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SOME RESULTS ON THE COMPOSITION OF
DISTRIBUTIONS

Brian Fisher!, Joel D. Nicholas?

Abstract. Let I be a distribution and let f be a locally summable func-
tion. The distribution F'(f) is defined as the neutrix limit of the sequence
{Fn(f)}, where F,(z) = F(z) * dn(z) and {d,(x)} is a certain sequence
of infinitely differentiable functions converging to the Dirac delta-function
8(z). The distributions (x7.)™! and (x7.) ! are evaluated for r = 1,2,....
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In the following we let N be the neutrix, see [1], having domain N’ the
positive integers and range N the real numbers, with negligible functions which
are finite linear sums of the functions

A" n, In"n: A>0,r=1,2,...

n
and all functions which converge to zero in the usual sense as n tends to infinity.

Now let p(x) be an infinitely differentiable function having the following
properties:

() ple) =0 for [z] > 1,

(i) p(z) >0,

(ili)  p(z) = p(—2),

(iv) [ 11 p(z)dz = 1.

Putting 4, (z) = np(nz) for n = 1,2,... , it follows that {d,(x)} is a regu-
lar sequence of infinitely differentiable functions converging to the Dirac delta-
function 6(x).

Now let D be the space of infinitely differentiable functions with compact
support and let D’ be the space of distributions defined on D. Then if f is an
arbitrary distribution in D’, we define

fa(w) = (f#6n)(@) = (f(t),0n(z — 1))
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for n = 1,2,... . It follows that {f,(z)} is a regular sequence of infinitely
differentiable functions converging to the distribution f(z).
The following definition was given in [2].

Definition 1. Let F be a distribution and let f be a locally summable function.
We say that the distribution F(f(x)) exists and is equal to h on the open interval

(a,b) if
N-lim [ F.(f(2))p(e)de = (h(x), o(x))

n—oo —co
for all test functions ¢ with compact support contained in (a,b).
The following theorems were proved in [2] and [3] respectively:

Theorem 1. The distributions (z)* and (2/})} ezists and
(@) = (@)t =0
for >0 and A\p # —1,-2,... and

7 cosec(mA)
2u(—Ap —1)!

foru>0, A#A—-1,-2 ... and A\pu=—-1,-2,....

(@) = (~1M i) = )

Theorem 2. The distribution (x',)_° exists and

(71)T5+Sc(p) 5(1‘571)

(@3)-" = r(rs—1)!

(z)

forr,s=1,2,..., where

1
c(p):/o Int p(t) dt.

s

In the previous theorem, the distribution x_° is define by

—S

~ (lnz)®)
S P

for s = 1,2,... and not as in Gel'fand and Shilov [4]. We also define the
distribution z " by the equation

(-1~ ()
(r—1)!

—r
r, =

forr=1,2,....
We need the following lemma which can be easily proved by induction:
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Lemma 1. If ¢ is an arbitrary function in D with support contained in the
interval [—1,1], then

. 1 r—1 l’i ) r—2 (,0(2) (0)
o) = [ [ee) - X e 0ar - 3 gt
o(r—1) )
1 R T
forr=1,2,..., where
— E:::l 1/2, r _,1,
¢(r) = { 0, r=0
We now prove the following theorem.
Theorem 3. The distribution (27,)~! exists and
(2) (1’:)71 _ .’E_T_T + (_1)T20(p) - 7"¢(7’ — 1)5“71)(.%),

r!

forr=1,2,..., where

1
c(p):/o Intp(t) dt.

Proof. We put

[(x:)_l]n = (ml)_l*én(x)

- S e =)o, (0 dt, @ >0,
B S () dt, @ <.
Then
1 1/n
/ ¥ [(2) M de = / / In|x" — t|8!,(t) dtdx +
-1 1/n

1/n
/ / In [t|6),(t) dt dz
1/n

1/n
/ 5;(t)/ 2Fn|z" — t| de dt +
0

—1/n

1/n 1
—|—/ (5,’1(75)/ 2 1n |z — t| dx dt +
n—1/r

—1/n
(71)1@ /1/77, .

In |£]6) (t) dt
S A0
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(r—k—1)/r 1 1
= ni/ p’(v)/ uw™ RO (0 — 0) /o] dudo +
r -1 0

n(rfkfl)/'r 1 n A
+7/ p’(v)/ w” RO I (= v) /| dudo +
r -1 1

( 1)k,n /1 ,
+ Inlv/n p\v dv

(4) = L+ 1L+ 1,

where the substitutions v = nx” and v = nt have been made.

It is obvious that
(5) N-lim/l; = N-lim I3 =0,

n—oo n—oo

for k=0,1,...,7—2.
Next we have

1 n
/ p’(v)/ w TR I |(w— ) /o] dudy =
1

-1

1 n
= / p’(v)/ w™ RO/ 0 |1 — v /ul + Inu — Inn) dudv
1

-1

1 n
:/ p/(v)/ uw™ RO/ I 1 — v /u] dudo,
1

-1

since fil p'(v)dv = 0. Further
1 n
/ p(s)(v)/ w” TRV I 1 — v /ul dudv =
1

—1
—1 [, Y et 1) i1
- Z - v'p' (v) u du dv
- Lt 1

. _
r[n(k+1)/r71 _ 1] 1 .
- ik —ri+1) /,f’p(v)dv’

i=1

and it follows that

1 1
N-liml, = ——— /
1
6 = - -
(©) r—k—1
for k=0,1,...,7—2.
Hence
1
(7) N—lim [ zF[(z7)" Y, dz = — L
n—oo 1 + T — k’ -1
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for k=0,1,...,7 — 2, on using equations (4), (5) and (6).

When k = r — 1, we have with the above substitutions

1 1/n
/w’“*[(xi)*l}ndm = / " 1/ In |2" — t|07,(t) dt dx +

-1 1/n

1/n
/ = 1/ In |t[07 (t) dt dx
1/n
1/n
/ 5;(16)/ "n|a" —t| dadt +
0

—1/n
_1)yr=1 pl/n
+L/ In |1]6".(¢) dt
r —1/n

1 1 n
= f/ p’(v)/ In |u — v|dudv +
rJ-1 0

1 n
—1/ p’(v)/ Inndudv +
rJ-1 0
1)1 1
+()7n/ In [v/n|p’(v) dv
r -1

(8) = Ji+Jo+ Js.
It is obvious that
9) N—lim J; = N—lim J; = 0.
Further,
/ Injlu—vldu = (n—v)lnjn—v|+vinjv|—n
0

(n—v)lnn—(n—wv) E ,v—l,+v1n|v\—n
in
i=1

and it follows that

e e
N-limJ; = —f/ vp’(v)dv—kf/ vin |v|p’(v) dv
n— o0 rJ-1 rJ_1
2¢(p)
1 = - .
(10) {

Using equations (8), (9) and (10), we see that

(11) N tim [ 2" (2h) Y da = _2lp).

n—oo 1 T

91
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We finally consider the case k = r and let ¢ be an arbitrary continuous
function. Then

[ vt =n [ arowacs [ wlepton

and it follows that

0
(12) N—lim a"p(z)[(z"}) ] n dz = 0.
n—oo —1
Next we have
n”U/r 1 1 1
[ et e = — [ ) [ el o) ol duds
0 T J 0
and it follows that
n= /T
(13) lim 2" () [(z") " ]n dr = 0.
n—oo 0
When 2" > 1/n, we have
1/n
T A L CACT
—1/n

It follows that

where

K= [ [p'(v)|dv.

If now n~ Y7 <5 < 1, then

n r ry— = 1 " r(l—i
[l e < K i [ s
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K = ntr m1—it1/r _ g 1

eyl R R

- K i n! [(nn)*~* —1] +K7n_l (1) r=1
2z —aq) M 2 T
i£2

It follows that
lim [[(z7})"]n| = O(n),

n—oo

forr=1,2,....
Thus, if ¢ is a continuous function

(14) lim

n—oo

/" () (@) de| = O(n)

—1/r
forr=1,2,....

Now let ¢(z) be an arbitrary function in D with support contained in the
interval [—1, 1]. By Taylor’s Theorem we have

p(@) =Y M) + o (a)

= 5 QO(]C) (O) ! T\ — e " r\—1 T
sz:% o /71xk[(ﬂc+) 1]ndx+/0 e (E) L™ (E2) da +
A G o+ [ e e do +

0 _.r
+ [ T e o) do

Using equations (7) and (11) to (14) and noting that the sequence [(z7% )],
converges uniformly to =" on the interval [n, 1], it follows that

N-tim((() e pl@) = - mwﬂ(m 22 e o) +
k=0
+0(n) + / 1 79"(7';(!59”) da.

n
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Since n can be made arbitrarily small, it follows that

r—2

Nlm(() Me@) =~ 3 gV 0 — e 0+
k=0
=
1 r—1 2k r—2 ‘
= [[ar et - X 500 do - X o0 - 2 0)
0 b0 5—0 : !

 2c(p) = ré(r — 1
r!

= (23" p(x)) + (=1) (8" (@), (@)

on using equation (1). This proves equation (2) on the interval [—1, 1]. However,
equation (2) clearly holds on any interval not containing the origin, and the proof
is complete.

Corollary 3.1 The distribution (" )~1 exists and

(15) B e e

forr=1,2,....

Proof. Equation (15) follows on replacing « by —z in equation (2).
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