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IDEALS AND DIVISIBILITY IN A RING WITH
RESPECT TO A FUZZY SUBSET

A.K.Ray1, T.Ali1

Abstract. Ideals of a ring generated by a fuzzy subset and an element of
a ring are defined and their properties are discussed. The notions of units,
associates, prime element, irreducible element, etc. in classical ring theory
are generalized with respect to a fuzzy subset and analogous results are
obtained . Images and pre-images of translational invariant fuzzy subset
under ring homomorphisms are studied.
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1. Introduction

The notion of fuzzy subset of a set was introduced by Zadeh [4]. Rosenfeld
[3] introduced the concept of a fuzzy subgroup of a group and established many
important properties. The notion of a fuzzy ideal of a ring was introduced by
Liu [1]. Ray [2] introduced the concept of translational invariant fuzzy subset.
The purpose of this paper is to generalize some of the classical results of ring
theory using the notion of a translational invariant fuzzy subset.

2. Preliminaries

Throughout this paper R is an arbitrary ring with binary operations ’ + ’
and ’ . ’ . The operation ’ . ’ is suppressed and indicated by juxtaposition. A
fuzzy subset P of any set S is a mapping from S into [0, 1]. Let ’ * ’ be a binary
operation in S.

Definition 2.1. P is said to be left translational invariant with respect to ’ * ’
if P (x) = P (y) ⇒ P (a ∗ x) = P (a ∗ y) ∀x, y, a ∈ S.

Definition 2.2. P is said to be right translational invariant with respect to ’ *
’ if P (x) = P (y) ⇒ P (x ∗ a) = P (y ∗ a) ∀x, y, a ∈ S.

Definition 2.3. P is said to be translational invariant with respect to ’ * ’ if
P is both left and right translational invariant with respect to * .
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Remark 2.1. If P is commutative , i.e., P (x ∗ y) = P (y ∗ x) ∀x, y ∈ S, then
P is left translational invariant if and only if P is right translational invariant.

Example 2.1. Consider the ring Z6 = {0, 1, 2, 3, 4, 5} , the ring of integers mod-
ulo 6 .

Let P be a fuzzy subset of Z6 defined as follows:

P (0) = P (3) = 1
P (1) = P (4) = .5
P (2) = P (5) = .3

It can be easily verified that P is a translational invariant fuzzy subset of Z6

with respect to addition and multiplication modulo 6.

3. Ideals of a ring generated by an element and a fuzzy
subset

Throughout this section P is a fuzzy subset of R satisfying P (x) = P (−x) ∀x ∈
R.

Proposition 3.1. Suppose P is left translational invariant with respect to both
’ + ’ and ’. ’. Then for any a ∈ R, the set

L(a, P ) = {r ∈ R : P (r) = P (xa), for some x ∈ R}

is a left ideal of R.

Proof. Let s, r ∈ L(a, P ).
Then P (s) = P (xa) and P (r) = P (ya) for some x, y ∈ R. Now

(i) P (s) = P (xa) ⇒ P (s− r) = P (xa− r) = P (r − xa)

Also

(ii) P (r) = P (ya) ⇒ P (r − s) = P (ya− s) = P (s− ya)

(i) and (ii) implies P (r − xa) = P (s − ya) ⇒ P (r − s) = P ((x − y)a). Thus
r − s ∈ L(a, P ), since x − y ∈ R. Also for any u ∈ R, P (us) = P (u(xa)) =
P ((ux)a) ⇒ us ∈ L(a, P ), since ux ∈ R. Hence L(a, P ) is a left ideal of R. 2

Analogously we can prove:

Proposition 3.2. Suppose P is right translational invariant with respect to
both ’+ ’ and ’ . ’ . Then for any a ∈ R, the set R(a, P ) = {r ∈ R : P (r) = P (ax),
for some x ∈ R} is a right ideal of R.

Remark 3.1. If P is commutative , then L(a, P ) = R(a, P ) ∀a ∈ R.
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Remark 3.2. We observe that for any a ∈ R, the ideal Ra = {ra : r ∈ R} of
R is contained in the left ideal L(a, P ). Also for any a ∈ R, the ideal aR =
{ar : r ∈ R} of R is contained in the right ideal R(a, P ).

If R is a commutative ring with identity then the principal ideal < a >=
aR = Ra is a subset of L(a, P ) = R(a, P ).

Example 3.1. Let Z be the ring of integers. We define P : Z → [0, 1] as
follows:

P (x) = 1, if x is even
= .5, otherwise.

Then < 6 >= {. . . ,−12,−6, 0, 6, 12, . . .} and L(6, P ) =All even integers. We
observe that < 6 >( L(6, P ) ( Z.

Definition 3.1. L(a, P ) is called left P -principal ideal of R generated by a and
P, and R(a, P ) is called right P-principal ideal of R generated by a and P.

Definition 3.2. If L(a, P ) = R(a, P ), then the ideal is denoted by I(a, P ) and
is called P-principal ideal of R generated by a and P.

Definition 3.3. R is called P-principal ideal ring if P is commutative and every
ideal of R is a P-principal ideal generated by some a ∈ R and P.

Example 3.2. We consider Z2, the ring of integers modulo 2. Let P : Z2 →
[0, 1], such that P (0) = 1 and P (1) = .5. Then Z2 is a P-principle ideal ring .

Definition 3.4. Let R be a ring with identity e and P (0) 6= P (e). An element
a ∈ R with P (a) 6= P (0) is called a P-unit of R if there exists an element u ∈ R
such that P (u) 6= P (0) and P (au) = P (ua) = P (e).

Proposition 3.3. If R contains the identity e and a is a P-unit of R, then
L(a, P ) = R(a, P ) = R.

Proof. As a is a P-unit of R, there exists u ∈ R such that P (u) 6= P (0) and
P (au) = P (ua) = P (e). Let x ∈ R. Then

P (e) = P (au) ⇒ P (ex) = P (aux) ⇒ P (x) = P (aux) ⇒ x ∈ R(a, P ),

since ux ∈ R. Therefore R ⊆ R(a, P ). Similarly, R ⊆ L(a, P ). Hence L(a, P ) =
R(a, P ) = R.

Proposition 3.4. Let a, b ∈ R. Then

a ∈ L(b, P ) ⇒ L(a, P ) ⊆ L(b, P ) and a ∈ R(b, P ) ⇒ R(a, P ) ⊆ R(b, P ).

Proof. Let a ∈ L(b, P ), then P (a) = P (xb), for some x ∈ R. Let r ∈ L(a, P ).
Then P (r) = P (ya) for some y ∈ R.

Now P (a) = P (xb) ⇒ P (ya) = P (yxb) ⇒ P (r) = P (yxb) ⇒ r(L(b, P ).
Hence L(a, P ) ⊆ L(b, P ).

Similarly , we can prove a ∈ R(b, P ) ⇒ R(a, P ) ⊆ R(b, P ). 2
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Remark 3.3. We observe that L(0, P ) = {r ∈ R : P (r) = P (0)} .

Proposition 3.5. Let a, b ∈ R. Then P (a) = P (b) implies L(a, P ) = L(b, P )
and R(a, P ) = R(b, P ).

Proof. Let P (a) = P (b). Suppose x ∈ L(a, P ). Then P (x) = P (ra) for some
r ∈ R, so P (x) = P (rb). Hence x ∈ L(b, P ). Thus L(a, P ) ⊆ L(b, P ).

Next, let y ∈ L(b, P ). Then P (y) = P (sb) for some s ∈ R, and so P (y) =
P (sa). Hence y ∈ L(a, P ). Thus L(b, P ) ⊆ L(a, P ). Consequently, L(a, P ) =
L(b, P ). Similarly we can prove R(a, P ) = R(b, P ). 2.

In the next two sections R is assumed to be a commutative ring with the
identity e and P is assumed to be a translational invariant fuzzy subset of R
satisfying P (x) = P (−x), ∀x ∈ R. Henceforth, the ideal generated by an element
a with respect to P will be denoted by I(a, P ).

4. P- divisors of zero, P-associates

Definition 4.1. An element a ∈ R with P (a) 6= P (0) is said to be a P-divisor
of zero if there exists some b ∈ R with P (b) 6= P (0) such that P (ab) = P (0).

Henceforth we shall assume that R contains no P-divisor of zero and P (e) 6=
P (0). Let S = {a ∈ R : P (a) 6= P (0)} .

Definition 4.2. Let a, b ∈ R and P (a) 6= P (0). We say that a divides b with
respect to P or a is a P- divisor of b, written as (a/b)P , if there exists c ∈ R
such that P (b) = P (ac) = P (ca).

Theorem 4.1. Let a, b ∈ R and P (a) 6= P (0). Then (a/b)P if and only if
I(b, P ) ⊆ I(a, P ).

Proof. Suppose that (a/b)P . Then P (b) = P (ca) for some c ∈ R, which implies
that b ∈ I(a, P ) and therefore I(b, P ) ⊆ I(a, P ). Conversely, let I(b, P ) ⊆
I(a, P ). As R contains identity e, P (b) = P (eb) ⇒ b ∈ I(b, P ) ⊆ I(a, P ).
Therefore, P (b) = P (ca), for some c ∈ R. Also P (a) 6= P (0). Hence (a/b)P . 2

Definition 4.3. Let a, b ∈ S. We say that a and b are P-associates if (a/b)P

and (b/a)P .

Proposition 4.2. Let a, b ∈ S. Then a, b are P-associates if and only if P (a) =
P (bu) for some P-unit u ∈ R.
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Proof. Let a, b be P-associates. Then (a/b)P and (b/a)P . So P (b) = P (ad) and
P (a) = P (bc) for some c, d ∈ R. Hence

P (a) = P (bc) = P (adc)
⇒ P (a− adc) = P (0)
⇒ P (a(e− dc)) = P (0)
⇒ P (e− dc) = P (0), since P (a) 6= P (0) and R is without P-divisor of zero.
⇒ P (dc) = P (e)
⇒ c and d are P -units.

Hence P (a) = P (bc), where c is a P-unit in R. Conversely, suppose that P (a) =
P (bu), for some P-unit u in R. Now, P (a) = P (bu) ⇒ (b/a)P . Since u is a
P-unit, there exists v ∈ S such that P (uv) = P (vu) = P (e). Hence P (a) =
P (bu) ⇒ P (av) = P (buv) = P (be) = P (b). This shows that (a/b)P . Thus we
find (a/b)P and (b/a)P . Hence a, b are P-associates. 2

Corollary 4.3. Let a, b ∈ S. If a, b are P-associates then I(a, P ) = I(b, P ).

Proof. Suppose a and b are P-associates. Then by Proposition 4.2, P (a) =
P (ub), for some P-unit u ∈ R. Then, a ∈ I(b, P ), and so I(a, P ) ⊆ I(b, P ). Since
u is a P-unit of R, and P (a) 6= P (0) there exists v ∈ S such that P (uv) = P (e) =
P (vu). Hence P (buv) = P (be) = P (b) ⇒ P (av) = P (b) and so b ∈ I(a, P ).
Therefore I(b, P ) ⊆ I(a, P ). 2

Remark 4.1. The relation of being P-associates is an equivalence relation on
S.

Definition 4.4. Suppose a ∈ S and a is not a P-unit. Then a is said to be
P-irreducible if P (a) = P (bc) implies either b or c is a P-unit.

Definition 4.5. Suppose a ∈ S and a not a P-unit. Then a is said to be P-
prime if (a/bc)P implies (a/b)P or (a/c)P .

Proposition 4.4. In the ring R any P-prime is P-irreducible.

Proof. Let a be P-prime. Suppose P (a) = P (bc). We can write P (bc) = P (ae).
Hence (a/bc)P . Since a is P-prime , either (a/b)P or (a/c)P .

Suppose (a/b)P . Then P (b) = P (ad) for some d ∈ R. Now

P (a) = P (bc) = P (adc)
⇒ P (a(e− dc)) = P (0)
⇒ P (e− dc) = P (0), since P (a) 6= P (0) and R is without P-divisor of zero.
⇒ P (dc) = P (e)
⇒ c and d are P -units.

Similar is the case if (a/bc)P .
Hence a is P-irreducible. 2
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Theorem 4.5. Suppose a ∈ S and a is not a P-unit. Then

(i) The element a is P-irreducible if and only if the ideal I(a, P ) is maximal
among all ideals I(b, P ), where b ∈ R and P (a) 6= P (b).

(ii) Let a ∈ S and I(a, P ) 6= R. Then a is P-prime if and only if the ideal
I(a, P ) is a non-zero prime ideal.

Proof. (i) Suppose a is P-irreducible. Let I(a, P ) ⊆ I(b, P ) 6= R for some
b ∈ R with P (b) 6= P (0). As R contains the identity , a ∈ I(a, P ) ⊆ I(b, P )
and so P (a) = P (cb) for some c ∈ R. Since a is P-irreducible, either b is a
P-unit or c is a P-unit. Since I(b, P ) 6= R, by Proposition 3.3, we find that
b is not a P-unit. Hence c is a P-unit . So there exists u ∈ S such that
P (cu) = P (uc) = P (e) ⇒ P (bcu) = P (be) = P (b). Again, P (a) = P (cb)
implies P (au) = P (cbu) = P (bcu) = P (b). Hence P (b) = P (au). This implies
b ∈ I(a, P ) and so I(b, P ) ⊆ I(a, P ). Consequently, I(b, P ) = I(a, P ). Thus
I(a, P ) is maximal.

Conversely, assume I(a, P ) is maximal. Assume that P (a) = P (cd) where
c, d ∈ R. Then a ∈ I(d, P ) and so I(a, P ) ⊆ I(d, P ). Hence by our hypothesis
either I(a, P ) = I(d, P ) or I(d, P ) = R. If I(a, P ) = I(d, P ), then d ∈ I(d, P ) =
I(a, P ). Therefore P (d) = P (ra) for some r ∈ R. This gives P (cd) = P (cra).
Thus we have P (a) = P (cra) and so P (a(e− cr)) = P (0). Since R is without P-
divisors of zero and P (a) 6= P (0), we have P (e− cr) = P (0), i.e., P (cr) = P (e).
This shows that c is a P-unit. If I(d, P ) = R, then as e ∈ R, e ∈ I(d, P ) = R.
Hence P (e) = P (ds) for some s ∈ R. Thus P (a) = P (dc) implies either c or d
is a P-unit. Hence a is P-irreducible . This proves (i).

(ii) Suppose a is P-prime in R. Let x, y ∈ R and xy ∈ I(a, P ). Then P (xy) =
P (ar) for some r ∈ R. Which shows that (a/xy)P . As a is P-prime, either (a/x)P

or (a/y)P . If (a/x)P , then P (x) = P (ac) for some c ∈ R, and so x ∈ I(a, P ).
If (a/y)P , then P (y) = P (ad) for some d ∈ R, and so y ∈ I(a, P ). Thus
xy ∈ I(a, P ) implies either x ∈ I(a, P ) or y ∈ I(a, P ). Since P (a) 6= P (0), we
must have a 6= 0. As e ∈ R, it follows that a ∈ I(a, P ). Hence I(a, P ) 6= {0} .
Consequently I(a, P ) is a non-zero prime ideal of R. Conversely, let I(a, P ) be
a non-zero prime ideal of R. Let x, y ∈ R and (a/xy)P . Then P (xy) = P (ac) =
P (ca), for some c ∈ R. Hence xy ∈ I(a, P ). Since I(a, P ) is a prime ideal of R,
either x ∈ I(a, P ) or y ∈ I(a, P ).

If x ∈ I(a, P ), then P (x) = P (da) for some d ∈ R. Hence (a/x)P .
If y ∈ I(a, P ), then P (y) = P (ra) for some r ∈ R. Hence (a/y)P . Thus

(a/xy)P implies either (a/x)P or (a/y)P . Hence a is P-prime. 2

5. Images and inverse images under ring homomorphisms

In this section we discuss the invariance of translational invariace property
of a fuzzy subset under ring homomorphism. Also we study the algebraic nature
of P-ideals under ring homomorphism.
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Definition 5.1. Let f be a function from a ring R into a ring R′ and let P be
a fuzzy subset of R. Then P is called f-invariant if f(x) = f(y) ⇒ P (x) = P (y),
where x, y ∈ R.

Proposition 5.1. Let f be a homomorphism of a ring R into a ring R′. Let Q
be a translational invariant fuzzy subset of R′. Then f−1(Q) is a translational
invariant fuzzy subset of R.

Proof. Let a, b ∈ R and f−1(Q)(a) = f−1(Q)(b). Then Q(f(a)) = Q(f(b)). Let
x ∈ R and f(x) = y ∈ R′. Since Q is a translational invariant fuzzy subset of
R′ and Q(f(a)) = Q(f(b)), we have Q(f(a) + y) = Q(f(b) + y) and Q(f(a)y) =
Q(f(b)y), Q(yf(a)) = Q(yf(b)). Now Q(f(a)+y) = Q(f(b)+y) implies Q(f(a)+
f(x)) = Q(f(b) + f(x)), and so Q(f(a + x)) = Q(f(b + x)). Hence f−1(Q)(a +
x) = f−1(Q)(b + x). On the other hand, from Q(f(a)y) = Q(f(b)y) and
Q(yf(a)) = Q(yf(b)), we get Q(f(a)f(x)) = Q(f(b)f(x)) and Q(f(x)f(a)) =
Q(f(x)f(b)), and so Q(f(ax)) = Q(f(bx)) and Q(f(xa)) = Q(f(xb)). Thus we
have f−1(Q)(ax) = f−1(Q)(bx) and f−1(Q)(xa) = f−1(Q)(xb) ∀a, b, x ∈ R.
Consequently f−1(Q) is translational invariant fuzzy subset of R. 2

Proposition 5.2 Let f be a homomorphism of a ring R onto a ring R′. Let P
be a translational invariant fuzzy subset of R. If P is f-invariant, then f(P ) is
a translational invariant fuzzy subset of R′.

Proof. Suppose P is f-invariant. Then ∀x, y ∈ R, f(x) = f(y) implies P (x) =
P (y). Now for any a ∈ R′, f(P )(a) = sup {P (x) : x ∈ R, f(x) = a} , since f
is onto. Let x, y ∈ R and f(x) = a, f(y) = a. Then f(x) = f(y), and so
P (x) = P (y). Hence f(P )(a) = P (x), where x ∈ R and f(x) = a. Thus ∀a ∈ R′,
f(P )(a) = P (x), where x ∈ R and f(x) = a. Now, let a, b ∈ R′, and f(P )(a) =
f(P )(b). Then P (x) = P (y), where x, y ∈ R, and f(x) = a, f(y) = b. Let c ∈ R′

be such that f(z) = c, where z ∈ R. Then, a + c = f(x) + f(z) = f(x + z)
and b + c = f(y) + f(z) = f(y + z). Hence f(P )(a + c) = P (x + z) and
f(P )(b + c) = P (y + z). Again, ac = f(x)f(z) = f(xz), ca = f(z)f(x) = f(zx),
bc = f(y)f(z) = f(yz), and cb = f(z)f(y) = f(zy).

Hence f(P )(ac) = P (xz), f(P )(ca) = P (zx), f(P )(bc) = P (yz), and
f(P )(cb) = P (zy). Since P is translational invariant and P (x) = P (y), we
have P (x + z) = P (y + z), P (xz) = P (yz), and P (zx) = P (zy). Hence
f(P )(a + c) = f(P )(b + c), f(P )(ac) = f(P )(bc), and f(P )(ca) = f(P )(cb).
Thus if a, b ∈ R′ and f(P )(a) = f(P )(b), then f(P )(a + c) = f(P )(b + c),
f(P )(ac) = f(P )(bc), and f(P )(ca) = f(P )(cb) ∀c ∈ R′. Hence f(P ) is a trans-
lational invariant fuzzy subset of R′. 2

Theorem 5.3. Let f be a homomorphism of a ring R onto a ring R′ and P be
a translational invariant fuzzy subset of R. If P is f-invariant then,

f(I(a, P )) = I(f(a), f(P )), ∀a ∈ R.
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Proof. Suppose P is f-invariant. Let y ∈ I(f(a), f(P )). Then f(P )(y) =
f(P )(sf(a)) for some s ∈ R′. Since y, s ∈ R′ and f is onto, there exist x, r ∈
R such that f(x) = y and f(r) = s. Thus f(P )f(x) = f(P )(f(r)f(a)) =
f(P )(f(ra)). Since P is translational invariant, by what we have proved in
Proposition 5.2 , we get f(P )(f(x)) = P (x) and f(P )(f(ra)) = P (ra). Thus
P (x) = P (ra), which implies x ∈ I(a, P ), and so f(x) ∈ f(I(a, P )), i.e., y ∈
f(I(a, P )). Consequently, I(f(a), f(P )) ⊆ f(I(a, P )). Again, let y ∈ f(I(a, P )).
Then there exists x ∈ I(a, P ) such that f(x) = y. Also, x ∈ I(a, P ) implies
P (x) = P (ar) for some r ∈ R. Now,

f(P )(y) = sup
{
P (x) : x ∈ f−1(y)

}
= P (x), since P is f-invariant
= P (ar).

Also, if f(r) = s we have f(P )(f(a)s) = f(P )(f(a)f(r)) = f(P )(f(ar)) =
sup

{
P (x′), such that x′ ∈ f−1(f(ar))

}
= P (ar), since P is f-invariant. Thus

f(P )(y) = f(P )(f(a)s) which implies y ∈ I(f(a), f(P )). Hence f(I(a, P )) ⊆
I(f(a), f(P )), a ∈ R. Consequently, f(I(a, P )) = I(f(a), f(P )), a ∈ R.

Proposition 5.4. Let f be a homomorphism of a ring R onto a ring R′. Let Q
be a translational invariant fuzzy subset of S. Let a′ ∈ R′. Then ∀a, b ∈ f−1(a′),
I(a, f−1(Q)) = I(b, f−1(Q)), provided f−1(a′) contains more than one element.

Proof. Let x ∈ I(a, f−1(Q)). Then f−1(Q)(x) = f−1(Q)(ra) for some r ∈ R and
so f−1(Q)(x) = Q(f(ra)). Thus f−1(Q)(x) = Q(f(a)f(r)). Since a, b ∈ f−1(a′),
f(a) = f(b) = a′ and hence we have f−1(Q)(x) = Q(f(b)f(r)) = Q(f(br)) =
f−1(Q)(br). This shows that x ∈ I(b, f−1(Q)). Hence I(a, f−1(Q)) ⊆ I(b, f−1(Q)).
Now let y ∈ I(b, f−1(Q)). Then f−1(Q)(y) = f−1(Q)(br′) for some r′ ∈ R, and
so f−1(Q)(y) = Q(f(br′)) = Q(f(b)f(r′)). Since a, b ∈ f−1(a′), f(a) = a′ =
f(b) and hence we have f−1(Q)(y) = Q(f(a)f(r′)) = Q(f(ar′)) = f−1(Q)(ar′).
This shows that y ∈ I(a, f−1(Q)). Hence I(b, f−1(Q)) ⊆ I(a, f−1(Q)). Conse-
quently, I(a, f−1(Q)) = I(b, f−1(Q)) ∀a, b ∈ f−1(a′).

Theorem 5.5. Let f be an isomomorphism of a ring R onto a ring R′. Let Q
be a translational invariant fuzzy subset of R′. Then

I(f−1(y), f−1(Q)) = f−1(I(y,Q)) ∀y ∈ R′.

Proof. Let x ∈ I(f−1(y), f−1(Q)). Then

f−1(Q)(x) = f−1(Q)(f−1(y)r) for some r ∈ R.
= f−1(Q)(f−1(y)f−1(s)), where s ∈ R′ such that f(r) = s.

⇒ Q(f(x)) = f−1(Q)(f−1(ys)), since f is bijective.
= Q(f(f−1(ys))
= Q(ys)

⇒ f(x) ∈ I(y, Q)
⇒ x ∈ f−1(I(y, Q)).
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Hence I(f−1(y), f−1(Q)) ⊆ f−1(I(y, Q)) ∀y ∈ R′. Again, let a ∈ f−1(I(y,Q))
then f(a) ∈ I(y, Q) ⇒ Q(f(a)) = Q(ys), for some s ∈ R′. Also, y, s ∈ R′ and
f is onto implies there exist x, r ∈ R such that f(x) = y and f(r) = s. Now
, Q(f(a)) = Q(ys) ⇒ Q(f(a)) = Q(f(x)f(r)) = Q(f(xr)) ⇒ f−1(Q)(a) =
f−1(Q)(xr) = f−1(Q)(f−1(y)r) which implies a ∈ I(f−1(y), f−1(Q)). Thus,
f−1(I(y, Q)) ⊆ I(f−1(y), f−1(Q)), ∀y ∈ R′. Consequently, I(f−1(y), f−1(Q)) =
f−1(I(y, Q)), ∀y ∈ R′. 2
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