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EXPONENTIAL FORMULA FOR ONE–TIME
INTEGRATED SEMIGROUPS
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Abstract. In this paper we prove that

lim
n→∞

∫ T

0

(
n + 1

t

)n+1

Rn+1
(

n + 1

t
; A

)
dt = S(T ), T > 0

where S(T ) is one–time integrated exponentially bounded semigroup and
limit is uniform in T > 0 on any bounded interval.

AMS Mathematics Subject Classification (2000): 47D03

Key words and phrases: C0–semigroup, one–time integrated semigroup,
exponential formula

1. Introduction

One–time and n–times, n > 1, integrated exponentially bounded semigroups
n ∈ N of operators in Banach space were introduced by Arendt [1] and studied
by Arendt, Kellermann, Hieber [2], Thieme [4] and many others.

We study here one–time integrated semigroups and prove the result from
Abstract. The main motivation of our investigations is exponential formula for
a C0−semigroup of bounded operators [3].

2. Preliminaries from the semigroup theory

We denote by X a Banach space with the norm ‖ · ‖; L(X) = L(X,X) is the
space of bounded linear operators from X into X. A family (T (t))t≥0 in L(X)
is a semigroup of bounded linear operators on X if

(i) T (0) = I, (I is the identity operator on X),

(ii) T (t + s) = T (t)T (s), for every t, s ≥ 0 (the semigroup property).

If for a semigroup (T (t))t≥0 the following condition holds

(iii) lim
t↓0

T (t)x = x, for every x ∈ X,
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then (T (t))t≥0 is said to be a strongly continuous semigroup or, simply, C0–
semigroup. A linear operator A, defined on the set

D(A) = {x ∈ X : lim
t↓0

T (t)x − x

t
exists}

by

Ax = lim
t↓0

T (t)x − x

t
=

d+T (t)x
dt

|t=0, x ∈ D(A)

is the infinitesimal generator of the semigroup (T (t))t≥0; D(A) is the domain of
A.

Let A be a linear operator on X and let (T (t))t≥0 be a C0−semigroup. It
is well known that A is the infinitesimal generator of this semigroup iff there
exist ω ∈ R such that (ω,∞) ⊂ ρ(A) and R : {λ ∈ C : Reλ > ω} → L(X),
defined by R(λ) = (λI −A)−1 = L(T )(λ), Reλ > ω, where L(T ) is the Laplace
transformation of (T (t))t≥0.

The following theorem holds [3]

Theorem 1. [The exponential formula] Let (T (t))t≥0 be a C0−semigroup on
X. If A is the infinitesimal generator of (T (t))t≥0 then

T (t)x = lim
n→∞

(
I − t

n
A

)−n

x = lim
n→∞[

n

t
R

(n

t
;A

)
]nx, t ≥ 0, x ∈ X

and the limit is uniform on any bounded interval [a, b] ⊂ [0,∞).

3. Preliminaries from the theory of n–times integrated
semigroup

Let {S(t), t ≥ 0} be a strongly continuous exponentially bounded family in
L(X). It is called n−times integrated semigroup if

(i) S(0) = 0;

(ii) S(t)S(s) = 1
(n−1)!

[∫ t+s

t
(t + s − r)n−1S(r)dr − ∫ s

0
(t + s − r)n−1S(r)dr

]
,

t, s ≥ 0, x ∈ X.

In the case n = 1, one obtains one–time integrated semigroup.
Recall, a family {S(t), t ≥ 0} is said to be exponentially bounded if there

are constants ω ≥ 0 and M ≥ 0 such that

‖S(t)‖ ≤ Meωt, t ≥ 0.
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4. Exponential formula for one–time integrated semigroup

Before we state our result, we will recall some known results.
It is known that there exists a subspace Xω of X with a norm that generates

a stronger topology on Xω then the topology inheriting from the space X. Also,
it is known that the restriction of S(t) to Xω forms a C0−semigroup (T (t))t≥0

on Xω such that

S(t)x =
∫ t

0

T (s)xds, t ≥ 0, x ∈ Xω.

It is known that for all x ∈ Xω and t > 0 the following holds(n

t

)n

Rn
(n

t
;A

)
x → T (t)x, n → ∞,

where the limit is taken in Xω.
In particular, the limit holds in the sense of topology inheriting from the

space X that is

S(t)x =
∫ t

0

T (s)xds = lim
n→∞

∫ t

0

(n

t

)
Rn

(n

t
;A

)
xds, x ∈ X, t > 0.

On the other hand, we note the following: If the space Xω is dense in X for
a non–degenerate exponentially bounded integrated semigroup (S(t))t≥0, then
the theory of such semigroups would be the trivial consequence of the theory
of C0−semigroups. In this case our result can be obtained by using analogous
results which hold on Xω.

Further, it is known that for an exponentially bounded integrated semi-
group (S(t))t≥0 there exists a larger space Xλ with a weaker norm ‖ · ‖, and
a C0−semigroup (Tλ(t))t≥0 on Xλ such that (S(t))t≥0 can be obtained as an
integral of the restriction of Tλ(t) to X. This implies that the following holds

lim
n→∞

∫ t

0

(n

s

)n

Rn
(n

s
;A

)
xds = S(t)x, t > 0, x ∈ X,

where integral and limit are taken in Xλ.
But we know that this norm is weaker, so we conclude that our result cannot

be obtained as a trivial consequence of the known result.
Now we are ready to state our theorem.

Theorem 2. Let (S(t))t≥0 be one–time exponentially bounded integrated semi-
group. Then

lim
n→∞

∫ T

0

(
n + 1

t

)n+1

Rn+1

(
n + 1

t
;A

)
dt = S(T ), T > 0,

and the limit is uniform in T > 0 on any bounded interval [a, b] ⊂ [0,∞).
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Proof. We will use the resolvent formula for one–time integrated semigroups

R(λ;A) =
∫ ∞

0

λe−λsS(s)ds, λ ∈ ρ(A).(1)

Differentiating (1) n times, with respect to λ, we obtain

dn

dλn
R(λ;A) =

∫ ∞

0

[(−1)nλsne−λs + (−1)n−1ne−λssn−1]S(s)ds(2)

= (−1)n

∫ ∞

0

[λsn − nsn−1]e−λsS(s)ds, n ∈ N, λ ∈ ρ(A).

But dn

dλn R(λ;A) = (−1)nn!Rn+1(λ;A), n ∈ N, λ ∈ ρ(A), and therefore, from
(2) we obtain

Rn+1(λ;A) =
1
n!

∫ ∞

0

[λsn − nsn−1]e−λsS(s)ds, n ∈ N, λ ∈ ρ(A).(3)

For sufficiently large n and λ = n+1
t , (3) takes the form

Rn+1(
n + 1

t
;A) =

1
n!

∫ ∞

0

(
n + 1

t
sn − nsn+1

)
e−(n+1) s

t S(s)ds.(4)

Take δ ∈ (0, T ), N > 0 and consider the integral

Iδ,N =
∫ T

δ

(
n + 1

t

)n+1 1
n!

∫ N

0

[
n + 1

t
sn − nsn−1

]
e−

n+1
t sS(s)ds.

We interchange the order of integration and obtain

Iδ,N =
n + 1

n!

∫ N

0

sn

[(
n + 1

T

)n

e−
n+1

T s −
(

n + 1
δ

)
e−

n+1
δ s

]
S(s)ds.(5)

Recall that the function S(s) is exponentially bounded. Letting N → ∞ in (5),
we obtain that the right side in (5), for sufficiently large n, tends to

n + 1
n!

∫ ∞

0

sn−1

[(
n + 1

T

)n

e−
n+1

T s −
(

n + 1
δ

)n

e−
n+1

δ s

]
S(s)ds.

Notice that ∫ N

0

[
n + 1

t
sn − nsn−1

]
e−

n+1
t S(s)ds

tends to ∫ ∞

0

[
n + 1

t
sn − nsn−1

]
e−

n+1
t S(s)ds as N → ∞
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and the limit is uniform in t ∈ [δ, T ], then the left side in (5) tends to

1
n!

∫ T

δ

(
n + 1

t

)n+1

dt

∫ ∞

0

[
n + 1

t
sn − nsn−1

]
e−

n+1
t S(s)ds.

So, we obtain
1
n!

∫ T

δ

(
n + 1

t

)n+1

Rn+1

(
n + 1

t
;A

)
dt =(6)

=
n + 1

n!

∫ ∞

0

sn−1

[(
n + 1

T

)n

e−
n+1

T s −
(

n + 1
δ

)n

e−
n+1

δ s

]
S(s)ds.

Letting δ ↓ 0 in (6), then the right side in (6) tends to

n + 1
n!

∫ ∞

0

sn−1

(
n + 1

T

)n

e−
n+1

T sS(s)ds,

because

n + 1
n!

∫ ∞

0

sn−1

(
n + 1

δ

)n

e−
n+1

δ sS(s)ds =

=
n + 1

n!

∫ ∞

0

σn−1eσS

(
δσ

n + 1

)
dσ → 0, as δ ↓ 0.

So, we conclude that

1
n!

∫ T

0

(
n + 1

t

)n+1

Rn+1

(
n + 1

t
;A

)
dt

exists and

1
n!

∫ T

0

(
n + 1

t

)n+1

Rn+1

(
n + 1

t
;A

)
dt =

=
(n + 1)n+1

n!

∫ ∞

0

un−1e−(n+1)uS(uT )du.

Multiplying the left and the right side of (4) by
(

n+1
t

)n+1
, we obtain

(
n + 1

t

)n+1

Rn+1

(
n + 1

t
;A

)
=(7)

=
(

n + 1
t

)n+1 1
n!

∫ ∞

0

(
n + 1

t
sn − nsn−1

)
e−(n+1) s

t S(s)ds.

Integrating (7) from 0 to T, we obtain∫ T

0

(
n + 1

t

)n+1

Rn+1

(
n + 1

t
;A

)
dt =(8)
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=
∫ T

0

(
n + 1

t

)n+1 1
n!

∫ ∞

0

(
n + 1

t
sn − nsn−1

)
e−(n+1) s

t S(s)dsdt.

We interchange the order of integration and obtain∫ T

0

(
n + 1

t

)n+1

Rn+1

(
n + 1

t
;A

)
dt =(9)

=
∫ ∞

0

S(s)sn−1ds

∫ T

0

(
n + 1

t

)n+1 1
n!

[
n + 1

t
s − n

]
e−(n+1) s

t S(s)ds.

From the right side of (9), consider∫ T

0

(
n + 1

t

)n+1 [
(n + 1)

s

t
− n

]
e−(n+1) s

t dt =
∣∣∣s
t

= v
∣∣∣

=
∫ ∞

s
T

(n + 1)n+1 vn+1

sn+1
[(n + 1)v − n]e−(n+1)v sdv

v2

=
(n + 1)n+1

sn

∫ ∞

s
T

[(n + 1)vn − nvn−1]e−(n+1)vdv

=
(n + 1)n+1

sn

(∫ ∞

s
T

(n + 1)vne−(n+1)vdv −
∫ ∞

s
T

nvn−1e−(n+1)vdv

)
.

Integrating by parts the second integral from the last relation, we obtain∫ T

0

(
n + 1

t

)n+1

[(n + 1)
s

t
− n]e−(n+1) s

t dt(10)

=
(n + 1)n+1

sn

( s

T

)n

e−(n+1) s
T .

Now, (9) becomes∫ T

0

(
n + 1

t

)n+1

Rn+1

(
n + 1

t
;A

)
dt(11)

=
(n + 1)n+1

n!

∫ ∞

0

S(s)sn−1
( s

T

)n

e−(n+1) s
T

1
sn

ds

=
(n + 1)n+1

n!

∫ ∞

0

S(s)
(

s
T

)n
e−(n+1) s

T

s
ds

=
(n + 1)n+1

n!

∫ ∞

0

S(s)sn−1e−(n+1) s
T

Tn
ds.

So, we obtain ∫ T

0

(
n + 1

t

)n+1

Rn+1

(
n + 1

t
;A

)
dt(12)
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=
(n + 1)n+1

n!

∫ ∞

0

S(s)sn−1e−(n+1) s
T

Tn
ds.

Using substitution s
T = u, (12) takes the form

∫ T

0

(
n + 1

t

)n+1

Rn+1

(
n + 1

t
;A

)
dt(13)

=
(n + 1)n+1

n!

∫ ∞

0

S(uT )un−1e−(n+1)udu.

Take z = (n + 1)u. Then (13) takes the form

∫ T

0

(
n + 1

t

)n+1

Rn+1

(
n + 1

t
;A

)
dt(14)

=
n + 1

n!

∫ ∞

0

S

(
z

n + 1
T

)
e−zzn−1dz.

For every ε > 0, choose δ > 0 (small enough) such that for

(n + 1)
(

1 − δ

T

)
< z < (n + 1)

(
1 +

δ

T

)
, T > 0, n ∈ N

we have

‖ S

(
z

n + 1
T

)
x − S(T )x ‖< ε, x ∈ X.

We have (with x ∈ X, T > 0, n ∈ N)

I =
n + 1

n!

∫ ∞

0

[
S

(
z

n + 1
T

)
x − S(T )x

]
e−zzn−1dz = I1 + I2 + I3,

where

I1 =
n + 1

n!

∫ (n+1)(1− δ
T )

0

[
S

(
z

n + 1
T

)
x − S(T )x

]
e−zzn−1dz

I2 =
n + 1

n!

∫ (n+1)(1+ δ
T )

(n+1)(1− δ
T )

[
S

(
z

n + 1
T

)
x − S(T )x

]
e−zzn−1dz

I3 =
n + 1

n!

∫ ∞

(n+1)(1+ δ
T )

[
S

(
z

n + 1
T

)
x − S(T )x

]
e−zzn−1dz.

We will estimate each of these integrals. We have

‖ I1 ‖≤ n + 1
n!

∫ (n+1)(1− δ
T )

0

‖ S

(
z

n + 1
T

)
− S(T )x ‖ e−zzn−1dz.
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The assumption ‖S(t)‖ ≤ Meωt, t ≥ 0, implies

I1 ≤ M ‖ x ‖ n + 1
n!

∫ (n+1)(1− δ
T )

0

[
e

ωT
n+1 z + eωT

]
e−zzn−1dz

= M ‖ x ‖ n + 1
n!

∫ (n+1)(1− δ
T )

0

e−z(1− ωT
n+1 )zn−1dz

+ M ‖ x ‖ n + 1
n!

∫ (n+1)(1− δ
T )

0

eωT e−zzn−1dz.

Put

S1 = M ‖ x ‖ n + 1
n!

∫ (n+1)(1− δ
T )

0

e−z(1− ωT
n+1 )zn−1dz,

S2 = M ‖ x ‖ n + 1
n!

∫ (n+1)(1− δ
T )

0

eωT e−zzn−1dz.

Let us estimate S1. Take z n+1−ωT
n+1 = u. Then the integral S1 becomes

S1 = M ‖ x ‖ n + 1
n!

(n + 1)n

(n + 1 − ωT )n

∫ (n+1−ωT )(1− δ
T )

0

e−uun−1du.

Let f1(u) = e−uun−1, u ∈ R. Differentiating f1 with respect to u, we obtain

df1

du
= e−uun−2(n − 1 − u).

Function f1 takes the maximum at the point (n − 1). It easy to see that for a
large enough n and fixed δ, n − 1 is greater than (n + 1 − ωT )(1 − δ

T ). Also,
f1 is increasing in the interval

[
0, (n + 1 − ωT )

(
1 − δ

T

)]
. Using these facts, we

obtain

M ‖ x ‖ n + 1
n!

(n + 1)n

(n + 1 − ωT )n

∫ (n+1−ωT )(1− δ
T )

0

e−uun−1du

≤ M ‖ x ‖ n + 1
n!

(n + 1)n

(n + 1 − ωT )n

(n + 1 − ωT )n−1
(
1 − δ

T

)n−1

e(n+1−ωT )(1− δ
T )

.

Stirling’s formula implies

M ‖ x ‖ 1√
2π

(
1 − δ

T

)
e(1−ωT )(1− δ

T )

(
1 +

1
n

)n 1
1 − ωT

n+1

[(
1 − δ

T

)
e

δ
T

]n

√
n

.

Function R 
 x �→ (1 − x)ex has a maximum at point x = 0 equals 1. This
implies (1 − x)ex < 1, x ∈ R. Take δ < T. Then using the last inequality, we
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obtain (1 − δ/T )e
δ
T < 1. So we obtain that S1 → 0 as n → ∞, and the limit is

uniform in T > 0 on any bounded interval.
Let us estimate S2:

S2 = M ‖ x ‖ n + 1
n!

eωT

∫ (n+1)(1− δ
T )

0

e−zzn−1dz.

Function R 
 z �→ e−zzn−1 has a maximum at the point n − 1. It is easy
to see that for a large enough n and fixed δ, n − 1 belongs to the interval[
(n + 1)

(
1 − δ

T

)
, (n + 1)

(
1 + δ

T

)]
. We have that the function z �→ e−zzn−1 is

increasing for z < n − 1. Thus,

S2 ≤ M ‖ x ‖ n + 1
n!

eωT (n + 1)n−1
(
1 − δ

T

)n−1

e(n+1)(1− δ
T )

=
M ‖ x ‖ eωT(
1 − δ

T

)
e(1−

δ
T )

(n + 1)n
(
1 − δ

T

)n

n!en(1− δ
T )

.

Using Stirling’s formula, we obtain

S2 ≤ M ‖ x ‖ eωT(
1 − δ

T

)
e(1−

δ
T )√2π

(
1 +

1
n

) [(
1 − δ

T

)
e

δ
T

]n

√
n

.

Similarly, for
(
1 − δ

T

)
e

δ
T < 1, we obtain S2 → ∞ as n → ∞, and the limit is

uniform in T > 0 on any bounded interval.
Now, we will estimate the integral I2:

‖ I2 ‖ ≤ n + 1
n!

∫ (n+1)(1+ δ
T )

(n+1)(1− δ
T )

‖ S

(
z

n + 1
T

)
x − S(T )x ‖ e−zzn−1dz

≤ n + 1
n!

ε

∫ (n+1)(1+ δ
T )

(n+1)(1− δ
T )

e−zzn−1dz < ε
n + 1

n!

∫ ∞

0

e−zzn−1dz

= ε
n + 1

n!
(n − 1)! = ε

n + 1
n

< 2ε.

Let us estimate the integral I3:

‖ I3 ‖ ≤ M ‖ x ‖ n + 1
n!

∫ ∞

(n+1)(1+ δ
T )

[
e

ωT
n+1 z + eωT

]
e−zzn−1dz

= M ‖ x ‖ n + 1
n!

∫ ∞

(n+1)(1+ δ
T )

e−z(1− ωT
n+1 )zn−1dz

+ M ‖ x ‖ n + 1
n!

∫ ∞

(n+1)(1+ δ
T )

eωT e−zzn−1dz = S3 + S4,
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where

S3 = M ‖ x ‖ n + 1
n!

∫ ∞

(n+1)(1+ δ
T )

e−z(1− ωT
n+1 )zn−1dz

S4 = M ‖ x ‖ n + 1
n!

∫ ∞

(n+1)(1+ δ
T )

eωT e−zzn−1dz.

Take z n+1−ωT
n+1 = u. Then S3 becomes

S3 = M ‖ x ‖ n + 1
n!

(n + 1)n

(n + 1 − ωT )n

∫ ∞

(n+1−ωT )(1+ δ
T )

e−uun−1du.

Consider the integral ∫ ∞

(n+1−ωT )(1+ δ
T )

e−uun−1du.

We have∫ ∞

(n+1−ωT )(1+ δ
T )

e−uun−1du =
∫ ∞

(n+1−ωT )(1+ δ
T )

e−u(1−η)e−uηun−1du,

for 0 < η < 1. We notice that the function h(u) = e−uηun−1, u ∈ R, has a
maximum at the point n−1

η :

h

(
n − 1

η

)
=

e−(n−1)(n − 1)n−1

ηn−1
.

Now, we obtain∫ ∞

(n+1−ωT )(1+ δ
T )

e−uun−1du =
∫ ∞

(n+1−ωT )(1+ δ
T )

e−u(1−η)e−uηun−1du

<
e−(n−1)(n − 1)n−1

ηn−1

1
1 − η

e−(n+1−ωT )(1+ δ
T )(1−η)

=
ηee−(1−ωT )(1+ δ

T )(1−η)

1 − η

(n − 1)n−1

ηnenen(1+ δ
T )(1−η)

.

Using Stirling’s formula, we obtain

S3 ≤ M
η

(1 − η)e(1−ωT )(1+ δ
T )(1−η)−1

√
2πn

n + 1
n − 1

(15)

·
(

1
1 − ωT

n+1

)n (
1 − 1

n

)n 1

ηnen(1+ δ
T )(1−η)

.
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Notice that ηnen(1+ δ
T )(1−η) = en ln η+n(1+ δ

T )(1−η). Letting n → ∞ in (15),
we obtain

n + 1
n − 1

→ 1,

(
n + 1

n + 1 − ωT

)n

→ eωT ,

(
1 − 1

n

)n

→ e−1.

In order to obtain that (15) tends to zero as n → ∞, one must prove the
following inequality

ln η +
(

1 +
δ

T

)
(1 − η) > 0.(16)

Since, ln η = ln (1 + (η − 1)) and the following inequalities hold

η − 1
η

< ln (1 + (η − 1)) < η − 1,

we obtain

ln η +
(

1 +
δ

T

)
(1 − η) >

η − 1
η

+
(

1 +
δ

T

)
(1 − η).

On the other hand

η − 1
η

+
(

1 +
δ

T

)
(1 − η) =

−η2
(
1 + δ

T

)
+ η

(
2 + δ

T

) − 1
η

.(17)

In order to have that the expression (17) is greater than zero, since η > 0, we
must have

−η2

(
1 +

δ

T

)
+ η

(
2 +

δ

T

)
− 1 > 0.

This inequality holds for
1

1 + δ
T

< η < 1.(18)

We obtain that if (18) holds, then (17) tends to zero as n → ∞, and the limit
is uniform in T > 0 on any bounded interval.

Let us estimate S4:

S4 = M ‖ x ‖ eωT n + 1
n!

∫ ∞

(n+1)(1+ δ
T )

e−zzn−1dz.

Consider ∫ ∞

(n+1)(1+ δ
T )

e−zzn−1dz.

We have∫ ∞

(n+1)(1+ δ
T )

e−z(1−ψ)e−zΨzn−1dz <
e−(n−1)(n − 1)n−1

Ψn−1(1 − Ψ)
e−(n+1)(1+ δ

T )(1−Ψ)

=
eΨ

(1 − Ψ)e(1+
δ
T )

(n − 1)n−1

en(1+ δ
T )(1−Ψ)

1
Ψn

.
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Using Stirling’s formula, we obtain

S4 < M ‖ x ‖ eΨ

(1 − Ψ)e(1+
δ
T )(1−Ψ)

n + 1
n − 1

(
1 − 1

n

)n 1

en ln Ψ+n(1+ δ
T )(1−Ψ)

.

Similarly, we have that the right side of the last inequality tends to zero for
1/(1 + δ

T ) < Ψ < 1 when n → ∞, and the limit is uniform in T > 0 on any
bounded interval. Finally, by using these estimates we obtain I → 0, n → ∞,
and the limit is uniform in T > 0 on any bounded interval. �

Remark 1. Recall that[n

t
R

(n

t
;A

)]n

x → T (t)x, as n → ∞

where T (t) is C0−semigroup and R(λ;A) is the resolvent of its infinitesimal
generator. This is related to the Post–Widder real inversion formula

f(t) = lim
k→∞

(−1)k

k!

(
k

t

)k+1

f̂ (k)

(
k

t

)

where f̂ is the Laplace transform, see [3]. Using our result, we obtain

∫ T

0

[(n

t

)
R

(n

t
;A

)]n

xdt →
∫ T

0

T (t)xdt, as n → ∞.

We see that our theorem gives a similar result for one–time integrated exponen-
tially bounded semigroup S(s), even when this semigroup need not be an integral
of some C0−semigroup.

References

[1] Arendt, W., Resolvent positive operators and integrated semigroups. Proc. Lon-
don Math. Soc. 54 (1987), 321–349.

[2] Kellermann, H., Hieber, M., Integrated semigroups. J. Func. Anal. 84 (1989),
160–180.

[3] Pazy, A., Semigroups of linear operators and applications to the partial differen-
tial equations. New York: Springer-Verlag 1983.

[4] Thieme, H. R., Integrated Semigroups and Integrated Solutions to Abstract
Cauchy Problems. J. Math. Anal. Appl. 152 (1990), 416–447.
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