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Abstract. This article is dedicated to the memory of Professor Dragan
Acketa. As a scientist, with a huge research potential and wide research
interests, he made essential contributions in many areas of mathematics
and computer science. Some of these are matroid and greedoid theory,
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1. Results in Matroid Theory

Matroid theory is the area of combinatorics to which the late Professor
Acketa dedicated a great deal of his research activity. Dragan Acketa wrote
his doctoral thesis on matroid theory and published about one hundred papers
on the subject, many of which are frequently cited.

Matroids were first defined in 1935 by Hassler Whitney [43], who combined
the linear dependence of columns of a matrix with graph theory. Matroids are
an abstract generalization of matrices and graphs. This means that all graphs
are matroids, but not all matroids can be represented by graphs. Similarly,
every matrix with the entries belonging to a field is a matroid, but not every
matroid is representable by a matrix whose entries belong to some field.

To better present the diverse topics in matroid theory that were the focus
of Professor Acketa’s research, some basic matroid concepts ([40], [42]) should
be reviewed.

A matroid M is a finite set E (called the ground set) and a collection I
of subsets of E (called independent sets) such that (I1)-(I3) are satisfied:
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(I1) ∅ ∈ I.
(I2) If X ∈ I and Y ∈ X then Y ∈ I.
(I3) If U , V are members of I with |U | = |V | + 1 there exists

x ∈ U \ V such that V ∪ x ∈ I.

A circuit of a matroid is a minimal dependent set.
The rank of a set X ⊆ E, denoted r(X), is the size of the largest independent

set contained in X. The rank of a matroid is the rank of the set E.
A set X ⊆ E is called a flat (also known as a subspace or a closed set) of a

matroid if r(X ∪ x) = r(X) + 1 for all x ∈ E \ X.
We can associate a geometric lattice with the flats of a matroid. The rank

of a matroid coincides with the height of the lattice, and the rank of a flat is
its distance from the minimal element of the lattice. The minimal element of
the lattice contains loops if a matroid has them, otherwise it is the empty set.
Flats of rank 1 are called atoms. Hyperplanes are flats that are covered with
the maximal element of the lattice which is the ground set.

The essential flats of a matroid, defined in [28], are cyclic flats (union of cir-
cuits), different from the ground set, the existence of which cannot be ‘predicted’
by using the family of all flats of lower rank.

A matroid is called simple if its atoms are one-element sets and called
semisimple if it has parallel elements, i.e. at least one atom has more than
one element. A binary (ternary) matroid is a matroid which can be represented
by a matrix with entries from GF (2) or GF (3), respectively.

A matroid on the ground set E of rank r is a paving matroid if it has at least
two hyperplanes, each hyperplane has cardinality at least r − 1 and every r − 1
element subset of E is contained in a unique hyperplane.

Professor Acketa’s first paper [1] concerning matroids was published in 1978,
in which he gave the formula for enumerating non-isomorphic matroids of rank
2 on a ground set of n elements:

m2(n) =
n∑

p=2

p∑
k=2

g(k)

where g(k) is the number of partitions of the integer k such that all summands
of the partition exceed 1. This is the only known closed form expression for
general matroid enumeration, although it was rediscovered by Mark Dukes [31]
in 2000 in a more elegant fashion. Professor Acketa himself congratulated Dukes
on this result.

Professor Acketa was fascinated with making catalogues of semisimple ma-
troids on less then 9 elements, for example in [3], [8] and [9]. He based his work
on the Blackburn, Crapo and Higgs’s catalogue of simple matroids [25] and fol-
lowed the order of matroids listed there, but used the essential flats (together
with their ranks) to describe the simple matroids. He felt that, especially for
his purposes, essential flats describe simple matroids in a more economical way
than hyperplanes – as explained in [2].
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He developed his own methods for construction of semisimple matroids, with-
out computer aid. One of his methods (‘shortcuts’ as he called them) is the use
of positional partitions described in [6].

Positional partitions are equivalence relations among the atoms of a geo-
metric lattice, ‘positional’ meaning that these partitions are determined by the
position of atoms with respect to the other flats. There are two kinds of po-
sitional partitions: weak and strong. Weak positional partitions coincide with
the orbits of the automorphism group of a matroid. On the other hand, two
atoms x, y are in the same class of strong positional partition (i.e. are strongly
related) if each essential flat F satisfies the following: if |F ∩ {x, y}| = 1 then
there exists essential flat (F \{x, y})∪({x, y}\F ). He showed that two strongly
related elements must be in the same class of a weak positional partition, the
converse being not true.

His methods enabled him to add new elements (in parallel) to the atoms
of a simple matroid in order to obtain all non-isomorphic semisimple matroids.
In his doctoral thesis [10] he gave a list of all of 2198 non-isomorphic matroids
(including matroids with loops) and analyzed their properties to be binary,
graphic, paving, transversal, . . .

The following table (given in [7]) lists some of the numerical values he was
able to obtain:

n 0 1 2 3 4 5 6 7 8
m(n) 1 2 4 8 17 38 98 306 1724
B(n) 1 2 4 8 16 32 68 148 342

where m(n) is the number of non-isomorphic semisimple matroids on n elements,
and B(n) the number of binary matroids on n elements.

Professor Acketa also focused on paving matroids. In [4] and [5] he con-
structed, again by hand, all 322 rank 4 paving matroids on 8 elements. For that
purpose he used three auxiliary classes of graphs and some properties of Steiner
system S(3, 4, 8). He associated a denoted graph to each paving matroid in a
unique way so the non-isomorphism of such construction was obvious.

He generalized the property of binary and paving matroids and proved the
following theorems in [14]:

Theorem 1.1. A matroid on an n-set is binary paving matroid if and only if
it belongs to at least one of the following three classes:

(a) matroids of rank 0, 1, or n,
(b) loopless rank 2 matroids with at most three hyperplanes,
(c) matroids M(Gn

n), M(Gn−1
n ), M(A4), M(K3,2), F7, F ∗

7 , D8,
where Gk

n denotes any unicyclic graph on n edges, the unique cycle of which
contains exactly k edges, graph A4 is obtained by deleting one edge from K4,
F7 and D8 are the matroids on 7 (respectively 8) elements, the hyperplanes of
which are the blocks of the Steiner system S(2, 3, 7)(respectively S(3, 4, 8)), and
F ∗

7 is the dual of F7.
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Theorem 1.2. The only 3-connected binary paving matroids are U0,0, U0,1,
U1,1, U1,2, U1,3, U2,3, M(K4), F7, F ∗

7 and AG(3, 2).

In 1987, he produced a catalogue of non-isomorphic matroids on 9 elements
[13], which contained 6705 semisimple matroids and matroids with loops.

Professor Dragan Acketa dedicated two papers to graphic matroids: [11]
and [12]. He made the catalogue of non-isomorphic graphic representations of
graphic matroids up to 9 elements. He was motivated by Whitney’s theorem: If
graph G is loopless and 3-connected, then there exists a unique graphic repre-
sentation (without isolated vertices) of the associated matroid. We can imagine
how lengthy and difficult Professor Acketa’s work on the catalogue was by look-
ing at one example: matroid C6L3 which consists of 9 elements, a circuit of
length 6 and 3 loops. It can be represented by 16 different graphs, of which 7
are connected. In this manner Professor Acketa listed all 59646 non-isomorphic
graphic representations by at least two mutually independent methods.

Enumeration of special classes of matroids continues to this day. A formula
for the enumeration of binary and ternary matroids was given by Marcel Wild in
1994 in [44]. The formula is based, among other things, on the use of Burnsides
Lemma for counting the number of orbits under the action of an automorphism
group. In his paper, Wild cited Acketa’s results on binary matroids, the only
ones that were known up to that point.

2. Design Theory

Research in design theory belongs mostly to the combinatorial theory, thus
the results are most often published in journals like Ars Combinatoria, Winippeg,
Canada, (e.g. [19], [20]), and Discrete Mathematics, Elsevier (e.g. [17]). The
design theory is applied in several fields of technical science such as: Optics,
Telecommunications and Coding. Let us also mention that there is an Inter-
national Seminar ”Combinatorics”, which is directed by the well–known math-
ematician D. Jungnickel. In the majority of our papers on the subject, the
following three approaches were used:

1. Special or combinatorial permutation groups.

2. Basic Kramer-Mesner’s algorithm [35] or improved algorithm [20].

3. Programming.

2.1. Some historic facts (written mainly for non–specialists in this field of
mathematics)

Evariste Galois discovered the finite field at the beginning of the nineteenth
century. He also introduced finite groups and algebras, and gave first deep
results on them. In the twentieth century, this theory advanced strongly. The
state of the art of that time was presented by B. Hupper and N. Blackburn in
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a three–volume books: Endliche Gruppen I, [32] (1967), Finite Groups III, [32]
published by Springer Verlag in 1982. Of course, B. Hupper and N. Blackburn,
in these books also presented their own numerous important results.

In parallel with this theory, the branches of finite geometries and matroids
are also developed. The design theory is an independent branch, closely con-
nected to them.

Designs arise as a generalization of configuration and other similar points of
projective geometry. A t − (v, k, λ) design is a collection B of k-subsets (called
blocks) of a v-elements set ∆ of points, which satisfies the property that each
t-elements4 subset of ∆ is in exactly λ blocks. It is also required that blocks are
not repeated.

In the last few decades, the main task of this theory was the construction of
a new design with proving its existence. There are several approaches to such
problem. In our first papers, the permutation groups PSL(2, q), were used for
the discovery of the designs.

For convenience of the reader, we will shortly repeat some facts about the
groups mentioned above. Let Ω = {GF (q),∞} be a projective line over the finite
field GF (q), and let PGL(2, q) be the group of all invertible linear fractional
mappings of Ω onto itself. Then PGL(2, q) is the 3-transitive group of order
(q + 1)q(q − 1).

The group PSL(2, q) consists of linear fractional mappings of the form,

x −→ ax + b

cx + d
, a, b, c, d ∈ GF (q) where ad − bc is a square in GF (q).

PSL(2, q) is of order (q + 1)q(q − 1)k−1, where k = gcd(q − 1, 2) and 2-
transitively operates on q+1 points of the projective P (1, q). Except the neutral
element, its elements have at most two fixed points.

In [19], using PSL(2,37) we have:

Theorem 2.1. There exist 4 − (38, 5, λ) designs with PSL(2, 37) as an auto-
morphism group and with each λ in the set {6, 10, 12, 16}.

2.2. The Kramer-Mesner method

Group M acts on ∆.
(

∆
s

)
is the set of all subsets of ∆ that have cardinality

s. Group M acts naturally on
(

∆
s

)
.

T i, 1 ≤ i ≤ m, are orbits5 of M on
(

∆
t

)
;

Kj , 1 ≤ j ≤ m, are orbits of M on
(

∆
k

)
.

4Let t-subsets denote a subset of t elements.
5Let G be a set and A be a group operating on G. Classes of equivalences based on this

operation are called orbits [20].
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If there is only one orbit of M on
(

∆
s

)
, then M is s-homogeneous on ∆.

Lemma 2.1. [24] Given i ∈ {1, . . . , m}, j ∈ {1, . . . , n}, the number of sets
Kj ∈ Kj containing a set Ti ∈ T i is the same for all Ti sets.

This invariant for the orbit pair T i,Kj will be denoted as λij . The m × n
matrix [λij ] will be denoted as Λ(M, t, k).

1. Let us delete some columns from Λ(M, t, k) in such manner that the re-
maining matrix ΛD has the sum of entries equal to λ in each row. We
then obtain a t − (|∆|, k, λ) design.

2. Blocks of the above design are all k-subsets of ∆ which belong o some of
the k-orbits determined by the matrix DΛ.

3. Group M is an automorphism group of t − (|∆|, k, λ).

If W is a subgroup of M , then W is also an automorphism group of t −
(|∆|, k, λ). The subgroup W induces a partition of M -orbits. Consequently, the
matrix Λ(M, t, k) has generally more rows and columns than Λ(W, t, k).

It is of interest to note that four new 4-designs can be easily recognized
from the table of incidence: 7 × 15 matrix Λ(PGL(2, 37), 4, 5). The columns
associated to the design 4 − (38, 5, 16) are marked.

↓ ↓ ↓ ↓ ↓ ↓
8 8 8 2 8 0 0 0 0 0 0 0 0 0 0
4 0 4 0 0 4 8 4 4 2 4 0 0 0 0
2 4 0 0 4 4 0 8 0 0 4 4 2 2 0
0 8 4 0 0 2 4 0 0 4 4 4 0 0 4
0 0 4 4 4 0 4 4 0 4 4 2 0 4 0
0 4 4 0 4 0 0 4 6 0 4 0 0 4 4
0 0 0 0 12 0 12 0 0 0 0 0 4 0 6

In [17], two 5-designs ere found by a generalization of the homogenecity of an
orbit. However, to find a t− (v, k, λ) design for larger t is a much more difficult
problem. Not long ago, no 5-designs were known. If we have a t-design, then, as
a consequence we will also have the known corresponding derived (t−s)-designs
for t > s > 0. By improvement of the computer control of multiple homogenity,
used in the paper, we also obtained the 5-design.

When the Galois field is not prime (e.g. for q = 25), the so-called twisted
group (TW (2, 25)) appears. It is the third linear group, which is a permutation
and a projective one. In [16], the projective relations on 26 points, were given,
for instance:

1. Designs that are both TW-designs and PGL-designs;

2. TW-designs that are not PGL-designs;
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3. PGL-designs that are not TW-designs.

In the continuation of the research in this field, the graphs for the establishing
of nonisomorph classes of design will be used. Lemmas 1 and 2 in [29] give the
relations between graphs and designs, while Theorem 1 gives the following new
results:

Theorem 2.2. There exist 12, 295, 1195 and 2368 pairwise non-isomorphic 4−
(48, 5, λ) designs with PSL(2, 47) as automorphism group, and with λ equal to
8, 12, 16, 20 respectively.

The last period of our research was exposed in [20], and its emphasis is on
the good choice of the combinatorial permutation group. If we wish to obtain a
maximal number of t− (v, k, λ) designs for fixed t and v, using one permutation
group, it must be chosen in accordance with the following principles:

Let we have a sequence of groups

M1 ≤ 6 M2 ≤ M3 ≤ M4,

which induces the sequence of Λ matrices:

Λ(M1, t, k), Λ(M2, t, k), Λ(M3, t, k), Λ(M4, t, k).

The advantages and disadvantages when going right are:

1. Λ becomes of smaller dimension (good);

2. Group M obtains a larger order (bad);

3. Most of the orbits are joined together; designs disappear (bad);

4. Homogenicity increases (good).

In view of the above principles, in [20], the following group M = A3N (7-Sylow)7

was used.

2.3. Wreath product

Let M be a group and let H be a permutation group on Ω. If f is a mapping
of Ω into M, h ∈ H, and i ∈ Ω, then the set of all pairs (f , h) is a group with
respect to the composition

(f1, h1)(f2, h2) = (f1(i), f2(ih1), h1h2).

This group is called the wreath product of M and H and is denoted as MH. If
M is a permutation group on Γ, then MH is a permutation group on ∆ = Γ×Ω.
The group MH acts on ∆ as follows:

(i, j)(f , h) = (if(j), jh).
6≤ denotes a subgroup
7N denotes normaliser; 7-Sylow is a Sylow group of 7 elements; label will be explained

later.
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This choice of the group turned out to be a very good structure, rich in designs,
[20].

Theorem 2.3. Let M denote the subgroup of order 3 of PSL(2, 2) and let H
denote the transitive subgroup of order 21 of PSL(3, 2). There exist 2−(21, k, λ)
designs with the automorphism group equal to the wreath product MH, with
k ∈ {4, 5, . . . , 10} and with all 4079 possible λ values described in this section.
The direct action of this wreath product on the Cartesian product of the projective
line of order 2, and the projective plane of order 3 (Fano plane), does not give
2 − (21, k, λ) designs with other values of λ.

By using the Alltop’s extension [23], the obtained 2− (21, 10, λ) designs can
be extended to 3 − (22, 11, λ) designs. This implies the following:

Corollary 2.1. There exist 3− (22, 11, λ) designs with 2867 different λ values.

It is important to note that in the book [27], p. 55 for 3−(22, 11, λ) precisely
154 designs are mentioned. However, in [20] we found 2867 designs. We think
that this is the largest 3-designs collection generated by one group.

3. Digital Geometry

Professor Acketa’s work in the area of digital image analysis has mostly been
focussed on the problems related to the coding of digital curve segments.

Creating efficient coding schemes for digital objects is one of important prob-
lems considered in the area of computer vision and image processing. It is worth
to mention that such efficient coding schemes preserve low storage complexity,
fast transmission and mutual comparison of digital objects, etc.

Digital objects are defined to be a result of subjecting real objects to a certain
digitization process. If a planar continuous curve ρ : y = f(x) is digitized on
the interval [x1, x1 + m− 1] then the associated set of m digital points is called
a digital curve segment, and it is defined as

Cm(ρ, x1) = {(i, 
f(i)�), i = x1, x1 + 1, . . . , x1 + (m − 1) = x2}.(1)

Naturally, if ρ is a straight line then Cm(ρ, x1) is called digital straight line
segment, if ρ is a part of a hyperbola, then Cm(ρ, x1) is called digital hyperbola
segment, and so on.

3.1. Digital Straight Line Segments

If f(x) in (1) is of the form f(x) = a · x + b we have a formal definition
of a digital straight line segment. The digital straight line segments are digital
objects extensively studied in the literature (see [30, 37, 41]). It is important
to estimate what is the number of digital straight line segments that can be
represented on an (m,n)-integer grid because it shows the capacity of the chosen
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grid. An asymptotic estimate
3 · m2 · n2

π2
+ O (

m2 · n · log n + m · n2 log log n
)

(if m ≤ n) is given in [21]. On the other hand, it turns out that fast and exact
computation of such a number is limited by a fast producing of the so–called
generalized Farey sequence. Namely, given the natural numbers m and n, so
that m ≤ n, then the generalized Farey (m,n)-sequence F (m,n) is a strictly

increasing sequence of all fractions of the form
b

a
, where the integers a and b

satisfy: gcd(a, b) = 1, b < a ≤ n, b ≤ m.
The following two theorems are proved in [21].

Theorem 3.1. Let
b

a
be a member of F (m,n) and let (x0, y0) be an integral

solution of the equation a · x + b · y = 1. Then the (immediate) successor
b′

a′ of
b

a
in F (m,n) is determined by the relations b′ = x0 + r · b and a′ = y0 + r · a,

where r = min
{⌊

n − y0

a

⌋
,

⌊
m − x0

b

⌋}
.

Theorem 3.2. If
b′

a′ is the (immediate) successor of the member
b

a
of a gene-

ralized Farey sequence, then a · b′ − b · a′ = 1 holds.

A direct application of the above theorems leads to an asymptotically op-
timal O(m · n) algorithm for producing all the members of F (m,n) in the in-
creasing order.

3.2. General Coding Scheme

While recognition, reconstruction and coding problems for the digital straight
line segments are solved completely, there existed only particular solutions for
other types of digital curve segments ([39], [34]). The initial result by Professor
Acketa on this topic was given in [22] – the article dealing with digital cubic
parabolas. In the subsequent papers this result was generalized to digital poly-
nomial segments of an arbitrary degree ([45]) and moreover, to families of sets
of digital curve segments which can consist even of digital curve segments of dif-
ferent kinds ([46]). If digital curve segments from a fixed set are coded, then the
number of bits for the coding depends on the maximal number of intersection
points between two original curves (which are digitized) and of the size of the
observed integer grid (in other words: of the resolution of the observed digital
picture). If h is the maximal number of intersection points and the n × n grid
is observed, then the number of sufficient bits is O(h2 · log n). The proposed
coding scheme preserves an asymptotically optimal storage if the maximal num-
ber of intersection points between two curves is assumed to be a constant (not
dependent on the size of the observed integer grid – i.e. of the applied picture
resolution).
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Theorem 3.3. Let a set Sh of digital curve segments be given, and let Cm(ρ′, x1),
Cm(ρ′′, x1) ∈ Sh such that ρ′ and ρ′′ have at most h intersection points on
the interval [x1, x1 + m − 1]. Then any digital curve segment Cm(ρ, x1) =
{(i, 
f(i)�), i = x1, x1 + 1, . . . , x1 + m − 1} from Sh, can be coded uniquely by
h + 3 integers (x1,m, b0, b1, . . . , bh), where:

• x1 and m are the x-coordinate of the left end-point of the observed digital
curve segment and the number of its digital points, respectively;

• bj =
∑

(i,j)∈Cm(ρ,x1)

ij · 
f(i)� for j = 0, 1, . . . , h.

The integers b0, b1, . . . , bh that appear in the code of Cm(ρ, x1) can be un-
derstood as so–called discrete moments of the area bounded by the x-axis, the
curve ρ, and the lines x = x1 and x = x1 + m − 1. Since

∑
(i,j)∈S

ip · j = O (
np+3

)

holds for any subset S from an (n, n)-integer grid, and for arbitrary integers p
and q, the storage complexity for the coding curves form Sh is as follows.

Theorem 3.4. The coding scheme proposed by Theorem 3.3 requires an amo-
unt of O (

h2 · log n
)

bits per coded digital curve segment belonging to a fixed set
Sh.

In order to illustrate the advantage of the proposed coding scheme with
respect to the chain coding we cite an example from [46]. The comparison of
the code proposed in [46] and the 8-chain code for the digitization of the curve
ρ is made under the assumption that ρ belongs to a set S3.

The “moment–based” proposed code of C82(1, ρ) is

(b0, b1, b2, b3) = ( 5030, 215522, 12020658, 736586012 ) ,

while the 8-chain code is

7 6 7 7 6 7 6 7 6 7 7 6 7 6 7 6 7 7 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6
6 6 6 7 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 1 2 1 2 2 2 2 2
1 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2
2 2 0 0 0 7 0 0 0 0 0 7 0 0 0 0 1 2 2 2 2 1 2 2 2 2 1 2 2 2 1 2 7 7 6 7 7 6 7 7 7 6
7 7 6 1 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 7 6 6 7 6 6 6 7 6 6 1 2 1 2 2
2 1 2 2 1 2 2 2 7 6 6 6 6 6 6 7 6 6 6 6 6 6 6 7 6 6 1 2 2 1 2 1 2 2 1 2 2 7 7 6 6 6
6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6
6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6.
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3.3. Encoding of Digital Curve Segments by Least Squares
Polynomial Fit

The idea of using the least squares fit lines for a representation of digital
lines was proposed in [38]. It is proved that the least squares line fit uniquely
determines the digital line on a segment.

In [45] and [46] the result is extended to the coding by least squares poly-
nomial fit. Moreover, it is shown that such coding is a subcase of the proposed
general coding scheme.

A finite set of points in the plane is sometimes called a scatter diagram.
The least squares curve for a scatter diagram is the curve which minimizes the
total sum of the squares of the vertical distances from the curve to the data
points. The method for determining such a curve is well-known from statistics.
If the scatter diagram is given by {(xi, yi), i = 1, 2, . . . ,m} and the equation
of its least squares polynomial is Y = ahXh + ah−1X

h−1 + . . . + a0, then the
unknowns ah, ah−1, . . . , a0 satisfy

S2h · ah + S2h−1 · ah−1 + . . . + Sh · a0 =
m∑

i=1

yix
h
i

S2h−1 · ah + S2h−2 · ah−1 + . . . + Sh−1 · a0 =
m∑

i=1

yix
h−1
i

. . . . . . . . .

Sh · ah + Sh−1 · ah−1 + . . . + S0 · a0 =
m∑

i=1

yi

(2)

where the coefficients S0, S1, . . . , S2h can be calculated recursively by using a
well–known technique. The coefficients ah, ah−1, . . . , a0 of the least squares
polynomial fit can be determined by solving the above system. It is shown that
the determinant of the system (2) is different from zero for m ≥ h. Consequently,
the system (2) has a unique solution in these cases.

If the scatter diagram is taken to be Cm(ρ, x1), let us denote the solution of
(2) by ah(ρ), ah−1(ρ), . . . , a0(ρ). A very practical question is:

Are there two different digital curve segments, Cm(ρ1, x1) and Cm(ρ2, x1)
that result from digitization of two curves from a set Sh with the same
least squares polynomial fit, i.e. ah(ρ1) = ah(ρ2), ah−1(ρ1) = ah−1(ρ2),
. . . , a0(ρ1) = a0(ρ2)?

The answer is negative. This means that digital curve segments from a set
Sh and their least squares polynomial fits of degree h are in one-to-one corre-
spondence. This enables the coding of the digital curve segments with their
associated least squares polynomial fit as is stated by the following theorem.

Theorem 3.5. Let Cm(ρ1, x1) and Cm(ρ2, x1) be two digital curve segments
from a set from Sh – i.e. ρ1 and ρ2 have at most h intersection points
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on [x1, x1 + m − 1]. If ah(ρ1), ah−1(ρ1), . . . , a0(ρ1) and ah(ρ2), ah−1(ρ2),
. . . , a0(ρ2) are the coefficients of the least squares polynomial fits associated to
Cm(ρ1, x1) and Cm(ρ2, x1), respectively, then:

(ah(ρ1) = ah(ρ2) and ah−1(ρ1) = ah−1(ρ2) and . . . and a0(ρ1) = a0(ρ2))

is equivalent to

Cm(ρ1, x1) = Cm(ρ2, x1).

Determination of the least squares fitting polynomial for a given set of points
is a linear problem, and consequently, it is easily solvable. Let us note that the
representation of digital curve segments by its least squares curve fits is suitable
because it is natural to expect that the least squares fitting curve “looks like”
the original curve.
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[35] Kramer, E.S., Mesner, D.M., t-designs on hypergraphs, Discrete Math., 15 (1976),
263–296.

[36] Koplowitz, J., Lindenbaum M., Bruckstein, A., The number of digital straight
lines on n × n grid, IEEE Trans. on Inf. Theory, 36(1) (1990), 192–197.

[37] Lindenbaum, M., Koplowitz, J., A new parametrization of digital straight lines,
IEEE Trans. Pattern Analysis and Machine Intelligence, 13 (1991), 847–852.

[38] Melter, R.A., Rosenfeld, A., New views of linearity and connectedness in digital
geometry, Pattern Recognition Letters, 10 (1989), 9–16.

[39] Nakamura, A., Aizawa, K., Digital circles, Computer Vision, Graphics Image
Processing, 26 (1984), 242–255.

[40] Oxley, J.G., Matroid Theory, Oxford University Press, 1992.

[41] Rosenfeld, A., Digital straight line segments, IEEE Trans. Comput., 23 (1974),
1264–1269.

[42] Welsh, D.J.A., Matroid Theory, Academic Press, London, 1976.

[43] Whitney, H., On the abstract properties of linear dependence, Amer. J. Math.,
57 (1935), 509–533.

[44] Wild, M., Consequences of the Brylawski–Lucas theorem for binary matroids,
Europ. J. Combinatorics, 17 (1996), 309–316.
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