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ON PRIMITIVE I'-SEMIRINGS
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Abstract. After introducing the notions of primitive I'-semiring and
primitive ideal of a I'-semiring we study them via operator semiring and
obtain some results analogous to those of semiring theory.
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1. Introduction

We introduce the notion of I'-semiring S-semimodule which we call I'S-
semimodule along with the ideas of irreducible, semi-irreducible and faithful "S-
semimodules with an intention to introduce the notion of primitive I'-semiring
and in future to introduce the notion of Jacobson radical of a I'-semiring. Here
we study primitive I'-semiring via the operator semirings of a I'-semiring which
we introduced in [1]. We show that a I'-semiring S is primitive if and only if its
right operator semiring R is a primitive semiring ([6]). Lastly, we characterize
primitive h-ideal of a I'-semiring S using the relation between the annihilator
of an irreducible I'S-semimodule M in S and that of M in the right operator
semiring R of the I'-semiring S.

2. Preliminaries

Let S and I" be two additive commutative semigroups. Then S is called a
I-semiring if there exists a mapping S x I'xS— S (images to be denoted by
aabfora,be S and o €T) satisfying the following conditions:
aa(b+c)=aabt+aac
(ii) (a+db)ac=aac+bac
(iii) a(la+ B)c=aac+afec
(iv)aa (bpc)=(aab)fcforall ab,ceS and for all a, 5 €T.

If A and B are subsets of a I'-semiring S and A C I', we denote by AAB, the
subset of S consisting of all finite sums of the form > a;a;b; where a; € A,
b, € B and «; € I". For the singleton subset {z} of S we write zAB instead
of {x}AB. A right(left)ideal I of a I'-semiring S is an additive subsemigroup
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of Ssuch that IT S C T (ST I CI). If I is both a right and a left ideal
of S, then we say that I is a two-sided ideal or simply an ideal of S. An ideal
I in a I'-semiring S is called a k-ideal if x +y € I, x € S, y € I imply that
x € I. An ideal I in a TI'-semiring S is called an h-ideal if x + y1 + 2z = y2 + 2,
x,z € S and y1,y2 € I imply that = € I. Let S be a I'-semiring and G be the
free additive commutative semlgroup generated by I' X S . Then the relatlon p

on G, defined by Z @, T pz Bj,y;) if and only if Zaa T; = Zaﬁjyj
i=1 j=1 i=1 Jj=1
for all @ € S (m,n € Zt = the set of all positive integers), is a congru-

ence on G. Congruence class containing Z(ai,xi) is denoted by Z[ai,xi].

i=1 i=1
Then G/p is an additive commutative semigroup. Now G/p forms a semir-
ing with the multiplication defined by (Z[ai, :172-])(2[6]-, y;]) = Z[ai, i85y
i=1 j=1 ij

We denote this semiring by R and call it the right operator semiring of the I'-
semiring S. Dually we define the left operator semiring L of the I'-semiring
m

S where L:{Z[xi,ai] o €T, 2,€8,i=1,2,...,m; m€ Z"} and the

=1
m n

multiplication on L is defined as (Z[zi, ai])(Z[yj,,Bj]) = Z[l‘iaiyj,ﬁj]. For

i=1 j=1 %,

N C S and A C T we denote by [N, A] the set of all finite sums Z[wi,ai]
i=1
in L, where ; € N and a; € A. Thus in particular [S,T'] = L. Similarly,

we denote by [A, N] the set of all finite sums Z[ﬁj,yj] in R where y; € N,
j=1

B; € A and in particular [I',S] = R. For simplicity [{z},T] is written as

[z,T] and [I',{z}] is written as [[,z]. We also have [z,I'] C P([I',z] C P)

if and only if [z,a] € P (respectively [o,z] € P) for all @ € T', where P

is a subset of L (respectively R) and = € S. For P C L(P C R) we de-

fine P* = {a € S : [a,I] C P} (respectlvely ={a€ S : [Ia C

P}). For Q C S we define Q7" = {Z i, ;] €L : Z z;, ;])S C Q} where
. i=1 im1

(Z[%‘,%’])S denotes the set of all finite sums Zwiaisk, sp € 8 and Q* =
i=1 ik

m m

{Z[ai,xi] €ER: S(Z[ai,xi]) C Q } where S Z o, x;]) ) is the set of all fi-
=1

i=1 i=1

m
nite sums Z SLa;x;, S € S. Here we note that S(Z i, x;)) Z[x“ a;]) S
ki i=1
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C Q) if and only if Z sa;x; € @Q (respectively Zwiais €Q) foral s € S. If
i=1 i=1
P is a (k—,h—) ideal of L(R), then P*(P*) is a (k—,h—) ideal of S. If Q is
a (k—,h—)ideal of S then so is Q*'(Q*') in L(R). For a I'-semiring S if there
exists an element 0 € S such that 0 + 2 = 2 and Oazx = zal = 0 for all
x € S and a € T then 0 is called the zero of the I'-semiring S and in that
case we say that the I'-semiring S is with zero. In such a case [0,q] is the
zero of L and [a, 0] is the zero of R for any a € F Again, if there exists an

element Z €i, 0 Z[%, fj] € R) such that Zezé a=a Za’y]fj =a)

j=1 =1 Jj=1

for all @ € S then S is said to have the left unity Z[ei,(m (respectively the
i=1

right unity Z[’yj, fi] ). The left (right) unity of the I'-semiring S, if it exists,
j=1

is the identity of the left operator semiring L (respectively the right operator
semiring R) of S. An equivalence relation p, defined on a I'-semiring S satisfying
the condition that if rpr’ and sps’ in S then (r + s)p(r’ + s’) and (ras)p(r'as’)
for all @ € T, is called a I'-congruence on the I'-semiring S. For a proper ideal
A of a T'-semiring S the I'-congruence on S, denoted by pa, defined as spas’
if and only if s + a; = s’ + ay for some ai,as € A, is called the Bourne I'-
congruence on S defined by the ideal A. We denote the Bourne I'-congruence
(pa) class of an element r of S by r/p4 or simply by r/A and denote the set of
all such I'-congruence classes of the I'-semiring S by S/pa or by S/A. It should
be noted here that for any proper ideal A of S and for any s € S, s/A is not
necessarily equal to s+ A = {s+a : a € A} but surely contains it. For any
proper ideal A of a I'-semiring S, if the Bourne I'-congruence p 4, defined by A,
is proper i.e. 0/A # S then S/A is a I'-semiring with the following operations:
s/A+s'JA = (s+s")/A and (s/A)a(s'/A) = (sas’)/A for all a € T. We call
this I'-semiring the Bourne factor I'-semiring or simply the factor I'-semiring
of S by A.

For preliminaries of semirings, I'-semirings, operator semirings of a I'-semiring
and T'-rings we refer to [4], [1], [2], [7].

Throughout this paper the I'-semiring S is assumed to be with zero, left
unity and right unity.

3. Irreducible, semi-irreducible, faithful I'-semimodules

Definition 3.1. Let S be a I'-semiring. An additive commutative monoid M is
said to be a right I'-semiring S-semimodule or simply a I'S-semimodule, if there
exists a mapping M x I' x S — M (images to be denoted by aaS for a € M,
a €T, s €S ) satisfying the following conditions:
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(i) (a + b)as = aas + bas,

(ii) aa(s + t) = aas + aat,

(iti) a(a + B)s = aas + afs,

(iv) aa(sft) = (aas)Bt and

(v) Opras = 0pp = aalg for all a,b € M, for all s,t € S and for all a, 3 € T

If in addition to the above conditions Za’yjfj = a holds for all a € M,
J

where Zhj’ f;] is the right unity of the I'-semiring S, then M is said to be a
j=1
unitary I'S-semimodule.
Left I'-semimodule of S can be defined in a similar manner and it is called
ST-semimodule.

Example 3.2. Let S be a I'-semiring, where S is the additive commutative
semigroup of all 2 x 3 matrices over the set of all nonnegative rational numbers
Qar and T is the additive commutative semigroup of all 3 x 2 matrices over the
same set and aab denotes the usual matrix product of a, o, b where a,b € S and
a € I'. Let M be the additive commutative monoid of all 3 x 3 matrices over
Q¢ . Then M is a unitary I'S-semimodule, where maa denotes the usual matrix
product of m,a,a with m € M, a € S and « € I'. Here the right unity of S is
3

Z [vi, fi] where

i=1

1 0 0 0 0 0
7 = 01 y V2 = 0 1 y V3 = 10 )
0 0 0 0 0 1

0 [0 01 _[o 0
oJormlod o] e n-[0 e 0]

wli= O

n=|4

A nonempty subset N of a I'S-semimodule M is said to be a I'S-subsemimodule
of M ifi) a+be N,ii) aas € N for all a,b € N, for all s € S and for all a« € T".
N contains the zero of M.

A T'S-subsemimodule N of a I'S-semimodule M is said to be a kI'S-sub-
semimodule of M if a+b, b € N, a € M imply that a € N. Let N be a I'S-
subsemimodule of a I'S-semimodule M. Then k-closure of N, denoted by N, is
defined by N = {a € M : a+b = c for some b,c € N}. A I'S-subsemimodule N
of a I'S-semimodule M is said to be an hI'S-subsemimodule of M if x+ni+2z =
no + 2z, n1,ne € N, z,z € M imply that x € N. Let N be a I'S-subsemimodule
of a I'S-semimodule M. Then h-closure of N, denoted by N, is defined by
N = {aeM:a+ni+z=nyo+2z for some ni,ny € N and for some z € M}.

Proposition 3.3. Let N be a I'S-subsemimodule of a I'S-semimodule M. Then
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N is a kI'S-(hI'S-)subsemimodule if and only if N = N (N = N).
Proof. The proof is a matter of routine verification. O

A T'S-semimodule M is said to be cancellative if a + b = a + ¢, a,b,c € M
implies that b = c.

Throughout the rest of the paper a I'S-semimodule is assumed to be can-
cellative.

Definition 3.4. A T'S-semimodule M # {0} is said to be irreducible if for any
arbitrary fized pair u,v € M with u # v and for any v € M there exist x;,y; €
S, a,0;, €l (i =1,2,....mand j = 1,2,...,n, m,n are positive integers)

such that = + Z uoyT; + Z vBy; = Z ufBy; + Z voyx;. A I'S-semimodule

M is said to be semi- zrreduczble if MFS # {0} and M does not have any kI'S-
subsemimodule other than 0 and M.

The notions of both irreduciblity and semi-irreducibility coincide with the
notion of irreducibility in a I'-ring ([7], [8], [9]) S or in a ring R when R or S is
treated as a I'-semiring, where I' = R in case of R.

Proposition 3.5. Let P be an ideal of a I'-semiring S and M be a T'S-
semimodule with MTP # {0}. Then the following statements are true.

(1) If M is semi-irreducible and m is an element of M then m = 0 if and
only if map =0 for all a € T" and for allp € P i.e. m = 0 if and only if
mIl'P = {0}.

(2) If M is irreducible and w,v are elements of M then u = v if and only if
Zuai:vi = Zvaixi, forall o, €T, forallxz; € S,1=1,2,...,p; p is

= i=1
any positive integer.

Proof. (1) Let M be a semi-irreducible I'S-semimodule and map = 0 for all
p € Pand forall o € T. Let My ={y € M : yI'P = {0}}. Then m € M.
Let z,y € My. Then (x + y)T'P C 2T'P + yI'P = {0}. Thus = + y € Mpy. Let
a € T'and p € P. Then (zap)T'P = 0I'P = {0}. So xap € My. Thus My is a
I'S-subsemimodule of M. Let 24y, y € My and x € M. Then (x+y)ap = 0 and
yap = 0 for all @ € T" and for all p € P. This implies that zap = xap + yap =
(x+y)ap =0 for all @ € T" and for all p € P whence 2I'P = {0}. Hence x € M
proving that M is a kI'S-subsemimodule of M. Since MT'P # {0}, My # M.
Since S is semi-irreducible so My = {0}. So m = 0. Conversely, if m = 0 then
map = 0 for all a € T and for all p € P.

(2) Let M be irreducible and u,v € M be such that v # v. Since MT'P #
{0} so there exist m € M, « € I, p € P such that map # {0}. For this
m € M, there exist z;,y; € S, a;,08; € T (1 <i <p, 1 <j < gq; p,q are
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q

P q P
positive integers) such that m + Z uQ;x; + Z vBy; = Z ufB;y; + Z VOGT;.

i=1 j=1 j=1 i=1

P q q P
Hence map + Z uoyT;ap + Z vByjap = Z ufBjy;op + Z vo;xT;ap e,
i=1 j=1 j=1 i=1
q

p

map + Zua xh+ Z vBy; = Z uBy; + Z vagx; where z = x;ap and yj =
i=1 j=1 i=1

yjop for all i = 1 2 D and j = 1,2,...,q. Since M is cancellative and

map # 0, so at least one of Zualx # Zva x} and Zuﬂjy] #* Zvﬁjyj
i=1 i=1 j=1
holds. Converse follows easily. |

Proposition 3.6. Let M be a I'S-semimodule and M # {0}. Then M is semi-
irreducible if and only if for every non-zero m € M mLS = M i.e. for any
x € M there exist z;,y; €S, a;, 5, €T (i=1,2,....,pand j=1,2,...,q, p,q
are positive integers) such that x + Z mao;x; = Zmﬁjyj.

Proof. Let M # 0 be semi-irreducible. Then MTS # {0}. Let m € M such
that m # 0. Hence by Proposition 3.5, mI'S # {0}; so mI'S # {0}. Since

mI'S is a kI'S-subsemimodule of M, mI'S = M. Hence for any x € M there
exist z;,y; € S, o;,3; € ' (i =1,2,...,pand j = 1,2,...,¢; p,q are positive

integers) such that x + Zmaixi = Z mpB;y;-

i

Conversely, suppose for any nonzero m € M, mI'S = M. Let N # {0} be a
kT'S-subsemimodule of M. Then there exists n € N such that n # 0. So, by the
given condition mI'S = M. Hence for any x € M there exist z;,y; € S, oy, 35 €
' i =12...,pand j = 1,2,...,q; p,q are positive integers) such that
T+ Z no;T; = Z nB;y;. Since N is kI'S-subsemimodule of M and Znazx,,

[

Znﬂ]y] €N,z € N. Hence N = M. Now if MT'S = {0} then mI'S = {0}

for all m € M. In particular, mI'S = {0} for any nonzero m € M. Hence
mI'S = {0} for any nonzero m € M. This implies that M = 0- a contradiction.
Hence M is semi-irreducible. a

Corollary 3.7. If a I'S-semimodule M is irreducible, then it is semi-irreducible
and mI'S = M.

Proof. Let M be an irreducible I'S-semimodule. Then M # {0}. So, there
exists m(# 0) € M. Thus for any © € M there exist x;,y; € S, a;,5; €
' (i =12...,pand j = 1,2,...,q; p,q are positive integers) such that
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x4+ Zmomcz Z mf3;y;. Hence by Proposition 3.6, M is a semi-irreducible

rs- 5em1module. Then MTS # {0} which implies that mI'S = {0}. Since mI'S
is a kI'S-subsemimodule of M, mI'S = M. O

Proposition 3.8. Let S be a I'-semiring and R be its right operator semiring.
Then M is an irreducible T'S-semimodule if and only if M is an irreducible
R-semimodule.

Proof. Let M be an irreducible I'S-semimodule. Now we define R-action on M
as follows: for a € M, Z ;i) € R, az i, Tl Zaaixi. If Z[ai,xi] =

Z[ﬂj,y]] in R then Zsalxl = Zsﬁjyj for all s é S. Since M is an ir-
redumble FS—semlmodule, mI'S :ZM. (Corollary 3.7). Then for m € M,
m+2ak7k5k = thétvt where ay, by € M, v, 0, € T, sp,vp € S (k= 1,2,
.. ,p;kt =1,2,...,q; p,q are positive integers). So, Z mao; T+ Z Q) Yk SET; 0
ki
= Z bsdxicr;, implying that ’

t,i

(1) > maizi+ Y arveskBiy; = Y bibviBiy;.
i k.j 4,J
Again
(2) Z mﬁjyj + Z ak:'Yk:skﬁ]yj Z btétvtﬁjyj
k,j t,j

Since M is cancellative so we have from (1) and ( Z mo,;T; = Z mpB;y;.

J
Thus the R-action defined above on M is well deﬁned. Now it can be easily
verified that M with the above action is an R-semimodule. Next, let u,v € M
with u # v. Then for any z € M there exist scz,yj € S, a;,8; € I such that

T+ Z uoGT; + Z vBy; = Z uBy; + Z v, x; (using irreducibility of M as

a FS—semlmodule). This 1mp11es that x +u Z i, @) + v Z Bj,y;] +v Z a;, T
i j i
where Z[ai, x4, Z[ﬂj, y;] € R. Hence M is an irreducible R-semimodule ([6]).
i J
Conversely, suppose M is an irreducible R-semimodule. We define I'-action of

S on M as follows: fora € M, €T and s € S, aaS = afe, s]. Then, with this
composition M is a I'S-semimodule. Let u,v € M with v # v and let x € M.
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J

Then there exist Z[ai, xi, Z[ﬂj’ y;] € R such that

r+ UZ[%%] + vZ[ﬂj,yj] = UZ[ﬂj’yj] + UZ[%JJJ-

So x + Z uQ;x; + Z vBy; = Z ufy; + Z vayz;. Hence by definition M is
i j j i
an irreducible I'S-semimodule. This completes the proof. O

Let S be a I'-semiring. The zeroid of S, denoted by Z(S), is defined as
Z(S)={x €S : x4z =z for some z € S}. Clearly, 0 is a member of Z(S5)
of a I'-semiring S with zero element 0. The zeroid Z(S) of a I'-semiring S is an

h-ideal of S. Let M be a I'S-semimodule. We put (0: M) ={z € S : MI'z =
k

{0}} where MTz = {Z myoix 2 m; € M,a €T, k is a positive integer}. We
i=1

call (0 : M) the annihilator of M in S. We also denote it by Ag(M). A T'S-

semimodule M is said to be faithful if Z(S) = As(M).

Proposition 3.9. Let M be a T'S-semimodule. Then Ag(M) is an h-ideal of
S. Moreover, M is a faithful T'(S/As(M))-semimodule.

Proof. Clearly Ag(M) is an additive subsemigroup of S. Now let z € Ag(M),
a €T, s €S Then MT'(zaS) = (MTz)aS = {0}. Hence, zaS € Ags(M)
proving that it is a right ideal of S. To prove that Ag(M) is also a left ideal
of S we see that MT'(STAg(M)) = (MTS)T'Ag(M) C MT'Ag(M) = {0} which
means ST'Ag(M) C Ag(M). Thus Ag(M) is a two-sided ideal of S. Next, let
x+a+z=>b+z where z,z € S, a,b € Ag(M). Then for all « € T, for all
m € M, maa = 0 and so mazx + maz = mab + maz. Since M is cancellative
we have max = mab = 0 for all m € M, for all « € T. Hence z € Ag(M).
Thus Ag(M) is an h-ideal of S. Now let us define a I'-action of S/Ag(M) on M
as follows: ma(s/As(M)) = masS for m € M, a € T', s/As(M) € S/As(M).
If s/As(M) = t/As(M) then s + p; = t + py for some p1,p2 € Ag(M). Then
masS + map; = mat + mapy for all m € M, for all « € T' i.e. mas = mat for
all m € M, for all @ € T. Hence the T'-action of S/Ag(M) on M is well-defined.
Now it is easy to see that M is a I'(S/Ag(M))-semimodule. It remains to show
that AS/AS(JW)(M) = Z(S/Asg(M)). Clearly Z(S/As(M) C AS/AS(M)~ Now let
v/As(M) € Asjasy(M). Then ma(x/As(M)) = 0 for all m € M, for all
a € T'ie. maxr =0 for all m € M, for all o € T'. Hence x € Ag(M). This
implies that x/Ag(M) = 0/As(M). Hence x/As(M) € Z(S/As(M)). Thus
AS/AS(M))<M) - Z(S/As(M)) Hence AS/AS(M) = Z(S/As(M)) (Whence M is
a faithfuul I'(S/Ag(M))-semimodule. O

Proposition 3.10. Let S be a I'-semiring and R be its right operator semiring.
Then
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(i) As(M)* = Ap(M) and Ag(M)* = Ag(M); where M is an irreducible
I'S-semimodule (and hence an irreducible R-semimodule)

(ii) Z(S)* = Z(R) and Z(R)* = Z(5).
Proof. (i)
As(M)* :{Z[auxd €R: S(Z[awi]) C As(M)}
= 1Yl ad € B+ MTS(Ylow, ) = (01}

= {i:[ai,xi] €ER: M(Z[;H%D ={0}}
— Ap(M). l

Ar(M)* ={xe S : [Iz] C Ar(m)}

={zxeS : MI,z]={0}}

={zxeS : MTz={0}}

= Ag(M).
(ii) By Propositions 6.14 ([1]) and since zeroid is an h-ideal, (Z(S)*)* = Z(S)
and (Z(R)*)* = Z(R). So it is sufficient to prove one of the two relations.
Let x € Z(R)*. Then [I',z] C Z(R). So STz C SZ(R) C Z(S). Since S
has the left unity, = € Z(S). Thus Z(R)* C Z(S). Now let Y7 [aj, 2] €
[, Z(S)] where z; € Z(S) for all i = 1,2,3,...,m. Then z; + z; = z; for

some z; € S for all i = 1,2,...,m. Then [a,,a:,] + [, zi] = [ay, 2] for all
m
1 =1,2,3,...,m. This implies that Z i, x;) + Z i, 2] = Z[ai,zi] where
=1 i=1 =1
> levi, 2] € R. Hence Z o, ;) € Z(R) and so [I', Z(S)] € Z(R). Thus Z(S) C
i=1 i=1
Z(R)*. Hence Z(R)* = Z(S). O

Proposition 3.11. Let S be a T'-semiring and R be its right operator semiring.
Then M is a faithful irreducible T'S-semimodule if and only if M is a faithful
irreducible R-semimodule.

Proof. Let M be a faithful irreducible I'S-semimodule. Then by Proposi-
tion 3.8, M is an irreducible I'S-semimodule. Again, Ag(M) = Z(S). So
Ag(M)* = Z(S)*". This implies by Proposition 3.10, Ag(M) = Z(R). Hence
M is a faithful irreducible I'S-semimodule. Converse follows by reversing the
above argument. O

Definitions 3.12. A T'-semiring S is said to be primitive if it has a faithful
irreducible T'S-semimodule.

An ideal P of S is said to be primitive if the Bourne factor I'-semiring S/P
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is primitive. Hence a I'-semiring S is primitive if {0} is a primitive ideal of S.

Lemma 3.13. Let S be a I'-semiring and R be its right operator semiring and Q
be a proper ideal of S. Then R(S/Q) and R/Q* are isomorphic, where R(S/Q)
is the right operator semiring of the Bourne factor T'-semiring S/Q.

m

Proof. We define a mapping ¢ : R(S/Q) — R/Q* as follows: ¢(Z[ai, x;/Q)) =

i=1
m

Zazvxz */~ Now let Z[O‘hxi/Q}:Z[ﬁjayj/Q] in R(S/Q) Then

i=1 j=1

(s/Q)ai(x:/Q) = Z(s/@)ﬂj (y;/Q) forall s/Q € S/Qi.e. L7 (sciz;)/Q =

=1 =1

Mgn

n

Z;”:l(sﬂjyj)/Q for all s € S, which means that Z souxi +q= Z sBiy; +¢
i=1 j=1

for some ¢, ¢’ € Q and for all s € S. This implies that Z frasz; +ap = Z By
i=1 j=1

P
for some ag, by € Q, for all k, 1 < k < p, where Z[yk, f] is the right unity of S.

k=1
This implies that Z sk frou; + Z SYRag = Z sV frBiy; + Z sykby for all
ki k,j
J ) .
s € Sandforall ag, by € Q,1 < k < p. This implies that ( Z Vies J1]) Z [, x5])
k= =1
P P n P ' P
+> lear] = Ol ADO (85w + > vk b, where Z%ﬂk,z
k=1 k=1 j=1 k=1 k=1 k=1
m P n
[vk,bk] € QF (Proposition 3.5 [3]) i.e., Z i, 2] + Z Vis Q) Z[ﬁj,yj]
i=1 k=1 i=1
P P ! )
Z[fyk, bi], where Z Vi, A ,Z Vi, bi] € Q . This implies that Z ay, )]/ QF
k=1 k=1 k=1 i=1
Z[ﬁﬂ’ y]]/Q ie. ¢(§:[ozi7 x;/Q)) = (;5(2[@-, y;/Q)). Thus ¢ is well-defined.
=1 i=1 j=1
j m ’ n
Clearly, ¢ is surjective. Next, let ¢(D [ai,2:/Q]) = ¢(>_[B;,4;/Q]). Then
i=1 j=1
m m P n
Z[auxz /Q Z/Bj>yj . So Zahx’t +Z'Yk7ak Zﬁpyj}"i_
=1 Jj= 1 i=1 k=1 j=1

NgERD

P
[Vk, bx], where Z[%,ak , Z [k, be] € Q" (Proposition 3.5 [3]). This im-
k=1 k=1

>
Il

1
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plies that Zsaimi + ZS%@k = Zsﬂjyj + ZS’kak for all s € S, where
i=1 k j=1 k

Z Sykak, Z syebi € @ for all s € S. This implies that Z sz /Q = Z s8y;/Q
k k i=1 j=1

forall s € Si.e. Z(S/Q)ai(xi/Q) = Z(S/Q)ﬁj(yj/Q) for all s/Q € S/Q. This

i=1 Jj=1
n

implies that Z[O‘“ (z;/Q)] = Z[ﬂj, (y;/Q)]. Hence ¢ is injective. Clearly, ¢
i=1 j=1

is a semiring homomorphism. Therefore ¢ is a semiring isomorphism, whence

R(S/Q) and R/Q* are isomorphic. O

Proposition 3.14. Let S be a I'-semiring and R be its right operator semiring.
If P is a primitive ideal of S then P* is a primitive ideal of R.

Proof. Let P be a primitive ideal of S. Then S/P is a primitive I'-semiring. So
there exists an irreducible faithful I'(S/P)-semimodule M. Then by Proposition
3.11, M is a faithful irreducible R(S/P)-semimodule where R(S/P) is the right
operator semiring of S/P. Since R(S/P) and R/P* are isomorphic (Lemma
3.13), M is a faithful irreducible R/P* -semimodule. Consequently, R/P* is a
primitive semiring ([6]), i.e. P* is a primitive ideal of R. m

Proposition 3.15. Let S be a I'-semiring and R be its right operator semiring.
If Q is a primitive ideal of R then Q* is a primitive ideal of S.

Proof. Suppose that @Q is a primitive ideal of R. Then R/Q is a primitive
semiring. So, there exists a faithful irreducible R/@Q-semimodule M. Then by
Proposition 3.11, M is a faithful irreducible T'(S/Q*)-semimodule (noting the
fact that R(S/Q*) and R/(Q*)*, i.e. R/Q are isomorphic). So, S/Q* is a

primitive I'-semiring, whence Q* is a primitive ideal of the I'-semiring S. ]

From the above two propositions and Theorem 6.6 ([1]) the following theorem
follows easily:

Theorem 3.16. Let S be a I'-semiring and R be its right operator semiring.
Then there exists an inclusion preserving bijection between the set of all primi-
tive ideals of S and the set of all primitive ideals of R via the mapping P — P*/,
where P is an ideal of S.

Theorem 3.17. A T'-semiring S is primitive if and only if its right operator
semiring R s primitive.

Proof. Let S be a primitive I'-semiring. Then there is a faithful irreducible
I'S-semimodule M (say). Then, by Proposition 3.11, M is a faithful irreducible
R-semimodule. So, R is a primitive semiring ([6]). Converse follows by reversing
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the above argument. O

Lastly, we have the following characterization of primitive h-ideal of a I'-
semiring which is analogous to that of a primitive ideal of a ring.

Theorem 3.18. An h-ideal P of a I'-semiring S is primitive if and only if
P = Ag(M) for some irreducible T'S-semimodule M.

Proof. Let the h-ideal P of the I'-semiring S be primitive. Then by Proposition
6.11 ([1]) and Proposition 3.14, P* is a primitive h-ideal of R. Hence P* =
Agr(M) (]6]), where M is an irreducible R-semimodule (Proposition 3.8). Then
(P*')* = Ag(M)*, which implies that P = Ag(M) (Proposition 3.10). Converse
follows by reversing the above argument. O
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