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ON AN INTEGRAL EQUATION

-Durd̄ica Takači1, Arpad Takači1

Abstract. In the recent paper [2], the authors obtained new proofs on the
existence and uniqueness of the solution of the Volterra linear equation.
Applying their results, in this paper we express the exact and approx-
imate solution of the equation in the field of Mikusiński operators, F ,
which corresponds to an integro–differential equation.
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1. Introduction

In this paper we consider the Volterra linear equation

x(t) +
∫ t

0

k(t− τ)x(τ) dτ = f(t),(1)

the integro–differential–difference equation of the form

x′(t) + λx(t) +
∫ t

0

k(t− τ)x(τ) dτ = f(t), with x(0) = x0,(2)

where k and f are continuous functions, and a general equation of the form

x(r)(t) +
r−1∑

i=0

Aix
(i) +

r1∑

i=0

∫ t

0

ki(t− τ)x(i)(τ) dτ = f(t),(3)

with the appropriate conditions

x(i)(0) = xi, i = 0, 1, . . . , rm − 1, rm = max (r1, r),(4)

where Ai, i = 1, 2, . . . , r− 1, and xi, i = 1, 2, . . . , rm − 1, are complex numbers,
while ki, i = 1, . . . , r1, and f are continuous functions. In this paper we shall
suppose that r > r1, and therefore we have rm = r.

In [2], the authors gave a proof that the space of continuous, complex–valued
functions defined on [0,∞), denoted by M, is a Jacobson radical algebra. This
implies that for f ∈M there exists an f̃ ∈M such that

f + f̃ + f ∗ f̃ = 0,(5)
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where ∗ stands for the convolution. The authors in [2] applied their theory to
obtain new proofs on the existence and uniqueness of the solution of the Volterra
linear equation (1) and of equation (2).

In this paper we continue the application of the results from [2], by expressing
the exact solutions and also giving the approximate solutions of these equations
in the field of Mikusiński operators. Also, we apply the results of [2] to equation
(3) and construct the exact and the approximate solutions.

We analyze the character of the obtained solution if k, f ∈M or f is a delta
distribution.

The elements of the Mikusiński operator field, F , are called operators. They
are quotients of the form

f

g
, f ∈ C+, 0 6≡ g ∈ C+,

where the last division is observed in the sense of convolution.
Also, among the most important operators are the inverse operator to l, the

differential operator s, while I is the identity operator. This means that it holds
that ls = I. Also, the following relation is very important:

{x(n)(t)} = snx− sn−1x(0)− · · · − x(n−1)(0)I.

By FI we denote the subset of F consisting of the elements of the form αI,
for some numerical constant α, while by Fc we denote the subset of F consisting
of the operators representing continuous functions.

The operators can be compared only if they are from Fc. So, for the two
operators a = {a(t)} and b = {b(t)} from Fc we define

a ≤ b iff a(t) ≤ b(t), for each t ≥ 0

(see [3], p. 237). Clearly, a = b, a, b ∈ Fc iff a(t) = b(t), t ≥ 0.
The absolute value of the operators from Fc are only considered. If a ∈ Fc,

then the absolute value of the operator is |a| = {|a(t)|}.
If a, b ∈ Fc, then it holds

|ab| ≤ |a||b|, |ab| ≤T MNl,

where M = max0≤t≤T |a(t)| and N = max0≤t≤T |b(t)|.
If the operator a is not from Fc, but there exists an operator k such that

ak ∈ Fc, then we consider the absolute value of the operator ka, i.e., |ka|.
1.1. The Voltera type equations

In the field of Mikusiński operators the equation

x + x · k = f,(6)
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corresponds to the Volterra equation (1). In (6), x is the unknown operator,
while k and f are operators representing continuous functions k = k(t) and
f = f(t).

The field of Mikusiński operators has very good algebraic properties, which
also means that the usual addition and multiplication with operators can be
treated in the same way as with real numbers. Let us remember that multipli-
cation in F corresponds to the convolution of continuous functions.

The solution of equation (6) in F has the form

x =
f

I + k
= f

∞∑

i=0

(−1)iki = f + f ·
∞∑

i=1

(−1)iki.(7)

If the operators f and k are operators representing continuous functions,
then the solution of equation (6) given by (7) represents a continuous function.

From the results of [2] it follows that if k represents a continuous function,
then it has a quasi–inverse k̃ in Fc (see (5)) such that we have

x = f + f ∗ k̃.

From

x = f + f ·
∞∑

i=1

(−1)iki,

it follows that the operator k̃ (the quasi–inverse to k) in the field of Mikusiński
operators has the following form

k̃ =
∞∑

i=1

(−1)iki,

and it represents a continuous function.
If f is a delta distribution in the Volterra equation (1), then in the operator

equation (6) it represents an identical operator I and from (7) it follows that
the solution of the operator equation (6) has the form

x = I +
∞∑

i=1

(−1)iki.

It does not represent a continuous function, but is a sum of an operator from
FI and a continuous function.

If, however, in the operator equation (6) f is neither an operator from Fc,
nor from FI , then the solution of equation (6) does not represent a continuous
function. For example, if in equation (6) f = sp, p ∈ N, s is the differential
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operator, then the solution has the form

x =
sp

I + k
= sp + sp

∞∑

i=1

(−1)iki

= sp − spk + spk2 + · · ·+ spkm−1 + sp

∞∑

i=m

(−1)iki,

where the integer m is chosen such that the operator spkm−1 does not represent
a continuous function and the operator spkm represents a continuous function.

Since the series
∞∑

i=r

(−1)iki converges, the operator sp
∞∑

i=r

(−1)iki represents a

continuous function.

1.2. The solution of integro–differential equations

In the field of Mikusiński operators the equation

sx + λx + x · k = f + x0I(8)

corresponds to equation (2) with the appropriate condition. In (8), x is an
unknown operator, s is the differential operator, I is the identical operator,
while k and f are operators representing the functions k and f. Note that (8)
is an algebraic equation in F , which can be written as

x(s + λI + k) = f + x0I.(9)

Proposition 1. If the operators f and k are operators representing continuous
functions, then the solution of equation (9) exists, it is unique and it represents
a continuous function.

Proof. The solution of equation (9) has the form

x =
f + x0I

s + λI + k
=

lf + lx0

I + (λl + lk)
= (lf + lx0)

∞∑

i=0

(−1)i(lλ + kl)i,(10)

where l is the integral operator. The infinite series mentioned above converges
in the field F , because λl is the operator representing the constant function λ,

and the operator lk = {
∫ t

0

k(τ) dτ} also represents a continuous function. ¤

In view of paper [2], we shall explicitly express the operator K̃. If we denote
by K = λl + kl and F = x0l + fl, then the operator K̃ satisfying

x = F + FK̃

has the form

K̃ =
∞∑

i=1

(−1)i(λl + lk)i.
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The operator K̃ represents a continuous function.
The problem (3), (4), in the field of Mikusiński operators, corresponds to

the equation

srx + x

r−1∑

i=0

Ais
i + x

r1∑

i=1

ki · si(11)

= f +
r−1∑

i=0

xis
r−1−i +

r−1∑

j=1

Aj

(
j−1∑

i=0

xis
j−1−i

)
r1∑

j=1

kj

(
j−1∑

i=0

xis
j−1−i

)
,

where xi, i = 1, . . . , rm = max (r1, r).
The equation (11) can be written as

x

(
sr +

r−1∑

i=0

Ais
i +

r1∑

i=0

kis
i

)
= f +

r−1∑

i=0

xis
r−1−i +

r−1∑

j=1

Aj

(
j−1∑

i=0

xis
j−1−i

)

+
r1∑

j=1

kj

(
j−1∑

i=0

xis
j−1−i

)
.

Then the solution of equation (11) is of the form

x=

f +
r−1∑

i=0

xis
r−1−i +

r−1∑

j=1

Aj

(
j−1∑

i=0

xis
j−i−1

)
+

r1∑

j=1

kj

(
j−1∑

i=0

xis
j−1−i

)

sr +

(
r−1∑

i=0

Ais
i +

r1∑

i=0

kis
i

)(12)

=

lrf +
r−1∑

i=0

xil
1+i +

r−1∑

j=1

Aj

(
j−1∑

i=0

xil
r−j+1+i

)
+

r1∑

j=1

kj

(
j−1∑

i=0

xil
r−j+1+i

)

I +
r−1∑

i=0

Ail
r−i +

r1∑

i=0

kil
r−i

=


lrf +

r−1∑

i=0

xil
1+i +

r−1∑

j=1

Aj

(
j−1∑

i=0

xil
r−j+1+i

)

+
r1∑

j=1

kj

(
j−1∑

i=0

xil
r−j+1+i

)
 ·

∞∑
m=0

(−1)m

(
r−1∑

i=0

Ail
r−i +

r1∑

i=0

kil
r−i

)m

.
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In view of [2], let us denote the solution of equation (11), given by (12), as

x = L + LM̃,(13)

where

L = lrf +
r−1∑

i=0

xil
1+i +

r−1∑

j=1

Aj

(
j−1∑

i=0

xil
r−j+1+i

)
+

r1∑

j=1

kj

(
j−1∑

i=0

xil
r−j+1+i

)

M̃ =
∞∑

m=1

(−1)m

(
r−1∑

i=0

Ail
r−i +

r1∑

i=0

kil
r−i

)m

.

From the previous expressions we have the following

Proposition 2. If in (13) it holds that r > r1, and the operators ki, i =
0, . . . , r1, represent continuous functions, then the operator M̃ represents a con-
tinuous function.

Proof. The operators lr−i, i = 0, . . . , r − 1, lr−i, i = 0, . . . , r1, appearing in
M̃, represent continuous functions, because r > r1, and ki, i = 0, . . . , r1, also
represent continuous functions. Therefore the series M̃ converges in F to an
operator representing a continuous function. ¤

Corollary 1. The solution of equation (11) represents a continuous function if
r > r1, and f and ki, i = 1, . . . , r1, represent continuous functions.

Proof. Each operator appearing in L represents a continuous function and
therefore the solution x = L + LM̃ also represents a continuous function. ¤

Corollary 2. If in equation (11) f = I, meaning that in (3) f represents a δ
distribution and r > r1, ki, i = 1, . . . , r1, represent continuous functions, then
the solution also represents a continuous function.

2. The approximate solution

Let us remark that in the exact solutions of equations (6), (8) and (11),
given by (7), (10) and (12), respectively, in the field of Mikusiński operators
the infinite sum of the operators of the form ki, i = 1, 2, . . ., appeared. The
operator ki represents the i−times applied convolution. It turns out that the
obtained exact solution, given as an infinite series, is inconvenient for computer
calculation. Thus, in this paper we give the approximate solutions of these
equations, such that instead of the infinite sum we use a finite sum. In particular,
the approximate solution of equation (9) has the form:

xn = (lf + lx0)
n∑

i=0

(−1)i(lλ + kl)i.(14)
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If f and k represent continuous functions, then the approximate solution of
equation (9), given by equation (14), represents a continuous function.

In the field F the approximate solutions make the sequence of approximate
solutions (xn)n∈N. This sequence converges to the exact solution x in the field
of Mikusiński operators in the type I convergence (see [3], p. 155). However,
since we deal with continuous functions, we can say that the functional sequence
(xn(t))n∈N (corresponding to the operators (xn)n∈N in F), given by (14), con-
verges uniformly to the function x(t) (corresponding to the operator x, i.e., to
the exact solution given by (10)).

The approximate solution of equation (11) has the form:

xn =


lrf +

r−1∑

i=0

xil
1+i +

r−1∑

j=1

Aj

(
j−1∑

i=0

xil
r−j+1+i

)

+
r1∑

j=1

kj

(
j−1∑

i=0

xil
r−j+1+i

)
 ·

n∑
m=0

(−1)m

(
r−1∑

i=0

Ail
r−i +

r1∑

i=0

kil
r−i

)m

.

2.1. The error of approximation

In order to estimate the error of approximation, let us consider the absolute
value of the difference between the exact solution (8) and the approximate one
(10). Note that they are both from Fc.

|x− xn| = |(lf + lx0)
∞∑

i=0

(−1)iki − (lf + lx0)
n∑

i=0

(−1)iki|

= |(lf + lx0) · (−1)nkn

∞∑

i=0

(−1)i+1ki+1|.

If 0 ≤ t ≤ T, and fM = max
0≤t≤T

|F (t)|, where {F (t)} = lf + lx0, and kM =

max
0≤t≤T

|k(t)|, then we have

|x− xn| ≤T fMkn
M ln+1

∞∑

i=0

ki+1
M li+1

≤T fMkn+1
M

Tn

n!

∞∑

i=0

ki
M

T i

i!
l = fMkn+1

M

Tn

n!
ekM T l.

Let us remark that for small values of T the error of approximation is small,
and with increasing T the error of approximation is also increasing.
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