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SPP WITH DISCONTINOUS FUNCTION AND
SPECTRAL APPROXIMATION1

Nevenka Adžić2, Zoran Ovcin2

Abstract. We shall consider the problem −ε2y” + g(x)y = f(x), y(0) =
a, y(1) = b, where the function f(x) is not continuous at some point
d ∈ (a, b). The approximate solution will be constructed inside the layers
using truncated Chebyshev series.
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1. Introduction

In this paper we shall consider a self-adjoint singularly perturbed reaction-
diffusion boundary value problem in one dimension with a discontinuous source
term, described by

−ε2u′′ε + a(x)uε = f(x), x ∈ [0.d) ∪ (d, 1]

uε(0) = a, uε(1) = b(1)

f(d−) 6= f(d+), a(x) ≥ α > 0, x ∈ [0, 1]

It was shown in [1] that the problem (1) has a unique solution uε ∈ C1[0, 1] ∩
C2([0, d) ∪ (d, 1]) given by

uε(x) =
{

y1(x) + (a− y1(0))φ1(x) + Aφ2(x), x ∈ [0, d)
y2(x) + Bφ1(x) + (b− y2(1))φ2(x), x ∈ (d, 1]

where y1(x) and y2(x) are particular solutions of the differential equations

−ε2y′′1 + a(x)y1 = f(x), x ∈ [0, d)

−ε2y′′2 + a(x)y2 = f(x), x ∈ (d, 1],

functions φ1(x) and φ2(x) are the solutions of the boundary value problems

−ε2φ′′1 + a(x)φ1 = 0, x ∈ (0, 1), φ1(0) = 1, φ1(1) = 0
−ε2φ′′2 + a(x)φ2 = 0, x ∈ (0, 1), φ2(0) = 0, φ2(1) = 1
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and constants A and B are chosen in such a way that

uε(d−) = uε(d+), u′ε(d
−) = u′ε(d

+),

which means that uε(x) ∈ C1[0, 1].
The jump of function f(x) at the point x = d implies that the solution of the

reduced problem will also have a discontinuity at x = d, so we shall represent
it as

zε(x) =
{

zl(x), x ∈ [0, d)
zr(x), x ∈ (d, 1]

where

a(x)zl(x) = f(x), x ∈ [0, d)
a(x)zr(x) = f(x), x ∈ (d, 1] .

We can see that

zl(d−) =
f(d−)
a(d)

and zr(d+) =
f(d+)
a(d)

,

which means that the solution uε(x) has

• boundary layers at x = 0 and x = 1 and

• interior layer at x = d.

It is well known that the layer length is of order O(ε).

2. Approximation of the solution

In order to solve problem (1) we shall divide the interval [0, 1] into six subin-
tervals using division points x0 = c0ε, xl = d − clε, x = d, xr = d + crε and
x1 = 1− c1ε which choice will be discussed in the next section. Upon subinter-
vals [x0, xl] and [xr, x1] exact solution is approximated by the reduced solution
zε(x), and upon the other four subintervals the approximate solution will be
represented as the sum of the reduced solution and appropriate layer solution.
Thus, the exact solution is approximated by

u(x) =





zl(x) + u0(x) x ∈ [0, c0ε]
zl(x) x ∈ (c0ε, d− clε)
zl(x) + ul(x) x ∈ [d− clε, d)
zr(x) + ur(x) x ∈ (d, d + crε]
zr(x) x ∈ (d + crε, 1− c1ε)
zr(x) + u1(x) x ∈ [1− c1ε, 1]

(2)

where functions u0(x), ul(x), ur(x) and u1(x) represent layer solutions and
satisfy

−ε2u′′0(x) + a(x)u0(x) = ε2z′′l (x), x ∈ [0, c0ε],(3)
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u0(0) = a− zl(0) = A, u0(c0ε) = 0

−ε2u′′l (x) + a(x)ul(x) = ε2z′′l (x), x ∈ [d− clε, d)(4)

−ε2u′′r (x) + a(x)ur(x) = ε2z′′r (x), x ∈ (d, d + crε](5)

ul(d− clε) = 0, ur(d + crε) = 0(6)

zl(d) + ul(d) = zr(d) + ur(d),(7)

z′l(d) + u′l(d) = z′r(d) + u′r(d),(8)

−ε2u′′1(x) + a(x)u1(x) = ε2z′′r (x), x ∈ [1− c1ε, 1],(9)

u1(1− c1ε) = 0, u1(1) = b− zr(1) = B.

In order to evaluate layer solutions we shall use standard spectral approx-
imation which means that we shall represent them in the form of truncated
Chebyshev series. The procedure for boundary layer functions u0(x) and u1(x),
which approximate solutions of the problems (3) and (9), was constructed in
some earlier authors’ papers (see e.g. [2]). Using the same technique, we shall
carry out the procedure for interior layer functions ul(x) and ur(x). In that
purpose we introduce two stretching variables t and s given by:

x = ϕ(t) =
clε

2
(t− 1) + d,(10)

which transforms the interior layer subinterval [d− clε, d] into [−1, 1], and

x = ψ(s) =
crε

2
(s + 1) + d,(11)

which transforms the interior layer subinterval [d, d + crε] into [−1, 1]. Now we
can represent the layer solutions in the form of truncated Chebyshev series of
degree n

ul(x) = ul

(clε

2
(t− 1) + d

)
= wl(t) =

n∑

k=0

′βkTk(t)(12)

and

ur(x) = ur

(crε

2
(s + 1) + d

)
= wr(s) =

n∑

k=0

′γkTk(s).(13)

3. Division points

In some of their earlier papers concerning standard self-adjoint SPP (see e.g.
[3]), the authors have shown that the accuracy of the spectral approximation
vitally depends on the choice of the division points x0 = c0ε and x1 = 1− c1ε.
The optimal choice was derived by the use of so-called resemblance function,
evaluating numbers c0 and c1 in terms of degree n of the appropriate truncated
Chebyshev series. It is necessary to perform the same procedure to evaluate the
interior division points xl = d− clε and xr = d + crε.
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Definition 1. The resemblance function for the point xr = d+ crε is a polyno-
mial q(x) of degree n such that

a) q(xr) = 0 is the minimum for q(x) if zr(d) < zl(d), and maximum if
zr(d) > zl(d)

b) q(x) is concave if zr(d) < zl(d), and convex if zr(d) > zl(d) for all x ∈
(d, xr)

c) q(d) = zl(d)−zr(d)
2 = z∗.

Verifying the conditions from Definition 1 it can be easily proved that the
following lemma holds:

Lemma 1. Polynomial

q(x) = z∗
(

d + crε− x

crε

)n

(14)

is the resemblance function for the point xr = d + crε.

The division point is evaluated from the request that resemblance function has
to satisfy the appropriate differential equation at the layer point.

Lemma 2. The number cr which determines division point xr = d + crε is
given by

cr =

√
n(n− 1)z∗

a(d)z∗ − ε2z′′r (d)
≈

√
n(n− 1)

a(d)
.

Proof: We introduce (14) into the differential equation (5) and ask that it is
satisfied at the layer point x = d, which gives us

n(n− 1) · z∗ − c2
ra(d) · z∗ = −c2

rε
2z′′r (d).

The positive solution of the above equation is

cr =

√
n(n− 1)z∗

a(d)z∗ − ε2z′′r (d)
.

If ε is sufficiently small, we can neglect the term ε2z′′r (d), so we come to

cr ≈
√

n(n− 1)
a(d)

.

Using the same procedure for the division point xl = d− clε we obtain that

cl =

√
n(n− 1)z∗

a(d)z∗ − ε2z′′l (d)
≈

√
n(n− 1)

a(d)
.
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4. Spectral approximation of the layer solutions

Once the division points are determined, we can proceed to construct spec-
tral approximation for the layer solutions. In that purpose we have to determine
coefficients βk and γk, k = 0, . . . , n in (12) and (13).

Theorem 1. The coefficients βk and γk, k = 0, . . . , n, which determine spec-
tral approximation (12) and (13) for the layer solutions ul(x) and ur(x) of the
problem (4)–(8), represent the solution of the system

n∑

k=0

′ (−ε2T ′′k (ti) + a (ϕ(ti)) Tk(ti)
)
βk = ε2z′′l (ϕ(ti)) , i = 1, . . . , n− 1(15)

n∑

k=0

′ (−ε2T ′′k (ti) + a (ψ(ti)) Tk(ti)
)
γk = ε2z′′r (ψ(ti)) , i = 1, . . . , n− 1(16)

with ti = cos iπ
n

n∑

k=0

′(−1)kβk = 0 ,

n∑

k=0

′γk = 0(17)

n∑

k=0

′ (βk − (−1)kγk

)
= zr(d)− zl(d)(18)

n∑

k=0

′k2
(
βk − (−1)k+1γk

)
= z′r(d)− z′l(d)(19)

Proof: We introduce truncated Chebyshev series (12) and (13) into (4) and (5),
apply transformation of variables (10),(11) and collocate the obtained equalities
at Gauss-Lobatto nodes ti = cos iπ

n , i = 1, . . . , n − 1, which gives us the first
2n − 2 equations (15),(16). Equations (17)-(19) are obtained introducing (12)
and (13) into (6)-(8) and using that

Tk(±1) = (±1)k and T ′k(±1) = (±1)kk2, k = 0, 1, . . . .

5. Numerical example

We have tested numerical example given in [1]

−ε2u′′ + u =
{

0.7 x ∈ [0, 0.5)
−0.6 x ∈ (0.5, 1]

u(0) = 0 , u(1) = 0
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The first picture represents the
graph of the exact solution and the ap-
proximate solution constructed by the
proposed procedure upon the interval
[d − 2clε, d + 2crε], which includes in-
terior layer. Quite modest values ε =
10−2 and n = 3 are chosen in purpose
to distinguish the exact solution from
the approximate one.

The second picture represents the error estimate (the difference between the
exact solution and the approximate one) upon the same interval for ε = 10−8

when n = 6 and n = 12. It shows a high accuracy of the presented method.
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[3] Adžić, N., Ovcin, Z., Division Point in Spectral Approximation for the Layer Solu-
tion, XIV Conference on Applied Mathematics, D. Herceg, K. Surla, Z. Lužanin,
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