣∣2 = O(r2ε4). Using the development into geo-
metric series, from (27) we obtain

ẑi
∼= zi − n

u
(λ)
i

(
1 +

η2

∣∣u(λ)
i

∣∣2 + · · ·
)

= zi − n

u
(λ)
i

+ OM

(
r2ε5

)
,

wherefrom

ε̂i
∼= εi − n

u
(λ)
i

+ OM

(
r2ε5

)
= ε3

i OM

(
ελ+1

)
+ OM

(
r2ε5

)

= ε3
i OM

(
αελ+1 + βr2ε2

)
,

where α and β are some complex quantities such that |α| = O(1) and |β| = O(1).
Hence

ε̂i = ε3
i OM

(
ελ+1

)
(λ = 1, 2),(28)

and we see that the relations (26) and (28) coincide with (19) and (21). Conse-
quently, the lower bound of the R-order of convergence of the inclusion meth-
ods (13) when INV1 = ()Ic , INV2 = ()−1 is the same as in the case when
INV1, INV2 = ()Ic .

2) The case INV1 = ()−1

Having in mind that ξ
(λ)
j = OM (1), in this case we get

Σ1,i − s
(λ)
1,i =

n∑
j=1
j 6=i

(
1

zi − ζj
− h̄

(λ)
ij∣∣h(λ)

ij

∣∣2 − r2
j

)

=
n∑

j=1
j 6=i

ξ
(λ)
j h̄

(λ)
ij ε2

j − r2
j

(zi − ζj)
(∣∣h(λ)

ij

∣∣2 − r2
j

) = OM

(
αε2 + βr2

)
.

According to this we get

Σ2
1,i −

(
s
(λ)
1,i

)2 = OM

(
α′ε2 + β′r2

)
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and
Σ2,i − s

(λ)
2,i = OM

(
α′′ε2 + β′′r2

)
.

Then

q∗i − q
(λ)
i = OM

(
α′′′ε2 + β′′′r2

)
and v

(λ)
i = ε2OM

(
α∗ε2 + β∗r2

)
.

The sequences
{
ε(m)

}
and

{
r(m)

}
behave as follows

ε(m+1) ∼ (
ε(m)

)3(
r(m)

)2
, r(m+1) ∼ (

ε(m)
)3

r(m).

The R-matrix is T
(e)
2 =

[
3 2
3 1

]
with the spectral radius ρ

(
T

(e)
2

)
= 2 +

√
7

and the corresponding eigenvector x
(e)
ρ =

(
(1+

√
5)/2, 1

)
> 0. Hence, according

to Theorem 1, we obtain

OR((13)e) ≥ ρ (T (e)
2 ) = 2 +

√
7 ≈ 4.646. 2

5. Some modifications

In this Section we will comment some results presented in the previous sec-
tions which are concerned with the possibility of increasing the convergence rate
of the considered methods. Also, we will construct the corresponding methods
with corrections in single-step mode and methods for the inclusion of multiple
zeros.

Improvements of convergence rate

As was shown in [15], the Laguerre-like simultaneous methods in ordinary
complex arithmetic of the form

ẑi = zi − n

δ1(zi) + ai
(i ∈ In),(29)

where

ai =
[
(n− 1)(nδ2(zi)− δ2

1(zi)− ns2,i +
n

n− 1
(s1,i)2

]1/2

∗
and

sλ,i =
∑

j 6=i

(
zi − zj

)−λ (λ = 1, 2),

have the order of convergence equal to 4, 5 and 6 if Cj = 0, Cj = N(zj) (New-
ton’s correction), and Cj = H(zj) (Halley’s correction), respectively. However,
according to the results of Theorem 2, we can infer that the increase of conver-
gence order from 4 to 5 (by Newton’s correction) and from 4 to 6 (by Halley’s
correction) is feasible only if we apply the centered inversion (2) to the sum
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(9). The explanation lies in the fact that the application of the centered in-
version enables faster convergence of the midpoints of disks produced by (13),
which behave as the approximations defined by the iterative methods (29) for
Cj = N(zj) and Cj = H(zj). Consequently, the accelerated convergence of the
midpoints of disks forces faster convergence of radii, which can be observed from
the proof of Theorem 2 where we manipulate with the coupling of the conver-
gence of the midpoints and the radii. However, the following natural question
now arises:

Which kinds of corrections increase the convergence rate if the exact inversion
INV1 is applied to the sums (9)?

In order to answer this question, let us consider a correction C
(λ)
j of the

order λ + 1, which is involved in an iterative method ẑi = zi−C
(λ)
j of the order

λ + 1 ≥ 2 (that is, ε̂i = OM (ελ+1)). If the exact inversion is applied to the sum
(9), then the correction of order λ + 1 ≥ 2 yields

ε̂ = ε3OM (αελ+1 + βr2).

Taking into account that ε < r but preserving ε = O(r), from the above relation
we observe that for λ > 1 the term r2 has dominant influence in reference to
the first term in the parenthesis. Indeed, if λ > 1 then only

αελ+1 + βr2 = r2(β + αελ−1) = O(r2),

which means that any correction of the order higher than two (e.g., Halley’s
correction H(zj) of the order 3) cannot provide the increase of the convergence
rate of the Lagguere-like inclusion algorithms (13).

Single-step methods with corrections

The proposed inclusion methods with corrections (13) can be further accel-
erated by using the already calculated disk in the current iteration (the Gauss-
Seidel procedure or single-step mode). Starting from (11) we can construct the
following single-step inclusion methods with correction

Ẑi = ẑi − nINV2

(
δ1,i +

[
(n− 1)

(
nδ2,i − δ2

1,i −Qi(Ẑ,Z(λ))
)]1/2

∗

)
,(30)

for i ∈ In and λ = 1, 2. In this case it is very difficult to find the R-order of
convergence of the considered methods (30) for a specific value of the degree
n (see [11]). From this reason we will restrict our attention to the estimation
of the bounds of the R-order taking the limit cases n = 2 and very large n.
Since the R-order now depends on the number of zeros n (= the polynomial
degree since all the zeros are simple), we will use the notation OR(IM, n) for
the R-order.
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Taking into account the fact that the convergence rate of a considered single-
step method becomes almost the same as the one of the corresponding total-step
method when the polynomial degree is very large, according to Theorem 2 we
have

OR((30, n)) ∼= OR(13) ≥
{

2 +
√

7 ∼= 4.646, if INV1 = ()−1,
λ + 4 (λ = 1, 2), if INV1 = ()Ic .

Let us consider now the single-step method (30) for n = 2 and suppose that
1 > |ε(0)

1 | = |ε(0)
2 | = r

(0)
1 = r

(0)
2 (the “worst case” model). After an extensive

and labor calculation we find the following estimates

|ε̂1| ∼ |ε1|3r2
2, |ε̂2| ∼ |ε1|3|ε2|3r2

2, r̂1 ∼ |ε1|3r2, r̂2 ∼ |ε1|3|ε2|3r2,

if INV1 = ()−1 and

|ε̂1| ∼ |ε1|3|ε2|λ+1, |ε̂2| ∼ |ε1|3|ε2|λ+4, r̂1 ∼ |ε1|3r2, r̂2 ∼ |ε1|3|ε2|3r2,

if INV1 = ()Ic .
The corresponding R-matrices have the form

T
(e)
4 =




3 0 0 2
3 3 0 2
3 0 0 1
3 3 0 1


 if INV1 = ()−1

and

T
(c)
4 =




3 λ + 1 0 0
3 λ + 4 0 0
3 0 0 1
3 3 0 1


 if INV1 = ()Ic .

Their spectral radii and eigenvectors are given by

ρ
(
T

(e)
4

)
= 6.29654, x(e)

ρ = (1, 1.91, 0.7382, 1.6483) > 0 if INV1 = ()−1,

and

ρ
(
T

(c)
4

)
=

1
2

(
7 + λ +

√
13 + 14λ + λ2

)
=

{
6.64575, λ = 1,
7.8541, λ = 2,

x(c)
ρ =

{
(1, 1.8229, 0.6771, 1.5) > 0, λ = 1,
(1, 1.6180, 0.5279, 1.1459) > 0, λ = 2,

if INV1 = ()Ic .
Let Ω be the range of the lower bounds of the R-order of convergence con-

cerning the single-step methods (30). Taking into account the previous results,
we obtain

Ω = (4.646, 6.297) if INV1 = ()−1
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and

Ω =
{

(5, 6.646), λ = 1,
(6, 7.855), λ = 2,

if INV1 = ()Ic .

Since the increased convergence is gained with only a few additional calculations,
we infer that the inclusion method (30) has a great computational efficiency.

Algorithms for multiple zeros

The proposed algorithms (13) and (30) with Newton’s and Halley’s cor-
rections can be easily modified for the application in the case of multiple ze-
ros. Let µ1, ..., µν (µ1 + · · · + µν = n) be the multiplicities of the the zeros
ζ1, ..., ζν , (ν ≤ n) of P . We note that efficient procedures for finding the order
of multiplicity may be found in [6] and [7].

The total-step and the single-step iterative methods of Laguerre’s type for
the inclusion of multiple zeros read (omitting the iteration index)

Ẑi = zi − nINV2

(
δ1,i +

[n− µi

µi

(
nδ2,i − δ2

1,i −Q∗
i (Z

(λ),Z(λ))
)]1/2

∗

)
,

Ẑi = zi − nINV2

(
δ1,i +

[n− µi

µi

(
nδ2,i − δ2

1,i −Q∗
i (Ẑ,Z(λ))

)]1/2

∗

)
,

where i ∈ Iν and λ = 0, 1, 2. In these formulas one should take

ZN,i = Zi −N∗(zi), N∗(zi) = µi
P (zi)
P ′(zi)

,

ZH,i = Zi −H∗(zi),

H∗(zi) =
P (zi)(1 + 1/µi

2

)
P ′(zi)− P (zi)P ′′(zi)

2P ′(zi)

,

S∗k,i(X,W) =
i−1∑

j=1

µj

(
INV1(zi −Xj)

)k +
ν∑

j=i+1

µj

(
INV1(zi −Wj)

)k
,

Q∗i = nS∗2,i −
n

n− µi

(
S∗1,i

)2
,

for k = 1, 2.

6. Numerical results

In Section 4 we have shown that the modified methods (13) with Newton’s
and Halley’s corrections improve the convergence rate of the Laguerre-like inclu-
sion method (10). This acceleration is especially significant when the centered
inversion (2) is applied. Since this improvement was attained with only a few
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additional operations, it is clear that the computational efficiency of the in-
clusion methods proposed in this paper is increased compared with the basic
method (10).

The inclusion methods of Laguerre’s type without corrections (10) and with
Newton’s and Halley’s corrections have been tested in solving many polynomial
equations. For comparison purpose, we have also tested the interval Weierstrass-
like method

Ẑi = zi − P (zi) ·
( n∏

j=1
j 6=i

(
zi − Zj

))−1

(i ∈ In),(31)

which has quadratic convergence, see [10, Ch. 2], [16]. We note that, sometimes,
the following version of (31) of the form

Ẑi = zi − P (zi) ·
n∏

j=1
j 6=i

(
zi − Zj

)−1 (i ∈ In)(32)

is applied since it produces smaller disks. However, its computational cost is
greater compared with (31).

Theoretical results concerning the convergence order of the considered
Laguerre-like methods mainly well coincide with the convergent behavior of
these methods in practice, especially when the number of iterative steps in-
creases. To provide the enclosure of the zeros when the produced disks were
very small, we have used multi-precision arithmetic applying the programming
package Mathematica 5.0. Among many numerical results, we select two exam-
ples for demonstration.

Example 1 ([8]). To find inclusion disks for the zeros of the polynomial

P (z) = z9 + 3z8 − 3z7 − 9z6 + 3z5 + 9z4 + 99z3 + 297z2 − 100z − 300,

we applied the interval methods (10), (11), (13), (30), (31) and (32). The exact
zeros of P are

ζ1 = −3, ζ2,3 = ±1, ζ4,5 = ±2i, ζ6,7 = −2± i, ζ8,9 = 2± i.

The initial disks were selected to be Z
(0)
i = {z(0)

i ; 0.3}, with the centers

z
(0)
1 = −3.1 + 0.2i, z

(0)
2 = −1.2− 0.1i, z

(0)
3 = 1.2 + 0.1i,

z
(0)
4 = 0.2− 2.1i, z

(0)
5 = 0.2 + 1.9i, z

(0)
6 = −1.8 + 1.1i,

z
(0)
7 = −1.8− 0.9i, z

(0)
8 = 2.1 + 1.1i, z

(0)
9 = 1.8− 0.9i.

The maximal radii of the inclusion disks produced in the first three iterative
steps are given in Table 1, where the notation A(−q) means A× 10−q.
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r(1) r(2) r(3)

(2.4) 1.15(−2) 2.08(−10) 1.12(−43)
(2.5) 1.04(−2) 4.30(−11) 3.94(−46)
(3.4), λ = 1 8.35(−3) 1.19(−11) 3.81(−59)
(5.2), λ = 1 7.24(−3) 1.55(−12) 1.51(−62)
(3.4), λ = 2 8.56(−3) 1.65(−13) 7.10(−83)
(5.2), λ = 2 7.47(−3) 1.56(−14) 1.06(−84)
(6.1) diverges — —
(6.2) 5.85(−1) 3.26(−1) 3.01(−3)

Table 1: The maximal radii of inclusion disks

We note that, at present, the disks produced in the third iteration are point-
less from a practical point of view. However, we presented them to empha-
size the property of inclusion methods with corrections consisting of the grow-
ing accuracy when the number of iterative steps increases. Furthermore, the
Weierstrass-like inclusion method (31) is divergent, while its version (32) re-
quires even 7 iterations to produce disks of approximately of the same size
(r(7) = 1.32(−40)) as the disks obtained by the basic method (10) after the
third iteration (r(3) = 1.12(−43)).

Example 2 The same interval methods (applied in Example 1) were imple-
mented for the determination of the eigenvalues of Hessenberg’s matrix

H =




2 + 3i 1 0 0 0
0 4 + 6i 1 0 0
0 0 6 + 9i 1 0
0 0 0 8 + 12i 1
1 0 0 0 10 + 15i




,

whose characteristic polynomial is

f(λ) = λ5 − (30 + 45i)λ4 + (−425 + 1 020i)λ3 + (10 350− 2 025i)λ2

−(32 606 + 32 880i)λ− 14 641 + 71 640i.

We used convenient fact that the eigenvalues of a square matrix belong to the
union of the so-called Gerschgorin’s disks {aii; Ri} (i ∈ In), where aii are the
diagonal elements of a matrix and Ri =

∑
j 6=i |aij |. For the given matrix H

Gerschgorin’s disks are

Z1 = {2 + 3i; 1}, Z2 = {4 + 6i; 1}, Z3 = {6 + 9i; 1},
Z4 = {8 + 12i; 1}, Z5 = {10 + 15i; 1}.

These disks are mutually disjoint, so that each of them contains one and only
one eigenvalue of H. For this reason, we chose these Gerschgorin’s disks as initial
disks for our inclusion methods.
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The entries of the maximal radii of the disks produced in the first two iter-
ations, when both inversions are ()Ic , are given in Table 2. The behavior of the
Weierstrass-like methods (31) and (32) is similar as in Example 1.

r(1) r(2)

(2.4) 2.77(−10) 3.36(−53)
(2.5) 1.32(−10) 2.52(−52)
(3.4), λ = 1 2.77(−10) 1.26(−61)
(5.2), λ = 1 1.32(−10) 3.48(−63)
(3.4), λ = 2 2.77(−10) 8.28(−73)
(5.2), λ = 2 1.32(−10) 4.11(−73)
(6.1) diverges —
(6.2) 2.34(−3) 2.10(−10)

Table 2: The maximal radii of inclusion disks

According to the results of numerous experiments, including those displayed
in Tables 1 and 2, we conclude that the proposed Laguerre-like methods with
corrections produce very small disks. It is worth noting that, in some par-
ticular cases, the proposed methods with corrections give in the first iterative
step disks not smaller compared to those produced by the inclusion methods
without corrections. The reason is simple: Newton’s and Halley’s method can-
not improve initial (point) approximations if the centers of initial disks are not
sufficiently close to the zeros. In later iterations the convergence order of the
presented inclusion methods with corrections increases and its value approaches
to theoretical one obtained in the presented convergence analysis. Finally, let us
note that, beside greater computational efficiency, Laguerre-like inclusion meth-
ods demonstrate better convergence properties in practice compared with the
Weierstrass-like inclusion methods (31) and (32).
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rithms with error bound for finding zeros of polynomials, SIAM J. Numer. Anal.
15 (1978), 497–510.



156 M. S. Petković, D. M. Milošević
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simultaneous approximation of polynomial zeros, Computing [Suppl.] 15 (2001),
189–210.

[16] Wang, X., Zheng, S., The quasi-Newton method in parallel circular iteration, J.
Comput. Math. 4 (1984), 305–309.

Received by the editors June 29, 2004


