Novl SAD J. MATH. 67

VoL. 33, No. 1, 2003, 67-73

A PROBLEM OF PROGRAM EXECUTION TIME
MEASUREMENT

Miroslav Hajdukovié', Zorica Suvajdzin', Zarko Zivanov',

Edin Hodzié?

Abstract. This paper discusses the problem of program execution time
measurement. Program execution time measurement is problematic be-
cause the conventional measurement method, based on the real-time clock
interrupt counting, is prone to inherent errors. These errors are caused by
discrete nature of real-time clock interrupts and by the overhead of clock
interrupt processing. Ways of reducing relative magnitude of these errors
are described. The program execution time measurement and error esti-
mation are illustrated by the measurement of real-time kernel operations’
execution time on the Intel 80386 EX micro-controller.

AMS Mathematics Subject Classification (2000): 68M20

Key words and phrases: software measurement, performance, error esti-
mation, real-time kernel for micro—controllers

1. Introduction

After the development of the real-time kernel for industrial micro—controllers,
it is only natural to ask how much ”real-time” it is. An answer is obtained by
measuring the execution time of the real-time kernel operations, and it depends
on the micro—controller the kernel executes on. In order to ensure uniformity
of measured results across different micro-controller platforms, the measure-
ment method need to be uniformly applicable to different platforms. One such
method is time measurement based on counting clock interrupts of a real-time
clock with uniform period [2]. This software-based approach assumes that the
measured time is determined as a product of the number of observed clock in-
terrupts and the clock period. The real-time kernel supports software-based
time measurement by providing an operation, e.g. ticks_get, that returns the
number of real-time clock interrupts since the beginning of real-time kernel
execution. Software measurement is simplified if the kernel supports execution
of the processes and interrupts only directly related to the measurements. This
assumption is applicable for micro—controller targeted real-time kernels.

Software-based measurement is illustrated by the example of the function
measure, dedicated to the measurement of the operation op. If the number

IDepartment of Computing and Control, Faculty of Engineering, University of Novi Sad
2ehodzic@scudc.scu.edu

68 M. Hajdukovic¢ et al.

int measure()

{

int old_ticks, i, for_ticks;

old_ticks = ticks_get ();

for (i = 0; i < N; i++)

for_ticks = ticks_get () - old_ticks;

old_ticks = ticks_get ();

for (i = 0; i < N; i++)

op O;

ticks = (ticks_get () - old_ticks) - for_ticks;

}

Figure 1: Function measure (the function is simplified by avoiding all details
intended to preclude unwanted compiler optimizations).

of clock interrupts is taken before and after the operation, then the difference
between the two numbers of interrupts determines the length of execution of the
operation op. In the case the length of execution of the operation op is lower
or comparable to the real-time clock period, then it is appropriate to measure
N >> 1 executions of the operation op. In that case, the number of clock
interrupts needs to be adjusted by subtracting the overhead of the for loop.
Figure 1 shows the process measure. It is shown as a C function of type int.
Process measure assumes that the function op takes no arguments and returns
no values. It is assumed that the integer constant N and variable ticks are
defined outside the process measure.

Upon completion of the function measure, variable ticks contains the num-
ber of real-time clock interrupts necessary for N executions of operation op.
Therefore, the software measured execution time of a single op execution is
given by:

Q) , _ ticks x PERIOD

N)

where the constant PERIOD is the real-time clock period.

The question of how close are the software-based measured time based on
(1), and the real execution time of an operation, is considered in the sequel
of the paper. The software-based measurement error is analyzed, its signifi-
cance discussed, and an example of software-based real-time kernel operation
measurement is presented.

A problem of program execution time measurement 69

software software
measurement measurement
beginnjng ending
| | | [[| ‘
| | | 1 1 I
software
software
measurement
o measurement
beginning .
ending ‘
| | | | |
I I I 1 1 |
software
software
measurement
. measurement
beginnjng .
ending ‘
| | | [[]
| | | 1 1 I
software
software
measurement
S measurement
beginning .
ending ‘
| | | 1 |

Figure 2: Possible relations of the interrupt counting and software—based mea-
surement events.

2. The software—based measurement quantization error

Software-based measurement inaccuracies are caused by clock interrupts.
One of inaccuracies is the quantization error. Software-based measured time
is expressed as an integer multiple of clock periods although the real execution
time might include only a fraction of a period. As a consequence, the software—
based measured time and real execution time could differ by up to one clock
period. Similar difference could also be caused by interrupt counting error.
It is dependent on the relation between the events of interrupt counting and
software-based measurement beginning and ending. The four possible scenarios
are illustrated in Figure 2.

Figure 2 assumes that the beginning and ending of software—based measure-
ment events are almost aligned with interrupt counting events, i.e. it assumes
that the real execution time is close enough to multiple of the clock period, for
example close enough to 5 clock periods. In the first two cases, software—based
measurement is equal to the real execution time. The other two cases show a
positive or negative difference of one clock period, as a result of counting error.
Table 1 summarizes the software-based measured time compared to the real
execution time.

It is important to note that the counting error is an upper bound to the
quantization error, i.e. these two errors do not accumulate. Based on this
analysis, it follows that the software-based measured time of operation op is

70 M. Hajdukovic¢ et al.

’ Clock interrupts \ software \ real \ real — software ‘
5.00 5x PERIOD | 5 x PERIOD 0.00
5.00 5x PERIOD | 5 x PERIOD 0.00
4.00 4 x PERIOD | 5 x PERIOD +PERIOD
6.00 6 x PERIOD | 5 x PERIOD —PERIOD

Table 1: Difference between software—based measured time and real execution
time.

clock period

] |
| |
“clock interrupt ”" measurement process g
processing activity
Figure 3: Clock period division.
given by:
ticks x PERIOD PERIOD
2) = LR X +9 .

N N

The coefficient 2 in (2) is a result of calculating variable ticks as a difference
of two software-based measurements, each of which can have one clock period
error. The discussed error can be ignored if the value of variable ticks is much
greater than 2, which is achieved for large values of N. In that case, we can use
equation (1) instead of equation (2).

3. The software—based measurement overhead error

Another type of software-based measurement error is caused by the clock
overhead. Clock interrupts are processed by the same processor, and thus only
a fraction of the clock period is spent on processing the measured operation.
Figure 3 illustrates a single period division between clock interrupt processing
and measured operation processing.

Based on Figure 3, the software measured time of a single operation op is
given by:

ticks x (PERIOD — OVERHEAD)
®3) t= ;
N
where OVERHFEAD is the clock interrupt processing time. Therefore, it is
necessary to know exact value of the constant OVERHFEAD. It is important

A problem of program execution time measurement 71

int overhead()

{

int old_ticks, 1i;

old_ticks = ticks_get ();

for (i = 0; i < N; i++)

ticks = ticks_get () - old_ticks;
}

Figure 4: Function overhead (the function is simplified by avoiding all details
intended to preclude unwanted compiler optimizations.)

to know the value of OVERH EAD because its ratio to the value of PERIOD
determines the processor utilization. Assuming PERIOD > OVERHEAD,
the processor utilization is expressed as:

(4) PERIOD — OVERHEAD
PERIOD '

Value of the constant OVERHFEAD can be calculated using the results of
the function overhead shown in Figure 4.

It is assumed that the integer constant N and variable ticks are defined
outside the function overhead. The time T, needed to execute loop for in
function owverhead, is independent of the clock period, however, for different
values of clock period we will observe different number of clock interrupts. If we
ignore for the moment the quantization error, for the clock period PERIOD1
we may observe ticksl clock interrupts:

(5) T = ticksl x (PERIOD1 — OVERHEAD).

and for the clock period PERIOD?2, we would observe ticks2 clock interrupts:
(6) T = ticks2 x (PERIOD2 — OVERHEAD,).

From equations (5) and (6), we can determine the clock interrupt overhead:

ticksl x PERIOD]1 — ticks2 x PERIOD?2
FRHEAD =
(7) OVER ticksl — ticks?2 ’

where we assume PERIOD2 > PERIOD1 > 0 and ticksl > ticks2 > 1.

Equation (7) does not account for the quantization error nor for the counting
error, discussed earlier. This error is accounted for by adding +1 to each of ticks
variables:

(ticks1 £1) x PERIOD1 — (ticks2 £ 1) x PERIOD?2

ERHEAD =
(8) OVER (ticksl £ 1) — (ticks2 £ 1)

72 M. Hajdukovic¢ et al.

A total of 9 different values for the value of OVERHEAD can be calcu-
lated based on equation (8), each of them corresponding to one of the cases of
measured and modified values of ticksl and ticks2 in equation (8). Among the
9 values, the largest value is:

(ticksl + 1) x PERIOD1 — (ticks2 — 1) x PERIOD?

ERHEAD =
(9) OVER (ticksl + 1) — (ticks2 — 1)

It can be shown that (9) represents the largest of 9 values of the constant
OVERHEAD in (8) by starting with the inequality:

(ticksl + a) x PERIOD1 — (ticks2 +b) x PERIOD?
(ticksl + a) — (ticks2 + b)

(ticksl + 1) x PERIOD] — (ticks2 — 1) x PERIOD?2
- (ticksl + 1) — (ticks2 — 1)

(10)

)

where a and b are variables that take values from the set {—1,0,1}. Inequal-
ity (10) reduces to:

(11) PERIOD1 x ((b+1) x ticksl 4+ (1 — a) X ticks2 +a+b)
< PERIOD2 x ((b+1) X ticksl 4+ (1 — a) X ticksl + a+b),

under the assumption PERIOD1 < PERIOD?2 and ticks2+ 2 < ticksl. Since
(1 — a) is nonnegative, the left side in (11) is smaller, the inequality holds, and
thus (9) is the largest of the 9 possible values in (8).

Error in the measurement of the constant OVERHEAD gets smaller as
the value of OVERHFEAD gets closer to PERIOD1, and as T gets longer,
since then the difference in the numerator of (7) gets larger and thus less sen-
sitive to the counting and quantization error (when T is getting longer and
OVERHEAD is closer to PERIODI1, more clock periods are needed to exe-
cute function overhead and consequently ticksl is getting larger).

Once the largest value of the constant OVERHFEAD is determined, the
constant PERIOD can be selected in such a way that the effects of the constant
OVERHEAD are insignificant. In that case, equation (3) can be substituted
by the simpler equation (1).

4. Software—based measurement error estimation example

This example describes software—based measurement of real-time kernel [1]
operations’ execution on a platform based on Intel 80386 EX micro—controller
(33MHz, 16 bit bus).

To determine value of the constant OV ERH EAD, two software-based mea-
surements using the process overhead were made. With PERIOD1 = 100usec
the measured ticksl = 147059, and for PERIOD2 = 1000usec the measured
ticks2 = 11198. The value for PERIOD1 was determined by trials, while

A problem of program execution time measurement 73

the value for PERIOD?2 was influenced by the potential application of the
real-time kernel. Based on equation (9), the value of overhead found was
OVERHFEAD = 25.827487usec (this value differs from the value based on (7)
by 0.007716usec which is insignificant). Since the determined value of the con-
stant OVERHEAD is 2.58% of the constant PERIOD = 1000usec, we can
expect the same relative error when using equation (1) instead of (3).

During the real-time kernel operations measurement, the measured clock
interrupt counts ranged from 52 to 631 (N = 2000). Since the counting and
quantization errors in the amount of two clock interrupt counts account for
less than 4% relative to the range of measured counts, we can use equation (1)
instead of (2) with the same relative error.

5. Conclusion

This paper describes error estimation for a software-based measurement of
execution time of real-time kernel operations. Based on the estimated error, it
is possible to accurately estimate execution time of real-time kernel operations.
That provides the foundation for kernel optimization (reduction in real-time
kernel operations’ running time), as well as for evaluation of a kernel’s suitability
to a real-time application domain (evaluation whether its operations can satisfy
the timing constraints). The presented approach to measurement of execution
time is important when an expensive equipment for exact measurement is not
available.

References

[1] Hajdukovié, M., Concurrent Programming Using Programming Language CON-
CERT, author’s eddition, Novi Sad, 1996.

[2] Tanenbaum, A.S., Modern Operating Systems, Prentice Hall, Englewood Clifs,
NY, 1992.

Received by the editors January 5, 2002

