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IDEALS AND DIVISIBILITY IN A RING WITH
RESPECT TO A FUZZY SUBSET

A.K.Ray!, T.Alil

Abstract. Ideals of a ring generated by a fuzzy subset and an element of
a ring are defined and their properties are discussed. The notions of units,
associates, prime element, irreducible element, etc. in classical ring theory
are generalized with respect to a fuzzy subset and analogous results are
obtained . Images and pre-images of translational invariant fuzzy subset
under ring homomorphisms are studied.
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1. Introduction

The notion of fuzzy subset of a set was introduced by Zadeh [4]. Rosenfeld
[3] introduced the concept of a fuzzy subgroup of a group and established many
important properties. The notion of a fuzzy ideal of a ring was introduced by
Liu [1]. Ray [2] introduced the concept of translational invariant fuzzy subset.
The purpose of this paper is to generalize some of the classical results of ring
theory using the notion of a translational invariant fuzzy subset.

2. Preliminaries

Throughout this paper R is an arbitrary ring with binary operations ’ 4’
and ' . ’ . The operation ' . ’ is suppressed and indicated by juxtaposition. A
fuzzy subset P of any set S is a mapping from S into [0,1]. Let > *’ be a binary
operation in S.

Definition 2.1. P is said to be left translational invariant with respect to > * ’

if P(x) = P(y) = Plaxx) = Plaxy) Vo,y, a€S.
Definition 2.2. P is said to be right translational invariant with respect to > *
“if P(x) = P(y) = P(x*a) = P(y*a) Vo,y,a € 5.

Definition 2.3. P is said to be translational invariant with respect to > * 7 if
P is both left and right translational invariant with respect to * .

IDibrugarh University, Dibrugarh - 4, Assam, India, Department of Mathematics, Dibru-
garh University, Dibrugarh - 4, Assam, India



68 A.K. Ray, T. Alj

Remark 2.1. If P is commutative , i.e., P(z xy) = P(y xx) Va,y € S, then
P is left translational invariant if and only if P is right translational invariant.

Example 2.1. Consider the ring Zs = {0,1,2,3,4,5}, the ring of integers mod-
ulo 6 .
Let P be a fuzzy subset of Zg defined as follows:

P(0) = P(3) =1
P(1)=P(4) = 5
P@2)=P(5) =3

It can be easily verified that P is a translational invariant fuzzy subset of Zg
with respect to addition and multiplication modulo 6.

3. Ideals of a ring generated by an element and a fuzzy
subset

Throughout this section P is a fuzzy subset of R satisfying P(z) = P(—xz) Vz €
R.

Proposition 3.1. Suppose P is left translational invariant with respect to both
"+ 7and . °. Then for any a € R, the set

L(a,P)={r e R: P(r) = P(za), for somexz € R}
s a left ideal of R.

Proof. Let s,r € L(a, P).
Then P(s) = P(xza) and P(r) = P(ya) for some z,y € R. Now

(7) P(s) = P(za) = P(s —r) = P(xza —1) = P(r — za)

Also

(44) P(r) = P(ya) = P(r — s) = P(ya — s) = P(s — ya)

(i) and (ii) implies P(r — za) = P(s — ya) = P(r — s) = P((x — y)a). Thus

r—s € L(a, P), since x —y € R. Also for any v € R, P(us) = P(u(za)) =
P((uzx)a) = us € L(a, P), since ux € R. Hence L(a, P) is a left ideal of R. O

Analogously we can prove:

Proposition 3.2. Suppose P is right translational invariant with respect to
both '+ “and ’. ’ . Then for any a € R, the set R(a, P) = {r € R: P(r) = P(ax),
for some x € R} is a right ideal of R.

Remark 3.1. If P is commutative , then L(a, P) = R(a, P) Va € R.
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Remark 3.2. We observe that for any a € R, the ideal Ra = {ra: r € R} of
R is contained in the left ideal L(a, P). Also for any a € R, the ideal aR =
{ar: r € R} of R is contained in the right ideal R(a, P).

If R is a commutative ring with identity then the principal ideal < a >=
aR = Ra is a subset of L(a, P) = R(a, P).

Example 3.1. Let Z be the ring of integers. We define P : Z — [0,1] as
follows:
P(x)

=1, ifziseven

=.5, otherwise.

Then < 6 >= {...,—12,-6,0,6,12,...} and L(6, P) =All even integers. We
observe that < 6 >C L(6,P) C Z.

Definition 3.1. L(a, P) is called left P-principal ideal of R generated by a and
P, and R(a, P) is called right P-principal ideal of R generated by a and P.

Definition 3.2. If L(a, P) = R(a, P), then the ideal is denoted by I(a, P) and
is called P-principal ideal of R generated by a and P.

Definition 3.3. R is called P-principal ideal ring if P is commutative and every
ideal of R is a P-principal ideal generated by some a € R and P.

Example 3.2. We consider Zs, the ring of integers modulo 2. Let P : Zy —
[0, 1], such that P(0) =1 and P(1) = .5. Then Z is a P-principle ideal ring .

Definition 3.4. Let R be a ring with identity e and P(0) # P(e). An element
a € R with P(a) # P(0) is called a P-unit of R if there exists an element u € R
such that P(u) # P(0) and P(au) = P(ua) = P(e).

Proposition 3.3. If R contains the identity e and a is a P-unit of R, then
L(a, P) = R(a, P) = R.

Proof. As a is a P-unit of R, there exists u € R such that P(u) # P(0) and
P(au) = P(ua) = P(e). Let x € R. Then

P(e) = P(au) = P(ex) = P(aux) = P(z) = P(auz) = = € R(a, P),

since ux € R. Therefore R C R(a, P). Similarly, R C L(a, P). Hence L(a, P) =
R(a,P)=R.

Proposition 3.4. Let a,b € R. Then
a € L(b,P)= L(a,P) C L(b,P) and a€ R(b,P)= R(a,P) C R(b, P).

Proof. Let a € L(b, P), then P(a) = P(xb), for some z € R. Let r € L(a, P).
Then P(r) = P(ya) for some y € R.

Now P(a) = P(zb) = P(ya) = P(yxb) = P(r) = P(yzb) = r(L(b, P).
Hence L(a, P) C L(b, P).

Similarly , we can prove a € R(b, P) = R(a,P) C R(b, P). O
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Remark 3.3. We observe that L(0,P) ={r € R: P(r) = P(0)}.

Proposition 3.5. Let a,b € R. Then P(a) = P(b) implies L(a, P) = L(b, P)
and R(a,P) = R(b, P).

Proof. Let P(a) = P(b). Suppose = € L(a,P). Then P(x) = P(ra) for some
r € R, so P(x) = P(rb). Hence x € L(b, P). Thus L(a, P) C L(b, P).

Next, let y € L(b, P). Then P(y) = P(sb) for some s € R, and so P(y) =
P(sa). Hence y € L(a, P). Thus L(b,P) C L(a, P). Consequently, L(a,P) =
L(b, P). Similarly we can prove R(a, P) = R(b, P). O.

In the next two sections R is assumed to be a commutative ring with the
identity e and P is assumed to be a translational invariant fuzzy subset of R
satisfying P(x) = P(—x), Vz € R. Henceforth, the ideal generated by an element
a with respect to P will be denoted by I(a, P).

4. P- divisors of zero, P-associates

Definition 4.1. An element a € R with P(a) # P(0) is said to be a P-divisor
of zero if there exists some b € R with P(b) # P(0) such that P(ab) = P(0).

Henceforth we shall assume that R contains no P-divisor of zero and P(e) #
P(0). Let S={a € R: P(a) # P(0)}.

Definition 4.2. Let a,b € R and P(a) # P(0). We say that a divides b with
respect to P or a is a P- divisor of b, written as (a/b)p, if there exists ¢ € R
such that P(b) = P(ac) = P(ca).

Theorem 4.1. Let a,b € R and P(a) # P(0). Then (a/b)p if and only if
I(b,P) C I(a,P).

Proof. Suppose that (a/b)p. Then P(b) = P(ca) for some ¢ € R, which implies
that b € I(a,P) and therefore I(b, P) C I(a,P). Conversely, let I(b,P) C
I(a,P). As R contains identity e, P(b) = P(eb) = b € I1(b,P) C I(a,P).
Therefore, P(b) = P(ca), for some ¢ € R. Also P(a) # P(0). Hence (a/b)p. O

Definition 4.3. Let a,b € S. We say that a and b are P-associates if (a/b)p
and (b/a)p.

Proposition 4.2. Leta,b € S. Then a,b are P-associates if and only if P(a) =
P(bu) for some P-unit u € R.
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Proof. Let a,b be P-associates. Then (a/b)p and (b/a)p. So P(b) = P(ad) and
P(a) = P(bc) for some ¢,d € R. Hence

P(a) = P(bc) = P(adc)

= P(a — adc) = P(0)

= P(a(e — dc)) = P(0)

= P(e —dc) = P(0), since P(a) # P(0) and R is without P-divisor of zero.
= P(dc) = P(e)

= c and d are P -units.

Hence P(a) = P(bc), where ¢ is a P-unit in R. Conversely, suppose that P(a) =
P(bu), for some P-unit v in R. Now, P(a) = P(bu) = (b/a)p. Since u is a
P-unit, there exists v € S such that P(uv) = P(vu) = P(e). Hence P(a) =
P(bu) = P(av) = P(buv) = P(be) = P(b). This shows that (a/b)p. Thus we
find (a/b)p and (b/a)p. Hence a, b are P-associates. a

Corollary 4.3. Let a,b € S. If a,b are P-associates then I(a, P) = I(b, P).

Proof. Suppose a and b are P-associates. Then by Proposition 4.2, P(a) =
P(ub), for some P-unit u € R. Then, a € I(b, P), and so I(a, P) C I(b, P). Since
w is a P-unit of R, and P(a) # P(0) there exists v € S such that P(uv) = P(e) =
P(vu). Hence P(buv) = P(be) = P(b) = P(av) = P(b) and so b € I(a,P).
Therefore I(b, P) C I(a, P). a

Remark 4.1. The relation of being P-associates is an equivalence relation on
S.

Definition 4.4. Suppose a € S and a is not a P-unit. Then a is said to be
P-irreducible if P(a) = P(bc) implies either b or c is a P-unit.

Definition 4.5. Suppose a € S and a not a P-unit. Then a is said to be P-
prime if (a/be)p implies (a/b)p or (a/c)p.

Proposition 4.4. In the ring R any P-prime is P-irreducible.

Proof. Let a be P-prime. Suppose P(a) = P(bc). We can write P(bc) = P(ae).
Hence (a/bc)p. Since a is P-prime , either (a/b)p or (a/c)p.
Suppose (a/b)p. Then P(b) = P(ad) for some d € R. Now

P(a) = P(bc) = P(adc)

P(a(e —dc)) = P(0)

P(e —dc) = P(0), since P(a) # P(0) and R is without P-divisor of zero.
P(de) = P(e)

c and d are P -units.

el

Similar is the case if (a/bc)p.
Hence a is P-irreducible. |
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Theorem 4.5. Suppose a € S and a is not a P-unit. Then

(i) The element a is P-irreducible if and only if the ideal I(a, P) is maximal
among all ideals I1(b, P), where b € R and P(a) # P(b).

(ii) Let a € S and I(a,P) # R. Then a is P-prime if and only if the ideal
I(a, P) is a non-zero prime ideal.

Proof. (i) Suppose a is P-irreducible. Let I(a,P) C I(b,P) # R for some
b € R with P(b) # P(0). As R contains the identity , a € I(a,P) C I(b, P)
and so P(a) = P(cb) for some ¢ € R. Since a is P-irreducible, either b is a
P-unit or ¢ is a P-unit. Since I(b, P) # R, by Proposition 3.3, we find that
b is not a P-unit. Hence c is a P-unit . So there exists u € S such that
P(cu) = P(uc) = P(e) = P(bcu) = P(be) = P(b). Again, P(a) = P(cb)
implies P(au) = P(cbu) = P(bcu) = P(b). Hence P(b) = P(au). This implies
b € I(a,P) and so I(b,P) C I(a,P). Consequently, I(b,P) = I(a,P). Thus
I(a, P) is maximal.

Conversely, assume I(a, P) is maximal. Assume that P(a) = P(cd) where
¢,d € R. Then a € I(d, P) and so I(a, P) C I(d, P). Hence by our hypothesis
either I(a, P) = I(d,P) or I(d, P) = R. If I(a, P) = I(d, P), then d € I(d, P) =
I(a, P). Therefore P(d) = P(ra) for some r € R. This gives P(cd) = P(cra).
Thus we have P(a) = P(cra) and so P(a(e —cr)) = P(0). Since R is without P-
divisors of zero and P(a) # P(0), we have P(e —cr) = P(0), i.e., P(cr) = P(e).
This shows that ¢ is a P-unit. If I(d, P) = R, then as e € R, e € I(d, P) = R.
Hence P(e) = P(ds) for some s € R. Thus P(a) = P(dc) implies either ¢ or d
is a P-unit. Hence a is P-irreducible . This proves (i).

(ii) Suppose a is P-prime in R. Let z,y € R and xy € I(a, P). Then P(zy) =
P(ar) for some r € R. Which shows that (a/zy)p. As a is P-prime, either (a/z)p
or (a/y)p. If (a/x)p, then P(x) = P(ac) for some ¢ € R, and so x € I(a, P).
If (a/y)p, then P(y) = P(ad) for some d € R, and so y € I(a,P). Thus
xy € I(a, P) implies either « € I(a, P) or y € I(a, P). Since P(a) # P(0), we
must have a # 0. As e € R, it follows that a € I(a, P). Hence I(a, P) # {0}.
Consequently I(a, P) is a non-zero prime ideal of R. Conversely, let I(a, P) be
a non-zero prime ideal of R. Let 2,y € R and (a/xy)p. Then P(xy) = P(ac) =
P(ca), for some ¢ € R. Hence zy € I(a, P). Since I(a, P) is a prime ideal of R,
either x € I(a, P) or y € I(a, P).

If € I(a, P), then P(z) = P(da) for some d € R. Hence (a/x)p.

If y € I(a,P), then P(y) = P(ra) for some r € R. Hence (a/y)p. Thus
(a/zy)p implies either (a/xz)p or (a/y)p. Hence a is P-prime. O

5. Images and inverse images under ring homomorphisms

In this section we discuss the invariance of translational invariace property
of a fuzzy subset under ring homomorphism. Also we study the algebraic nature
of P-ideals under ring homomorphism.
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Definition 5.1. Let f be a function from a ring R into a ring R’ and let P be
a fuzzy subset of R. Then P is called f-invariant if f(z) = f(y) = P(z) = P(y),
where x,y € R.

Proposition 5.1. Let f be a homomorphism of a ring R into a ring R'. Let Q
be a translational invariant fuzzy subset of R'. Then f~1(Q) is a translational
imwvariant fuzzy subset of R.

Proof. Let a,b € R and f~1(Q)(a) = f~1(Q)(b). Then Q(f(a)) = Q(f(b)). Let
x € Rand f(z) =y € R'. Since @ is a translational invariant fuzzy subset of
R and Q(f(a)) = Q(f(%)), we have Q(f(a) +1) = Q(f(b) +y) and Q(f(a)y) =
QU Q1) = Q). Now QU (@)+3) = Q) +) mples (a4
f(x) = ( (b) + f(x)), and so Q(f(a + 1)) = Q(f (b + z)). Hence f~ HQ)(a+
z) = f71Q)(b + x). On the other hand, from Q(f(a)y Q(f(b)y) and
Qyf (@) = QUuf (b)), we get Q(f()f(x)) = QUF(b)f(x)) and Q(f(x)f(a)) =
QU ()f(3), and s0 Q(f(az)) = QS (bx)) and Q(f(za)) = Q(f(xh)). Thus we
have f~1(Q)(az) = f~1(Q)(bz) and f~(Q)(za) = f~1(Q)(xb) Ya,b,z € R.

Consequently f~1(Q) is translational invariant fuzzy subset of R. a

Proposition 5.2 Let f be a homomorphism of a ring R onto a ring R'. Let P
be a translational invariant fuzzy subset of R. If P is f-invariant, then f(P) is
a translational invariant fuzzy subset of R'.

Proof. Suppose P is f-invariant. Then Vz,y € R, f(x) = f(y) implies P(z) =
P(y). Now for any a € R, f(P)(a) = sup{P(z): = € R, f(z) = a}, since f
is onto. Let z,y € R and f(z) = a, f(y) = a. Then f(z) = f(y), and so
P(z) = P(y). Hence f(P)(a) = P(z), where z € R and f(z) = a. Thus Va € R/,
f(P)(a) = P(x), where z € R and f(x) = a. Now, let a,b € R, and f(P)(a) =
f(P)(b). Then P(x) = P(y), where x,y € R, and f(z) =a, f(y) =b. Let c € R’
be such that f(z) = ¢, where z € R. Then, a + ¢ = f(z) + f(z) = f(z + 2)
and b+ ¢ = f(y) + f(2) = f(y + 2). Hence f(P)(a +¢) = P(xz + z) and
F(P)(b+0) = P(y+2). Again, ac = f(2) f(2) = f(22), ca = f(2){(z) = f(z2),
be = f(y)f(z) = f(yz), and cb = f(2)f(y) = f(zy).

Hence f(P)(ac) = P(xz), f(P)(ca) = P(zx), f(P)(be) = P(yz), and

f(P)(cb) = P(zy). Since P is translational invariant and P(x) = P(y), w
have P(z + z) = P(y + z), P(zz) = P(yz), and P(zx) = P(zy). Hence
f(P)a+¢) = f(P)b+c), f(P)(ac) = f(P)(bc), and f(P)(ca) = f(P)(cb).

Thus if a,b € R’ and f(P)(a) = f(P)(b), then f(P)(a +¢) = f(P)(b+ ¢),
f(P)(ac) = f(P)(be), and f(P)(ca) = f(P)(cb) Yc € R'. Hence f(P) is a trans-
lational invariant fuzzy subset of R’. a

Theorem 5.3. Let f be a homomorphism of a ring R onto a ring R’ and P be
a translational invariant fuzzy subset of R. If P is f-invariant then,

fI(a, P)) = I(f(a), f(P)), Vae€R.
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Proof. Suppose P is f-invariant. Let y € I(f(a), f(P)). Then f(P)(y) =
f(P)(sf(a)) for some s € R'. Since y,s € R’ and f is onto, there exist z,r €
R such that f(x) = y and f(r) = s. Thus f(P)f(z) = f(P)(f(r)f(a)) =
f(P)(f(ra)). Since P is translational invariant, by what we have proved in
Proposition 5.2 , we get f(P)(f(x)) = P(x) and f(P)(f(ra)) = P(ra). Thus
P(z) = P(ra), which implies € I(a, P), and so f(z) € f(I(a,P)), i.e., y €
f(I(a, P)). Consequently, I(f(a), f(P)) C f(I(a,P)). Again, let y € f(I(a, P)).
Then there exists € I(a, P) such that f(x) = y. Also, x € I(a, P) implies
P(x) = P(ar) for some r € R. Now,

f(P)(y)= sup{P(z): v € [ (y)}
P(z),since P is f-invariant
P(ar).

Also, if f(r) = s we have f(P)(f(a)s)
sup { P(z'), such that 2’ € f~*(f(ar))}
J(P)(y) = F(P)(f(a)s) which implies y
I(f(a), f(P)), a € R. Consequently, f(I(a

= [(P)(f(a)f(r)) = f(P)(f(ar)) =
= P(ar),since P is f-invariant. Thus
€ I(f(a), f(P)). Hence f(I(a,P)) C
,P)) = 1(f(a), f(P)), a € R.

Proposition 5.4. Let f be a homomorphism of a ring R onto a ring R'. Let Q
be a translational invariant fuzzy subset of S. Let ' € R'. Then Va,b € f~*(a’),
I(a, f~1Q)) = I(b, f~1(Q)), provided f~*(a’) contains more than one element.

Proof. Let z € I(a, f~1(Q)). Then f LQ)(z) = f~1(Q)(ra) for some r € R and
x

so f7H(Q)(w ) =Q(f(ra)). Thus f~ HQ)(z) = Q( (a)f(r)). Since a,b € f~(a’),
f(a) = f(b) = a” and hence we have f- HQ) (@) = Q(f(b )f(r) = Qf (br) =
F7H(Q)(br). This shows that x € I(b 771Q)). Hence I(a, f~H(Q)) C I(b, Q).
Now let y € I(b, f~1(Q)). Then f~1(Q)(y) = f~*(Q)(br") for some 7’ € R, and
50 FHQ)) = QUGM) = QUM (). Since ab € f-1(a), fla) = d =
7(5) and hence we have £-(@)(y) = QU@ /() = QU (ar')) = £-1(Q)(ar").
This shows that y € I(a, f~1(Q)). Hence I(b, f~1(Q)) C I(a, f~1(Q)). Conse-
quently, T(a, /= (Q)) = 1(b, /- (Q)) Va,b € f~(a').

Theorem 5.5. Let f be an isomomorphism of a Ting R onto a ring R'. Let Q
be a translational invariant fuzzy subset of R'. Then

I ), Q) = f"I(y.Q) VyeR.

f7HQ)(x) - (y .
(y)f~%(s)), where s € R’ such that f(r) =
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Hence I(f~'(y), f~1(Q)) € f~'(I(y,Q)) Vy € R'. Again, let a € f~1(I(y,Q))
then f(a) € I(y,Q) = Q(f(a)) = Q(ys), for some s € R'. Also, y,s € R’ and
f is onto implies there exist x,r € R such that f(x) = y and f(r) = s. Now

Q(f(a)) = (yS) = Q( (@) = Q(f(=)f(r)) = Q(f(ﬂ)) = [HQ)(a) =
FHQr) = QU ( )T) which implies a € I(f~(y), fH(Q)). Thus,
FHI(y, Q) S I(f (), f71(Q)), Yy € R'. Consequently, I(f~*(y), f~1(Q)) =
1 I(y.Q)), Yy € R'. o
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