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ON q- ITERATIVE METHODS FOR SOLVING
EQUATIONS AND SYSTEMS∗

Predrag M. Rajković1, Miomir S. Stanković2, Sladjana D.
Marinković2

Abstract. We construct q-Taylor formula for the functions of several
variables and develop some new methods for solving equations and systems
of equations. They are much easier for application than the well-known
ones. We introduce some values for measuring their accuracy, such as
(r; q)-order of convergence. We made some analogue of known methods,
such as q-Newton method.
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1. Introduction

In the last quarter of XX century, q-calculus appeared as a connection be-
tween mathematics and physics (see [7], [8]). It has a lot of applications in dif-
ferent mathematical areas, such as: number theory, combinatorics, orthogonal
polynomials, basic hyper-geometric functions and in other sciences: quantum
theory, mechanics and theory of relativity.

Let q ∈ (0, 1). A q-natural number [n]q is defined by

[n]q := 1 + q + · · ·+ qn−1, n ∈ N.

Generally, a q-complex number [a]q is

[a]q :=
1− qa

1− q
, a ∈ C.

The factorial of a number [n]q and q-binomial coefficient, we define by

[0]q! := 1, [n]q! := [n]q[n− 1]q · · · [1]q,
[
n

k

]

q

=
[n]q!

[k]q![n− k]q!
.
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Also, q-Pochammer symbol is

(z − a)(0) = 1, (z − a)(k) =
k−1∏

i=0

(z − aqi) (k ∈ N). (1.1)

2. On q-partial derivatives and differential

Let f(~x), where ~x = (x1, x2, . . . , xn) be a multivariable real continuous func-
tion. We introduce an operator εq,i which multiplies a coordinate of the argu-
ment by

(εq,if)(~x) = f(x1, . . . , xi−1, qxi, xi+1, . . . , xn).

Furthermore,
(εqf)(~x) := (εq,1 · · · εq,nf)(~x) = f(q~x).

We define q-partial derivative of a function f(~x) to a variable xi by

Dq,xif(~x) :=
f(~x)− (εq,if)(~x)

(1− q)xi
(xi 6= 0),

Dq,xif(~x)
∣∣∣
xi=0

= lim
xi→0

Dq,xif(~x).

In a similar way, high q-partial derivatives are

Dn
q,xn

i
f(~x) := Dq,xi

(
Dn−1

q,xn−1
i

f(~x)
)
, Dm+n

q,xm
i

,xn
j
f(~x) := Dm

q,xm
i

(
Dn

q,xn
j
f(~x)

)
.

Obviously,

Dm+n
q,xm

i
,xn

j
f(~x) = Dm+n

q,xn
j

,xm
i

f(~x) (i, j = 1, 2 . . . , n) (m,n = 0, 1, . . .).

Also, for an arbitrary ~a = (a1, a2, . . . , an) ∈ Rn, we can introduce q-differential

dqf(~x,~a) := (x1−a1)Dq,x1f(~a)+(x2−a2)Dq,x2f(~a)+ · · ·+(xn−an)Dq,xnf(~a),

and high q-differentials:

dk
qf(~x,~a) :=

(
(x1 − a1)Dq,x1 + (x2 − a2)Dq,x2 + · · ·+ (xn − an)Dq,xn

)(k)

f(~a)

=
∑

i1+···+in=k
ij∈N0

[k]q!
[i1]q![i2]q! · · · [in]q!

Dk

q,x
i1
i

,···,xin
n

f(~a)
n∏

j=1

(xj − aj)(ij).

Notice that a continuous function f(~x) in a neighborhood that does not in-
clude any point with a zero coordinate, has also continuous q-partial derivatives.
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3. About q-Taylor formula for a multivariable function

Now we can discuss a new expansion of the function whose variable is from
Rn. First of all, we need the next lemma.

Lemma 3.1. It is valid

Dq,x(x− α)(n) = [n]q(x− α)(n−1) (x, α ∈ R, n ∈ N).

Proof. For the proof see, for example, J. Cigler [2]. ¤

Theorem 3.2. Suppose that all q-differentials of f(x, y) exist in some neigh-
borhood of (a, b). Then

f(x, y) =
∞∑

n=0

n∑

i=0

Dn
q,xi,yn−if(a, b)

[i]q![n− i]q!
(x− a)(i)(y − b)(n−i).

Proof. Suppose that the function can be written in the following form

f(x, y) =
∞∑

n=0

n∑

i=0

cn,i(x− a)(i)(y − b)(n−i).

Application of q-partial derivative operators Dq,x and Dq,y gives

Dk+m
q,xk,ymf(x, y) =

∞∑
n=0

n∑

i=0

cn,iD
k+m
q,xk,ym(x− a)(i)(y − b)(n−i).

On the basis of the previous lemma we conclude

Dk+m
q,xk,ym(x− a)(i)(y − b)(n−i) = 0 (k > i ∧ m > n− i).

In other cases, we have

Dk+m
q,xk,ym(x− a)(i)(y − b)(n−i)

= [i]q · · · [i− k + 1]q(x− a)(i−k) [n− i]q · · · [n− i−m + 1]q(y − b)(n−i−m).

Supposed expansion is valid in some neighborhood of (a, b). Putting x = a and
y = b, all members of the sum vanish, except for i = k and n− i = m. Hence,

Dk+m
q,xk,ymf(a, b) = ck+m,k [k]q! [m]q!. ¤

In the same manner we can prove the analogous theorem for the general
case.

Theorem 3.3. Suppose that there exist all q-differentials of f(~x) in some neigh-
borhood of ~a. Then

f(~x) =
∞∑

k=0

dk
qf(~x,~a)
[k]q!

.
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4. On q-Newton-Kantorovich method

We consider a system of nonlinear equations

~f(~x) = 0,

where ~f(~x) =
(
f1(~x), f2(~x), . . . fn(~x)

)
with ~x = (x1, x2, . . . xn), n ∈ N. We will

suppose that this system has an isolated real solution ~ξ. Using q-Taylor series
of the function ~f(~x) around some value ~x(m) ≈ ~ξ, we have

fi(~ξ) ≈ fi(~x(m)) +
n∑

j=1

Dq,xj fi(~x(m))(ξj − x
(m)
j ) (i = 1, 2, . . . , n).

In the matrix form, we rewrite

~f(~ξ) ≈ ~f(~x(m)) + Wq(~x(m))(~ξ − ~x(m)),

where
Wq(~x) = Dq

~f(~x) =
[
Dq,xj fi(~x)

]
n×n

is the Jacobi matrix of q-partial derivatives. If the matrix Wq is regular, there ex-
ists the inverse matrix W−1

q , so that we can formulate the q-Newton-Kantorovich
method in the form

~x(m+1) = ~x(m) −W−1
q (~x(m))~f(~x(m)).

5. On q-Newton method

If in the previous speculation we took n = 1, the system of equations reduced
to the equation f(x) = 0, and the main objects of the work are functions of one
variable.

The q-derivative of a function f(x) is

(Dqf)(x) :=
f(x)− f(qx)

x− qx
(x 6= 0), (Dqf)(0) := lim

x→0
(Dqf)(x), (5.1)

and the high q-derivatives D0
qf := f, Dn

q f := Dq(Dn−1
q f), n = 1, 2, 3, . . . .

From the above definition it is obvious that a continuous function on an
interval, which does not include 0 is continuous q-differentiable.

In the q-analysis, q-integral is defined by

Iq(f) =
∫ a

0

f(t)dq(t) := a(1− q)
∞∑

n=0

f(aqn)qn.

Notice that according to [6] it holds

I(f) =
∫ a

0

f(t) dt = lim
q↑1

Iq(f).
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Also, ∫ b

a

f(t)dq(t) :=
∫ b

0

f(t)dq(t)−
∫ a

0

f(t)dq(t).

The next q-Taylor formula with the remainder term

f(x) =
n−1∑

k=0

(
Dk

q f
)
(a)

[k]q!
(x− a)(k) + Rn(f, x, a, q),

where

Rn(f, x, a, q) =
∫ t=x

t=a

(x− t)(n)

x− t

(
Dn

q f
)
(t)

[n− 1]q!
dq(t). (5.2)

is given in [3] (see also [5]).
Suppose that an equation f(x) = 0 has the unique isolated solution x = ξ.

If xn is an approximation to the exact solution ξ, by using Jackson’s q-Taylor
formula we have

0 = f(ξ) ≈ f(xn) + (Dqf)(xn)(ξ − xn),

hence

ξ ≈ xn − f(xn)
(Dqf)(xn)

.

So, we can construct the q-Newton method

xn+1 = xn − f(xn)
(Dqf)(xn)

.

According to (5.1), we can rearrange the above expression to the form

xn+1 = xn



1− 1− q

1− f(qxn)
f(xn)



 .

This method written in the form

xn+1 = xn − xn − qxn

f(xn)− f(qxn)
f(xn)

resembles the method of chords (secants).
The next theorem is a q-analogue of the well-known statement about con-

vergence (see [1] ).

Theorem 5.1. Let the equation f(x) = 0 has a unique isolated root x = ξ and
a > 0, 1 ≤ p ≤ 2. Let the function f(x) satisfies

(1) |(Dqf)(x)| ≥ Mp−1
1 > 0,

(2) |f(x)− f(y)− (Dqf)(y)(x− y)| < Lp−1|x− y|p,
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where M1 and L are positive constants. Then, for all initial values x0 ∈
(ξ− b, ξ + b), where b = min{a,M1/L}, the q-Newton method converges to exact
solution of the equation f(x) = 0 and it is valid

|ξ − xn| ≤
(

L

M1

)pn−1

|ξ − x0|p
n

.

Proof. We can write the q-Newton method in the form

(Dqf)(xn)(xn+1 − xn) = −f(xn).

From the condition (2), we have

|f(ξ)− f(xn)− (Dqf)(xn)(ξ − xn)| < Lp−1|ξ − xn|p.
Hence, using f(ξ) = 0, we get

|(Dqf)(xn)(ξ − xn+1)| < Lp−1|ξ − xn|p.
By the condition (1) we have

|ξ − xn+1| < Lp−1

|(Dqf)(xn)| |ξ − xn|p <
( L

M1

)p−1

|ξ − xn|p.

Now, if xn ∈ (ξ − b, ξ + b), then

|ξ − xn+1| <
( L

M1

)p−1

bp =
( L

M1

)p−1

bp−1b ≤ b.

Denote by c = L/M1. Now

|ξ − xn+1| < cp−1|ξ − xn|p ⇒ c |ξ − xn+1| < cp|ξ − xn|p,
wherefrom we get the final conclusion. ¤

6. Analysis of the convergence and error estimation

Our purpose is to formulate and prove the theorem for scanning the conver-
gence of an iterative process

xk+1 = Φ(xk) (k = 0, 1, 2, . . .),

by q-analysis.

Theorem 6.1. Suppose that Φ(x) is a continuous function on [a, b] (0 /∈ [a, b]),
which satisfies the following conditions:

(1) Φ : [a, b] 7→ [a, b],

(2)
(
∀q ∈ (min{a, b}/ max{a, b}, 1)

)(
∀x ∈ (a, b)

)
:

∣∣(Dqf)(x)
∣∣ ≤ λ < 1.
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Then the iterative process xk+1 = Φ(xk), k = 0, 1, 2, . . . , with the initial value
x0 ∈ [a, b], is converging to the fixed point of Φ(x), i.e.,

lim
k→∞

xk = ξ, Φ(ξ) = ξ.

Proof. Notice that for a continuous function Φ(x) on [a, b] (0 /∈ [a, b]), for all x
and y such that a < x < y < b, it is valid

Φ(y)− Φ(x) =
(
Dx/yΦ

)
(y)(y − x), Φ(y)− Φ(x) =

(
Dy/xΦ

)
(x)(y − x).

Consider

ξ = x0 +
∞∑

k=0

(xk+1 − xk).

Let x
(M)
k = max{xk, xk−1}, x

(m)
k = min{xk, xk−1} and q = x

(m)
k /x

(M)
k . Now,

we have
Φ(xk)− Φ(xk−1) = (DqΦ)(x(M)

k )(xk − xk−1).

So, it is valid
∣∣xk+1 − xk

∣∣ =
∣∣(DqΦ

)
(x(M)

k )
∣∣ |xk − xk−1| ≤ λ |xk − xk−1|.

Since ∣∣xk+1 − xk

∣∣ ≤ λk|x1 − x0|,
we get

∞∑

k=0

|xk+1 − xk| ≤ |x1 − x0|
∞∑

k=0

λk =
|x1 − x0|

1− λ
.

Hence, the series S converges and

ξ = lim
n→∞

Sn = lim
n→∞

xn+1.

Since Φ(x) is a continuous function we have

ξ = lim
n→∞

xn+1 = lim
n→∞

Φ(xn) = Φ( lim
n→∞

xn) = Φ(ξ). ¤

Definition 6.1. An iterative method xn+1 = Φ(xn) (n = 0, 1, 2, . . .) with the
fixed point ξ, has the (r; q)-order of convergence if there exists Cr ∈ R+ such
that for a large enough n it is valid

|ξ − xn+1| < Cr|(ξ − xn)(r)|,

where the last exponent (r) is defined by (1.1).

The next theorem we proved in [9].
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Theorem 6.2. Let f(x) be a continuous function on [a, b] and Rn(f, z, c, q),
(z, c ∈ (a, b)) be the remainder term (5.2) in the q-Taylor formula. Then there
exists q̂ ∈ (0, 1) such that for all q ∈ (q̂, 1), there can be found τ ∈ (a, b)
between c and z which satisfies

Rn(f, z, c, q) =
(Dn

q f)(τ)
[n]q!

(z − c)(n).

Now, we are ready to prove the main theorem of this section.

Theorem 6.3. Suppose that a function f(x) is continuous on a segment [a, b]
and that the equation f(x) = 0 has a unique isolated solution ξ ∈ (a, b). If the
conditions

|(Dqf)(x)| ≥ M1, |(D2
qf)(x)| ≤ M2,

are satisfied for some positive constants M1 and M2 and all x ∈ (a, b), then
there exists q̂ ∈ (0, 1) such that for all q ∈ (q̂, 1), the iterations obtained by
the q-Newton method satisfy

|ξ − xk+1| ≤ M2

(1 + q)M1
|(ξ − xk)(2)|,

i.e., the q-Newton method has the (2; q)-order of convergence.

Proof. From the formulation of the q-Newton method we have

xk+1 − ξ = xk − ξ − f(xk)
(Dqf)(xk)

,

hence
f(xk) + (Dqf)(xk)(ξ − xk) = (Dqf)(xk)(ξ − xk+1).

By using the q-Taylor formula of order n = 2 at the point xk for f(ξ), we have

f(ξ) = f(xk) + (Dqf)(xk)(ξ − xk) + R2(f, ξ, xk, q).

Since f(ξ) = 0, we get

(Dqf)(xk)(ξ − xk+1) = −R2(f, ξ, xk, q),

i.e.

|ξ − xk+1| = |R2(f, ξ, xk, q)|
|(Dqf)(xk)| .

According to Theorem 6.2, there exists q̂ ∈ (0, 1) such that for all q ∈ (q̂, 1) it
can be found ξ ∈ (a, b) such that

R2(f, ξ, xk, q) =
(D2

qf)(ξ)
[2]q

(ξ − xk)(2).
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Now,

|ξ − xk+1| =
|(D2

qf)(ξ)|
|(Dqf)(xk)|

|(ξ − xk)(2)|
1 + q

.

Using the conditions that satisfy the function f(x) and its q-derivatives, we get
the statement of the theorem. ¤

7. Examples

Example 7.1 Let us consider the next system of nonlinear equations

x2
1 + 7x2 − x4

3 = 2, x2
1 − 49x2

2 + x2
3 = 6, x2

1 + 7(x2 − 1)− x2
3 = −3.

If we use the q-method, we get the following Jacobi matrix

Wq =




(1 + q)x1 7 −(1 + q)(1 + q2)x3
3

(1 + q)x1 −49(1 + q)x2 (1 + q)x3

(1 + q)x1 7 −(1 + q)x3


 .

Using q = 0.9, we find the solutions (x1 =
√

5, x2 = 1/7, x3 =
√

2), with an
accuracy on five decimal digits after n = 7 iterations.

~x(k) :




2
0
1


,




1.613
0.705
2.299


,




2.199
0.353
1.747


,




2.1794
0.1937
1.4633


,




2.2331
0.1450
1.4078


 →




2.23607
0.142871
1.41427


.

The next example will show the advantages of the q-Newton-Kantorovich
method over the classical one.

Example 7.2 Let us consider the following system of nonlinear equations

|x2
1 − 4|+ e7x2−36 = 2, log10

(12x2
1

x2
− 6

)
+ x4

1 = 10.

If we use the q-method for q = 0.9, we get the following iterations for the exact
solutions (x1, x2) = (

√
3, 36/7) :

~x(k) :
[

2
5

]
,

[
1.78067
5.29844

]
,

[
1.73405
5.20213

]
,

[
1.73208
5.15274

]
,

[
1.73205
5.14302

]
→

[
1.73205
5.14286

]
.

The classical Newton-Kantorovich method with initial values x1 = 2, x2 = 5
can not be used in this case because the partial derivative of the first function
with respect to the first variable does not exist.
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Example 7.3. Let us consider the equation

f(x) ≡ 3
√

x3 − 9x2 + 24x− 20 + ex/2 = 0.

The function f(x) is not differentiable at the point x = 2. However, it is not
problem for our q-Newton method. Really, starting with the initial value x0 = 2,
we find the solution with six exact digits after five iterations.

1 2 3 4
x

-1

1

2

3

4
y

iteration value

0 2.000000
1 1.592916
2 1.043515
3 0.970143
4 0.969425
5 0.969426

Figure 7.1. The function is not differentiable at the initial point,
but this does not influence convergence

Example 7.4. The advantages of the q-Newton method over the classical
Newton method can be seen in the case of the equations with multiple zeros.
So, for solving the equation

f(x) ≡ x6 − 5x5 + 8.25x4 − 10x3 + 13.5x2 − 5x + 6.25 = 0, x0 = 2,

the classical Newton method has to be replaced by the special Newton method
for multiple zeros (ξ = 2.5 is a double root). But, the q-Newton method has
large enough intervals of convergence, which can be seen Figure 7.2.

0.5 1 1.5 2
q

-6

-4

-2

2

4

6

x

Figure 7.2. Solving the equation with multiple roots.
The values of the iterations from n = 100 to n = 140.
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Remark. All examples were evaluated by the software package Mathe-
matica.
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