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ON ¢- ITERATIVE METHODS FOR SOLVING
EQUATIONS AND SYSTEMS*

Predrag M. Rajkovié¢!, Miomir S. Stankovié¢?, Sladjana D.
Marinkovié?

Abstract. We construct g-Taylor formula for the functions of several
variables and develop some new methods for solving equations and systems
of equations. They are much easier for application than the well-known
ones. We introduce some values for measuring their accuracy, such as
(r; @)-order of convergence. We made some analogue of known methods,
such as ¢g-Newton method.

AMS Mathematics Subject Classification (2000): 65H10

Key words and phrases: order of convergence, Newton method

1. Introduction

In the last quarter of XX century, g-calculus appeared as a connection be-
tween mathematics and physics (see [7], [8]). It has a lot of applications in dif-
ferent mathematical areas, such as: number theory, combinatorics, orthogonal
polynomials, basic hyper-geometric functions and in other sciences: quantum
theory, mechanics and theory of relativity.

Let ¢ € (0, 1). A g-natural number [n], is defined by

[n]y:==1+q+--+¢" " neN.

Generally, a g-complex number [a], is

R I I

*Supported by The Ministry of Sci. & Techn. Rep. Serbia, the projects No. 1409/1379.

IFaculty of Mechanical Engineering, University of Nis, Serbia and Montenegro, E-mail:
pecar@masfak.ni.ac.yu

2Faculty of Occupational Safety, University of Ni§, Serbia and Montenegro,E-mail:
mstan@znrfak.znrfak.ni.ac.yu

2Faculty of Electronic Engineering, University of Ni§, Serbia and Montenegro, E-mail:
sladjana@elfak.ni.ac.yu



128 P. Rajkovi¢, M. Stankovi¢, S. Marinkovic¢

Also, g-Pochammer symbol is

k—1

(z—a)® =1, (z—a)® = H(z—aqi) (k € N). (1.1)
=0

2. On g-partial derivatives and differential

Let f(Z), where & = (1,2, ...,%,) be a multivariable real continuous func-
tion. We introduce an operator €,; which multiplies a coordinate of the argu-
ment by

(Eq’if)(.’f) = f((El, ey X515, 4T5, L1y - - - ,.’En).
Furthermore,

(g N)(@) = (gq1 - -€q.nf)(E) = f(4T).

We define g-partial derivative of a function f(Z) to a variable z; by

f(@) = (eq,:f)(T)

(fUz' # 0),

Dy, f(Z)

= 1im0 Dy .. f(Z).

x;=0

In a similar way, high g-partial derivatives are

Dj oy f(#) = Dy, (D11 (@), D o f(7) = Dyt (Ditoy (7)),

Obviously,

Dg};;@;f(f) = D;"%’fzrf(f) (i,j=1,2...,n) (myn=0,1,...).
Also, for an arbitrary @ = (a1, as,...,a,) € R", we can introduce g-differential

dqf('fa 6) = (32‘1 _al)Dq,wl f(&) + ($2 - GQ)Dq,wzf(d) +oet (xn _an)Dq,wnf(&)a

and high g¢-differentials:
kpim = &)
dqf(z,a) = ((1’1 —a1)Dg .z, + (22 — a2) Dy, + -+ + (Tn — an)Dq,xn> f(a)

- ¥ [k
i1 Fin=k [i1]g!li2]q!-
ijE€Ng

Tinlg! it

Jq! LT i
s D" L F @ ][ (2 —a)t).
! SO

Notice that a continuous function f(Z) in a neighborhood that does not in-
clude any point with a zero coordinate, has also continuous g-partial derivatives.
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3. About ¢-Taylor formula for a multivariable function

Now we can discuss a new expansion of the function whose variable is from
R™. First of all, we need the next lemma.

Lemma 3.1. It is valid
Dyo(z—a)™ =n),(z —a)®V (2,0 €R, neN).
Proof. For the proof see, for example, J. Cigler [2]. O

Theorem 3.2. Suppose that all q-differentials of f(x,y) exist in some neigh-
borhood of (a,b). Then

oo n n P ,b ,

E : E :M(I —a)D(y — b)),
[n —ilg!

—0i=0 qa

Proof. Suppose that the function can be written in the following form

y) = Z Z cni(x —a) P (y — )9,

n=0 =0

Application of g-partial derivative operators D, , and D, , gives

Dy L f () ZZcmD’;;;ﬁ (@ — @)D (y — by,

n=0 7=0

On the basis of the previous lemma we conclude

Dt (x—a)D(y—b) ") =0 (k>i A m>n—i).

q, xk Y™

In other cases, we have

Dy (@ —a) (y = )"

g,k ym™

=[i]lg [t —k+1]g(x — a)(ifk) n—ilg-[n—i—m+1],(y— b)(nfifm).

Supposed expansion is valid in some neighborhood of (a,b). Putting x = a and
y = b, all members of the sum vanish, except for i = k and n — i = m. Hence,

Dk-H,"’ ] f(a,b) = Ck+m,k [k]q! [m]fl!' O

q,zkym™
In the same manner we can prove the analogous theorem for the general
case.

Theorem 3.3. Suppose that there exist all g-differentials of f(Z) in some neigh-
borhood of @. Then

fa) =Y el b Mq;
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4. On ¢-Newton-Kantorovich method

We consider a system of nonlinear equations
f(@) =0,

where f(Z) = (f1(@), f2(Z), ... [a(Z)) with & = (z1,20,...2,), n € N. We will
suppose that this system has an isolated real solution 5 Using g-Taylor series
of the function f(Z) around some value (™ ~ £, we have

Fi@) = fi@™) + 3 Dy, (@) (& —2™) (1=1,2,...,n).

=1

In the matrix form, we rewrite

(€) = F(ZT)) + Wy(@™)(€ — 7)),

where .

Wo() = Do f(&) = Dy, fi(7)],, .,
is the Jacobi matrix of g-partial derivatives. If the matrix W, is regular, there ex-
ists the inverse matrix W~ I so that we can formulate the g-Newton-Kantorovich
method in the form

—

2+ = gom) WL (@) flam).

5. On ¢g-Newton method

If in the previous speculation we took n = 1, the system of equations reduced
to the equation f(z) = 0, and the main objects of the work are functions of one
variable.

The g-derivative of a function f(z) is

f(z) — flgz)
x —qx

and the high g-derivatives Dgf =f, Dyf:= Dq(Dg’lf), n=123,....
From the above definition it is obvious that a continuous function on an
interval, which does not include 0 is continuous g¢-differentiable.
In the g-analysis, g-integral is defined by

(Dgf)(x) := (@ #0),  (Dgf)(0):= lm(Dyf)(z),  (5.1)

L) = [ 7(0d,0) =a(i - 0> flag")a"
0 n=0
Notice that according to [6] it holds

1) = [ 6) de=tm1,(1).
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Also,
b b a
/ F(0)dy(t) = / F(B)dq(t) — / F()dy(t).

The next g-Taylor formula with the remainder term

n—1 Dgf a
_Z( )(a)

f(CE)— [k}q' (-T—a)(k)—l—Rn(f,x7a7q)7
k=0

where

t=x T — (n) n
Ra(fmsa) = [ @0 (DiN® , (5:2)

t=a r—t [ni 1](1'

is given in [3] (see also [5]).

Suppose that an equation f(z) = 0 has the unique isolated solution z = &.
If x,, is an approximation to the exact solution &, by using Jackson’s g-Taylor
formula we have

0= f(&) ~ f(zn) + (Def)(xn)(§ — 20),

hence f( )
Ty
$X I D, )

So, we can construct the g-Newton method

Bl = Ty — f(an)
" " (Dgf)(@n)

According to (5.1), we can rearrange the above expression to the form

Tpo1 =an 41— _l-aq
n+ n - %
This method written in the form
Tn — qTn

Tn+l = Tp —

resembles the method of chords (secants).
The next theorem is a g-analogue of the well-known statement about con-
vergence (see [1] ).

Theorem 5.1. Let the equation f(x) =0 has a unique isolated root x = & and
a>0, 1 <p<2. Let the function f(x) satisfies

1) |(Dgf)(@)| = M~ >0,
2)  |f(@) = fy) = (Def) () (@ —y)| < LP~ |z — y?,
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where My and L are positive constants. Then, for all initial values xy €
(€ =b,&+D), where b = min{a, My /L}, the g-Newton method converges to exact
solution of the equation f(x) =0 and it is valid

n

6 — 2l < (Aj) e mol”
Proof. We can write the g-Newton method in the form
(D)) s — 0) = — ).
From the condition (2), we have
£6) — F(on) — (Do) @n) € — )| < IPVE — 2o
Hence, using f(¢) = 0, we get
(Do) ()€ — wms)] < L€ — al?

By the condition (1) we have

-1

P L \p-1
€ — Tpya] <m|§*mn\p< (M) 1§ — zp|.
Now, if z,, € (£ — b, +b), then

€ — Zpia] < (%)p_lbp - (%)Hb%lb <b.

Denote by ¢ = L/M;. Now
1§ — Ty <Cp71|§*xn|p = cl§—app| <P — 2/,

wherefrom we get the final conclusion. [

6. Analysis of the convergence and error estimation

Our purpose is to formulate and prove the theorem for scanning the conver-
gence of an iterative process

Tpr1 = P(xr) (K=0,1,2,...),
by g-analysis.

Theorem 6.1. Suppose that ®(x) is a continuous function on [a,b] (0 & [a,b]),
which satisfies the following conditions:

(1) O [a,b] — [a,b],
2) (vq € (min{a, b}/ max{a, b}, 1)) (\m e (a, b)) L (D)) <A< 1.
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Then the iterative process xp41 = P(ag), k= 0,1,2,..., with the initial value
xo € [a,b], is converging to the fixed point of ®(x), i.e.,

lim zp =¢, @) =&

k— o0

Proof. Notice that for a continuous function ®(z) on [a,b] (0 ¢ [a,b]), for all =
and y such that a < z < y < b, it is valid

D(y) — P(x) = (Dayy®) W)y — ), P(y) — P(x) = (Dy/e®) () (y — ).
Consider -
5 = X0 + Z(xk+1 — ij)
k=0
Let x,(CM) = max{x, Tp_1}, :r,(Cm)
we have

= min{xg,2x_1} and ¢ = xk )/x . Now,

®(zy) — (1) = (Dg®@)(xf™)) (@ — z4-1).

So, it is valid

|xk+1 - xk| = |(Dq<I>)(x,(€M))} |k — h—1] < A |2k — Tp—1]-
Since
‘$k+1 — xk‘ < A¥zy — o),
we get

Z|$k+1 — x| < |21 — o ZAk u~

Hence, the series S converges and

&= lim S5, = hm Tptl-
n—oo

Since ®(z) is a continuous function we have

&= hm Tpt1 = lim ®(z,) = @( lim z,) = ®(§). O

n— n—oo n—oo

Definition 6.1 An iterative method x,11 = ®(x,) (n = 0,1,2,...) with the
fixed point &, has the (r;¢)-order of convergence if there exists C, € RT such
that for a large enough n it is valid

€ — Zpi1] < Col(€ — 2n) M),

where the last exponent (r) is defined by (1.1).

The next theorem we proved in [9)].
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Theorem 6.2. Let f(xz) be a continuous function on [a,b] and R,(f,z,¢,q),
(z,¢ € (a,b)) be the remainder term (5.2) in the g-Taylor formula. Then there
exists G € (0,1) such that for all q € (g,1), there can be found 7 € (a,b)
between ¢ and z which satisfies

(Dg f)(7)
[n]q!

Now, we are ready to prove the main theorem of this section.

Rn(ﬂz,c,q): (z_c)(n)

Theorem 6.3. Suppose that a function f(x) is continuous on a segment [a,b]
and that the equation f(x) = 0 has a unique isolated solution £ € (a,b). If the
conditions

(D f)(@)| = My, [(Dff)(@)] < Mo,

are satisfied for some positive constants My and My and all x € (a,b), then
there exists G € (0,1) such that for all q € (4,1), the iterations obtained by
the g-Newton method satisfy

M-
€ — pqa| < ml(f — z3,)?)],

i.e., the q-Newton method has the (2;q)-order of convergence.

Proof. From the formulation of the g-Newton method we have

gt flxy)
Tpy1 —E=x —§ Do) @)’

hence
F(@r) + (Dgf)(@r)(§ — xk) = (Do f) (k) (§ = Tpt1)-
By using the ¢g-Taylor formula of order n = 2 at the point x for f(£), we have

f(é.) = f(l‘k) + (qu)(l‘k)(f - $k) + RQ(f7§7xkaQ)'
Since f(£) =0, we get

(D f) (@) (€ = wp41) = —Ra(f, &, 2k, ),

i.e.
_ _ |R2(fu€7xk7Q)‘
&=l = 0, Dl

According to Theorem 6.2, there exists ¢ € (0,1) such that for all ¢ € (g, 1) it
can be found £ € (a,b) such that

(D71)(E)

a, &

RZ(fagvxkaq) =
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Now,

|€ — zpi1] = (DZH)E)] (€ — xx) P
D, ) ()] Trq

Using the conditions that satisfy the function f(z) and its g-derivatives, we get
the statement of the theorem. [

7. Examples
Example 7.1 Let us consider the next system of nonlinear equations
234 Twg — x5 =2, 23 —4923 + 23 =6, 27+ T(xg—1)— 23 = -3.

If we use the g-method, we get the following Jacobi matrix

(1+q)z: 7 —(14q)(1 + ¢*)a3
We=1 1+qa1 —49(1+q)az (1+q)zs
(14 q)xy 7 —(1+ q)x3

Using ¢ = 0.9, we find the solutions (z; = /5, 2o = 1/7, x3 = v/2), with an
accuracy on five decimal digits after n = 7 iterations.

2 1.613 2.199 2.1794 2.2331 2.23607
2. o |,] 0705 |,] 0353 |,| 0.1937 |, | 0.1450 | — | 0.142871
1 2.299 1.747 1.4633 1.4078 1.41427

The next example will show the advantages of the g-Newton-Kantorovich
method over the classical one.

Example 7.2 Let us consider the following system of nonlinear equations
2 Tx2—36 127 4
23 4]+ €720 =2, log,p (=L — 6) + i = 10.
T2

If we use the g-method for ¢ = 0.9, we get the following iterations for the exact
solutions (z1,22) = (v/3, 36/7) :

k) 2 1.78067 1.73405 1.73208 1.73205 . 1.73205
| 5 7| 5.29844 || 5.20213 |’ | 5.15274 |’ | 5.14302 5.14286 |

The classical Newton-Kantorovich method with initial values 1 = 2, 9 = 5
can not be used in this case because the partial derivative of the first function
with respect to the first variable does not exist.
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Example 7.3. Let us consider the equation

fla) = /2% = 927 + 240 — 20 + ¢*/2 = 0.

The function f(z) is not differentiable at the point x = 2. However, it is not
problem for our ¢-Newton method. Really, starting with the initial value ¢y = 2,
we find the solution with six exact digits after five iterations.

y

iteration value

2.000000
1.592916
1.043515
0.970143

0.969425
0.969426

T = W N + O

Figure 7.1. The function is not differentiable at the initial point,
but this does not influence convergence

Example 7.4. The advantages of the ¢g-Newton method over the classical
Newton method can be seen in the case of the equations with multiple zeros.
So, for solving the equation

f(x) = 2% — 52° + 8.250* — 102® + 13.522 — 520+ 6.25 =0, 1z = 2,

the classical Newton method has to be replaced by the special Newton method
for multiple zeros (£ = 2.5 is a double root). But, the g-Newton method has

large enough intervals of convergence, which can be seen Figure 7.2.
X

6
4
2
-2
-4
-6

Figure 7.2. Solving the equation with multiple roots.
The values of the iterations from n = 100 to n = 140.
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Remark. All examples were evaluated by the software package MATHE-

MATICA.
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