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ON Φ–RECURRENT SASAKIAN MANIFOLDS
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Abstract. The objective of the present paper is to study φ–recurrent
Sasakian manifolds.
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1. Introduction

In 1977, T. Takahashi [2] introduced the notion of locally φ–symmetric Sasa-
kian manifolds and studied their several interesting properties. In this paper
we introduce the notion of φ–recurrent Sasakian manifolds which generalizes
the notion of locally φ–symmetric Sasakian manifolds. After preliminaries, in
Section 3, we study φ–recurrent Sasakian manifolds and show that such a man-
ifold is always an Einstein manifold. Again, it is proved that in a φ–recurrent
Sasakian manifold, the characteristic vector field ξ and the vector field ρ asso-
ciated to the 1–form A are codirectional. Also we obtain some other interesting
results of this manifold.

2. Preliminaries

Let M2n+1(φ, ξ, η, g) be a Sasakian manifold with the structure (φ, ξ, η, g).
Then the following relations hold [1]:

(2.1) φ2X = −X + η(X)ξ,

(2.2) a) η(ξ) = 1, b) g(X, ξ) = η(X), c) η(φX) = 0,

(2.3) g(φX, φY ) = g(X,Y ) − η(X)η(Y ),

(2.4) R(ξ,X)Y = (∇Xφ)(Y ) = g(X,Y )ξ − η(Y )X,

(2.5) a) ∇Xξ = −φX, b) (∇Xη)(Y ) = g(X,φY ),

(2.6) R(X,Y )ξ = η(Y )X − η(X)Y,

(2.7) R(X, ξ)Y = η(Y )X − g(X,Y )ξ,
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(2.8) η(R(X,Y )Z) = g(Y,Z)η(X) − g(X,Z)η(Y ),

(2.9) S(X, ξ) = 2n η(X),

(2.10) S(φX, φY ) = S(X,Y ) − 2n η(X)η(Y ),

for all vector fields X, Y , Z, where ∇ denotes the operator of covariant differen-
tiation with respect to g, φ is a skew–symmetric tensor field of type (1,1), S is
the Ricci tensor of type (0,2) and R is the Riemannian curvature tensor of the
manifold.

Definition 2.1. [2] A Sasakian manifold is said to be a locally φ–symmetric
manifold if

(2.11) φ2 ((∇W R)(X,Y )Z) = 0

for all vector fields X, Y , Z, W orthogonal to ξ.

Definition 2.2. A Sasakian manifold is said to be a φ–recurrent manifold if
there exists a non–zero 1–form A such that

(2.12) φ2 ((∇W R)(X,Y )Z) = A(W )R(X,Y )Z

for arbitrary vector fields X, Y , Z, W .

If the 1–form A vanishes, then the manifold reduces to a φ–symmetric mani-
fold.

3. φ–recurrent Sasakian manifolds

Let us consider a φ–recurrent Sasakian manifold. Then by virtue of (2.1)
and (2.12) we have

(3.1) −(∇W R)(X,Y )Z + η ((∇W R)(X,Y )Z) ξ = A(W )R(X,Y )Z,

from which it follows that

(3.2)
−g ((∇W R)(X,Y )Z,U) + η ((∇W R)(X,Y )Z) η(U)

= A(W )g(R(X,Y )Z,U).

Let {ei}, i = 1, 2, . . . , 2n + 1, be an orthonormal basis of the tangent space
at any point of the manifold. Then putting X = U = ei in (3.2) and taking
summation over i, 1 ≤ i ≤ 2n + 1, we get

(3.3) −(∇W S)(Y,Z) +
n∑

i=1

η ((∇W R)(ei, Y )Z) η(ei) = A(W )S(Y,Z).
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The second term of (3.3) by putting Z = ξ takes the form

g((∇W R)(ei, Y )ξ, ξ)g(ei, ξ)

which is denoted by E. In this case E vanishes. Namely we have

g((∇W R)(ei, Y )ξ, ξ) = g(∇W R(ei, Y )ξ, ξ) − g(R(∇W ei, Y )ξ, ξ)

−g(R(ei,∇W Y )ξ, ξ) − g(R(ei, Y )∇W ξ, ξ)

at p ∈ M . Since {ei} is an orthonormal basis, ∇Xei = 0 at p. Using (2.2) and
(2.4) we obtain

g(R(ei,∇W Y )ξ, ξ) = g(∇W Y, ξ)g(ei, ξ) − g(ξ, ei)g(∇W Y, ξ) = 0.

Thus we obtain

g((∇W R)(ei, Y )ξ, ξ) = g(∇W R(ei, Y )ξ, ξ) − g(R(ei, Y )∇W ξ, ξ).

In virtue of g(R(ei, Y )ξ, ξ) = g(R(ξ, ξ)Y, ei) = 0, we have

g(∇W (R(ei, Y )ξ, ξ) + g(R(ei, Y )ξ,∇W ξ) = 0,

which implies

g((∇W R)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ,∇W ξ) − g(R(ei, Y )∇W ξ, ξ).

Using (2.5) and applying the skew–symmetry of R we get

g((∇W R)(ei, Y )ξ, ξ) = g(R(φW, ξ)Y, ei) + g(R(ξ, φW )Y, ei).

Hence we reach

E =
n∑

i=1

{g(R(φW, ξ)Y, ei)g(ξ, ei) + g(R(ξ, φW )Y, ei)g(ξ, ei)}

= g(R(φW, ξ)Y, ξ) + g(R(ξ, φW )Y, ξ) = 0.

Replacing Z by ξ in (3.3) and using (2.9) we have

(3.4) −(∇W S)(Y, ξ) = 2n A(W )η(Y ).

Now we have (∇W S)(Y, ξ) = ∇W S(Y, ξ)−S(∇W Y, ξ)−S(Y,∇W ξ). Using (2.9)
and (2.5) in the above relation, it follows that

(3.5) (∇W S)(Y, ξ) = 2n g(W,φY ) + S(Y, φW ).

In view of (3.4) and (3.5) we obtain

(3.6) −[2n g(W,φY ) + S(Y, φW )] = 2n A(W )η(Y ).

Replacing Y by φY in (3.6) and then using (2.1), (2.2) and (2.10) we get

(3.7) S(Y,W ) = 2n g(Y,W ) for all Y,W.

This leads to the following:
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Theorem 3.1. A φ–recurrent Sasakian manifold (M2n+1, g) is an Einstein
manifold.

Now from (3.1) we have

(3.8) (∇W R)(X,Y )Z = η((∇W R)(X,Y )Z)ξ − A(W )R(X,Y )Z.

From (3.8) and the Bianchi identity we get

(3.9). A(W )η(R(X,Y )Z) + A(X)η(R(Y,W )Z) + A(Y )η(R(W,X)Z) = 0.

By virtue of (2.8) we obtain from (3.9)

(3.10)

A(W )[g(Y,Z)η(X) − g(X,Z)η(Y )]

+ A(X)[g(W,Z)η(Y ) − g(Y,Z)η(W )]

+ A(Y )[g(X,Z)η(W ) − g(W,Z)η(X)] = 0.

Putting Y = Z = ei in (3.10) and taking summation over i, 1 ≤ i ≤ 2n + 1, we
get

(3.11) A(W )η(X) = A(X)η(W ) for all vector fields X,W.

Replacing X by ξ in (3.11), it follows that

(3.12) A(W ) = η(W )η(ρ) for any vector field W,

where A(ξ) = g(ξ, ρ) = η(ρ), ρ being the vector field associated to the 1–form
A, i.e., g(X, ρ) = A(X). From (3.11) and (3.12) we can state the following:

Theorem 3.2. In a φ–recurrent Sasakian manifold (M2n+1, g), n > 1, the
characteristic vector field ξ and the vector field ρ associated to the 1–form A are
co–directional and the 1–form A is given by (3.12).

Next, in view of (2.5) and (2.6) it can be easily seen that in a Sasakian
manifold the following relation holds:

(3.13) (∇W R)(X,Y )ξ = g(W,φY )X − g(W,φX)Y + R(X,Y )φW.

By virtue of (2.8), it follows from (3.13) that

(3.14) η((∇W R)(X,Y )ξ) = 0.

Again from Tanno [3] we have

(3.15)
R(X,Y )φZ = g(φX,Z)Y − g(Y,Z)φX − g(φY,Z)X

+ g(X,Z)φY + φR(X,Y )Z
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for any X,Y,Z ∈ TpM . From (3.13) and (3.15), it follows that

(3.16) (∇W R)(X,Y )ξ = g(X,W )φY − g(Y,W )φX + φR(X,Y )W.

In view of (3.16) and (3.14), we obtain from (3.1) that

(3.17) g(X,W )φY − g(Y,W )φX + φR(X,Y )W = −A(W )R(X,Y )ξ.

Using (2.6) and (3.12) in (3.17) we have

(3.18)
g(X,W )φY − g(Y,W )φX + φR(X,Y )W

= −η(W )η(ρ)[η(Y )X − η(X)Y ].

Hence if X and Y are orthogonal to ξ, then (3.18) reduces to

(3.19) φR(X,Y )W = g(Y,W )φX − g(X,W )φY.

Operating φ on both sides of (3.19) and using (2.1) we get

(3.20) R(X,Y )W = g(Y,W )X − g(X,W )Y for all X,Y,W.

Hence we can state the following:

Theorem 3.3. A φ–recurrent Sasakian manifold (M2n+1, g), n > 1, is a space
of constant curvature, provided that X and Y are orthogonal to ξ.

We now suppose that a Sasakian manifold (M2n+1, g), n > 1, is φ–recurrent.
Then from (3.8) and (3.16), it follows that

(3.21)
(∇W R)(X,Y )Z = {g(Y,W )g(φX,Z) − g(X,W )g(φY,Z)

− g(φR(X,Y )W,Z)} ξ − A(W )R(X,Y )Z.

This leads to the following:

Theorem 3.4. If a Sasakian manifold (M2n+1, g), n > 1, is φ–recurrent then
the relation (3.21) holds.

Let us now suppose that in a Sasakian manifold, the relation (3.21) holds.
Then from (3.21) it follows that

(3.22)

{
φ2((∇W R)(X,Y )Z) = A(W )R(X,Y )Z − A(W ){g(Y,Z)η(X)

−g(X,Z)η(Y )}ξ,

which yields
φ2((∇W R)(X,Y )Z) = A(W )R(X,Y )Z,

if X and Y are orthogonal to ξ. Hence we can state the following:
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Theorem 3.5. A Sasakian manifold (M2n+1, g), n > 1, satisfying the relation
(3.21) is φ–recurrent provided that X and Y are orthogonal to ξ.

Next, we suppose that in a φ–recurrent Sasakian manifold, the sectional
curvature of a plane π ⊂ TpM defined by

Kp(π) = g(R(X,Y )Y,X)

is a non-zero constant k, where {X,Y } is any orthonormal basis of π. Then we
have

(3.23) g((∇ZR)(X,Y )Y,X) = 0.

By virtue of (3.23) and (3.1) we obtain

(3.24) g((∇ZR)(X,Y )Y, ξ)η(X) = A(Z)g(R(X,Y )Y,X).

Since in a φ–recurrent Sasakian manifold, the relation (3.21) holds good, using
(3.21) in (3.24) we get

(3.25)

{
η(X)[g(Y,Z)g(φX, Y ) − g(X,Z)g(φY, Y ) − g(φR(X,Y )Z, Y )]

−A(Z)[g(Y, Y )η(X) − g(X,Y )η(Y )] = kA(Z).

Putting Z = ξ in (3.25) we obtain

η(ρ)[k + {g(Y, Y )η(X) − g(X,Y )η(Y )}] = 0,

which implies that
η(ρ) = 0.

Hence by (3.12) we obtain from (2.12) that

φ2((∇W R)(X,Y )Z) = 0.

This leads to the following:

Theorem 3.6. If a φ–recurrent Sasakian manifold (M2n+1, g), n > 1, has a
non–zero constant sectional curvature, then it reduces to a locally φ–symmetric
manifold in the sense of Takahashi.

References

[1] Blair, D.E., Contact manifolds in Riemannian geometry. Lecture Notes in Math.
No. 509. Springer 1976.

[2] Takahashi, T., Sasakian φ–symmetric spaces. Tohoku Math. J. 29 (1977), 91–113.

[3] Tanno, S., Isometric Immersions of Sasakian manifold in spheres. Kodai Math.
Sem. Rep. 21 (1969), 448–458.

Received by the editors September 25, 2003


