ON Φ -RECURRENT SASAKIAN MANIFOLDS

U. C. De¹, A. A. Shaikh², Sudipta Biswas¹

Abstract. The objective of the present paper is to study ϕ -recurrent Sasakian manifolds.

AMS Mathematics Subject Classification (2000): 53C05, 53C20, 53C25 Key words and phrases: ϕ -recurrent Sasakian manifold, Einstein manifold, sectional curvature

1. Introduction

In 1977, T. Takahashi [2] introduced the notion of locally ϕ -symmetric Sasakian manifolds and studied their several interesting properties. In this paper we introduce the notion of ϕ -recurrent Sasakian manifolds which generalizes the notion of locally ϕ -symmetric Sasakian manifolds. After preliminaries, in Section 3, we study ϕ -recurrent Sasakian manifolds and show that such a manifold is always an Einstein manifold. Again, it is proved that in a ϕ -recurrent Sasakian manifold, the characteristic vector field ξ and the vector field ρ associated to the 1-form A are codirectional. Also we obtain some other interesting results of this manifold.

2. Preliminaries

Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a Sasakian manifold with the structure (ϕ, ξ, η, g) . Then the following relations hold [1]:

$$\phi^2 X = -X + \eta(X)\xi,$$

(2.2) a)
$$\eta(\xi) = 1$$
, b) $g(X, \xi) = \eta(X)$, c) $\eta(\phi X) = 0$,

$$(2.3) g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

$$(2.4) R(\xi, X)Y = (\nabla_X \phi)(Y) = q(X, Y)\xi - \eta(Y)X,$$

(2.5)
$$a) \nabla_X \xi = -\phi X, \quad b) \quad (\nabla_X \eta)(Y) = g(X, \phi Y),$$

$$(2.6) R(X,Y)\xi = \eta(Y)X - \eta(X)Y,$$

(2.7)
$$R(X,\xi)Y = \eta(Y)X - g(X,Y)\xi,$$

 $^{^1{\}rm Department}$ of Mathematics, University of Kalyani, Kalyani–741235, Nadia, West Bengal, India, e–mail: ucde@klyuniv.ernet.in (U. C. De)

²Department of Mathematics, University of North Bengal, P. O. NBU-734430, Darjeeling, West Bengal, India, e-mail: aask2003@yahoo.co.in, aask@epatra.com

44 U. C. De et al.

(2.8)
$$\eta(R(X,Y)Z) = g(Y,Z)\eta(X) - g(X,Z)\eta(Y),$$

$$(2.9) S(X,\xi) = 2n \ \eta(X),$$

(2.10)
$$S(\phi X, \phi Y) = S(X, Y) - 2n \, \eta(X) \eta(Y),$$

for all vector fields X, Y, Z, where ∇ denotes the operator of covariant differentiation with respect to g, ϕ is a skew–symmetric tensor field of type (1,1), S is the Ricci tensor of type (0,2) and R is the Riemannian curvature tensor of the manifold.

Definition 2.1. [2] A Sasakian manifold is said to be a locally ϕ -symmetric manifold if

(2.11)
$$\phi^2((\nabla_W R)(X, Y)Z) = 0$$

for all vector fields X, Y, Z, W orthogonal to ξ .

Definition 2.2. A Sasakian manifold is said to be a ϕ -recurrent manifold if there exists a non-zero 1-form A such that

$$\phi^2\left((\nabla_W R)(X,Y)Z\right) = A(W)R(X,Y)Z$$

for arbitrary vector fields X, Y, Z, W.

If the 1–form A vanishes, then the manifold reduces to a ϕ –symmetric manifold.

3. ϕ -recurrent Sasakian manifolds

Let us consider a ϕ -recurrent Sasakian manifold. Then by virtue of (2.1) and (2.12) we have

$$(3.1) \qquad -(\nabla_W R)(X,Y)Z + \eta \left((\nabla_W R)(X,Y)Z \right) \xi = A(W)R(X,Y)Z,$$

from which it follows that

(3.2)
$$-g((\nabla_W R)(X,Y)Z,U) + \eta((\nabla_W R)(X,Y)Z)\eta(U) = A(W)g(R(X,Y)Z,U).$$

Let $\{e_i\}$, $i=1,2,\ldots,2n+1$, be an orthonormal basis of the tangent space at any point of the manifold. Then putting $X=U=e_i$ in (3.2) and taking summation over $i, 1 \le i \le 2n+1$, we get

(3.3)
$$-(\nabla_W S)(Y, Z) + \sum_{i=1}^n \eta ((\nabla_W R)(e_i, Y)Z) \eta(e_i) = A(W)S(Y, Z).$$

The second term of (3.3) by putting $Z = \xi$ takes the form

$$g((\nabla_W R)(e_i, Y)\xi, \xi)g(e_i, \xi)$$

which is denoted by E. In this case E vanishes. Namely we have

$$g((\nabla_W R)(e_i, Y)\xi, \xi) = g(\nabla_W R(e_i, Y)\xi, \xi) - g(R(\nabla_W e_i, Y)\xi, \xi)$$
$$-g(R(e_i, \nabla_W Y)\xi, \xi) - g(R(e_i, Y)\nabla_W \xi, \xi)$$

at $p \in M$. Since $\{e_i\}$ is an orthonormal basis, $\nabla_X e_i = 0$ at p. Using (2.2) and (2.4) we obtain

$$g(R(e_i, \nabla_W Y)\xi, \xi) = g(\nabla_W Y, \xi)g(e_i, \xi) - g(\xi, e_i)g(\nabla_W Y, \xi) = 0.$$

Thus we obtain

$$g((\nabla_W R)(e_i, Y)\xi, \xi) = g(\nabla_W R(e_i, Y)\xi, \xi) - g(R(e_i, Y)\nabla_W \xi, \xi).$$

In virtue of $g(R(e_i, Y)\xi, \xi) = g(R(\xi, \xi)Y, e_i) = 0$, we have

$$g(\nabla_W(R(e_i, Y)\xi, \xi) + g(R(e_i, Y)\xi, \nabla_W \xi) = 0,$$

which implies

$$g((\nabla_W R)(e_i, Y)\xi, \xi) = -g(R(e_i, Y)\xi, \nabla_W \xi) - g(R(e_i, Y)\nabla_W \xi, \xi).$$

Using (2.5) and applying the skew-symmetry of R we get

$$g((\nabla_W R)(e_i, Y)\xi, \xi) = g(R(\phi W, \xi)Y, e_i) + g(R(\xi, \phi W)Y, e_i).$$

Hence we reach

$$E = \sum_{i=1}^{n} \{ g(R(\phi W, \xi)Y, e_i)g(\xi, e_i) + g(R(\xi, \phi W)Y, e_i)g(\xi, e_i) \}$$

= $g(R(\phi W, \xi)Y, \xi) + g(R(\xi, \phi W)Y, \xi) = 0.$

Replacing Z by ξ in (3.3) and using (2.9) we have

$$(3.4) -(\nabla_W S)(Y, \xi) = 2n \ A(W)\eta(Y).$$

Now we have $(\nabla_W S)(Y,\xi) = \nabla_W S(Y,\xi) - S(\nabla_W Y,\xi) - S(Y,\nabla_W \xi)$. Using (2.9) and (2.5) in the above relation, it follows that

$$(3.5) \qquad (\nabla_W S)(Y, \xi) = 2n \ g(W, \phi Y) + S(Y, \phi W).$$

In view of (3.4) and (3.5) we obtain

(3.6)
$$-[2n g(W, \phi Y) + S(Y, \phi W)] = 2n A(W)\eta(Y).$$

Replacing Y by ϕY in (3.6) and then using (2.1), (2.2) and (2.10) we get

(3.7)
$$S(Y,W) = 2n \ g(Y,W) \quad \text{for all } Y,W.$$

This leads to the following:

46 U. C. De et al.

Theorem 3.1. A ϕ -recurrent Sasakian manifold (M^{2n+1},g) is an Einstein manifold.

Now from (3.1) we have

$$(3.8) \qquad (\nabla_W R)(X, Y)Z = \eta((\nabla_W R)(X, Y)Z)\xi - A(W)R(X, Y)Z.$$

From (3.8) and the Bianchi identity we get

(3.9).
$$A(W)\eta(R(X,Y)Z) + A(X)\eta(R(Y,W)Z) + A(Y)\eta(R(W,X)Z) = 0.$$

By virtue of (2.8) we obtain from (3.9)

$$A(W)[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)]$$

$$+ A(X)[g(W,Z)\eta(Y) - g(Y,Z)\eta(W)]$$

$$+ A(Y)[g(X,Z)\eta(W) - g(W,Z)\eta(X)] = 0.$$

Putting $Y = Z = e_i$ in (3.10) and taking summation over $i, 1 \le i \le 2n + 1$, we get

(3.11)
$$A(W)\eta(X) = A(X)\eta(W)$$
 for all vector fields X, W .

Replacing X by ξ in (3.11), it follows that

(3.12)
$$A(W) = \eta(W)\eta(\rho)$$
 for any vector field W ,

where $A(\xi) = g(\xi, \rho) = \eta(\rho)$, ρ being the vector field associated to the 1–form A, i.e., $g(X, \rho) = A(X)$. From (3.11) and (3.12) we can state the following:

Theorem 3.2. In a ϕ -recurrent Sasakian manifold (M^{2n+1}, g) , n > 1, the characteristic vector field ξ and the vector field ρ associated to the 1-form A are co-directional and the 1-form A is given by (3.12).

Next, in view of (2.5) and (2.6) it can be easily seen that in a Sasakian manifold the following relation holds:

$$(3.13) \qquad (\nabla_W R)(X, Y)\xi = g(W, \phi Y)X - g(W, \phi X)Y + R(X, Y)\phi W.$$

By virtue of (2.8), it follows from (3.13) that

$$\eta((\nabla_W R)(X, Y)\xi) = 0.$$

Again from Tanno [3] we have

(3.15)
$$R(X,Y)\phi Z = g(\phi X, Z)Y - g(Y,Z)\phi X - g(\phi Y, Z)X + g(X,Z)\phi Y + \phi R(X,Y)Z$$

for any $X, Y, Z \in T_pM$. From (3.13) and (3.15), it follows that

$$(3.16) \qquad (\nabla_W R)(X,Y)\xi = g(X,W)\phi Y - g(Y,W)\phi X + \phi R(X,Y)W.$$

In view of (3.16) and (3.14), we obtain from (3.1) that

(3.17)
$$g(X, W)\phi Y - g(Y, W)\phi X + \phi R(X, Y)W = -A(W)R(X, Y)\xi.$$

Using (2.6) and (3.12) in (3.17) we have

(3.18)
$$g(X,W)\phi Y - g(Y,W)\phi X + \phi R(X,Y)W$$
$$= -\eta(W)\eta(\rho)[\eta(Y)X - \eta(X)Y].$$

Hence if X and Y are orthogonal to ξ , then (3.18) reduces to

(3.19)
$$\phi R(X,Y)W = g(Y,W)\phi X - g(X,W)\phi Y.$$

Operating ϕ on both sides of (3.19) and using (2.1) we get

(3.20)
$$R(X,Y)W = g(Y,W)X - g(X,W)Y$$
 for all X, Y, W .

Hence we can state the following:

Theorem 3.3. A ϕ -recurrent Sasakian manifold (M^{2n+1},g) , n > 1, is a space of constant curvature, provided that X and Y are orthogonal to ξ .

We now suppose that a Sasakian manifold (M^{2n+1}, g) , n > 1, is ϕ -recurrent. Then from (3.8) and (3.16), it follows that

(3.21)
$$(\nabla_W R)(X,Y)Z = \{g(Y,W)g(\phi X,Z) - g(X,W)g(\phi Y,Z) - g(\phi R(X,Y)W,Z)\} \xi - A(W)R(X,Y)Z.$$

This leads to the following:

Theorem 3.4. If a Sasakian manifold (M^{2n+1}, g) , n > 1, is ϕ -recurrent then the relation (3.21) holds.

Let us now suppose that in a Sasakian manifold, the relation (3.21) holds. Then from (3.21) it follows that

(3.22)
$$\begin{cases} \phi^{2}((\nabla_{W}R)(X,Y)Z) = A(W)R(X,Y)Z - A(W)\{g(Y,Z)\eta(X) - g(X,Z)\eta(Y)\}\xi, \end{cases}$$

which yields

$$\phi^2((\nabla_W R)(X, Y)Z) = A(W)R(X, Y)Z,$$

if X and Y are orthogonal to ξ . Hence we can state the following:

48 U. C. De et al.

Theorem 3.5. A Sasakian manifold (M^{2n+1}, g) , n > 1, satisfying the relation (3.21) is ϕ -recurrent provided that X and Y are orthogonal to ξ .

Next, we suppose that in a ϕ -recurrent Sasakian manifold, the sectional curvature of a plane $\pi \subset T_pM$ defined by

$$K_p(\pi) = g(R(X, Y)Y, X)$$

is a non-zero constant k, where $\{X,Y\}$ is any orthonormal basis of π . Then we have

$$(3.23) g((\nabla_Z R)(X, Y)Y, X) = 0.$$

By virtue of (3.23) and (3.1) we obtain

$$(3.24) g((\nabla_Z R)(X,Y)Y,\xi)\eta(X) = A(Z)g(R(X,Y)Y,X).$$

Since in a ϕ -recurrent Sasakian manifold, the relation (3.21) holds good, using (3.21) in (3.24) we get

$$(3.25) \begin{cases} \eta(X)[g(Y,Z)g(\phi X,Y) - g(X,Z)g(\phi Y,Y) - g(\phi R(X,Y)Z,Y)] \\ -A(Z)[g(Y,Y)\eta(X) - g(X,Y)\eta(Y)] = kA(Z). \end{cases}$$

Putting $Z = \xi$ in (3.25) we obtain

$$\eta(\rho)[k + \{g(Y,Y)\eta(X) - g(X,Y)\eta(Y)\}] = 0,$$

which implies that

$$\eta(\rho) = 0.$$

Hence by (3.12) we obtain from (2.12) that

$$\phi^2((\nabla_W R)(X, Y)Z) = 0.$$

This leads to the following:

Theorem 3.6. If a ϕ -recurrent Sasakian manifold (M^{2n+1}, g) , n > 1, has a non-zero constant sectional curvature, then it reduces to a locally ϕ -symmetric manifold in the sense of Takahashi.

References

- [1] Blair, D.E., Contact manifolds in Riemannian geometry. Lecture Notes in Math. No. 509. Springer 1976.
- [2] Takahashi, T., Sasakian ϕ -symmetric spaces. Tohoku Math. J. 29 (1977), 91–113.
- [3] Tanno, S., Isometric Immersions of Sasakian manifold in spheres. Kodai Math. Sem. Rep. 21 (1969), 448–458.

Received by the editors September 25, 2003