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EXTENSION OF NULL-ADDITIVE SET FUNCTIONS
ON ALGEBRA OF SUBSETS

Endre Pap1

Abstract. In this note an extension-type theorem for null-additive fuzzy
measures is proved.
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1. Introduction

We shall prove a theorem on extension of null-additive set function from a
ring of subsets of a given set to the algebra of subsets generated by this ring.

Let R be a ring of subsets of the given set X.

Definition 1. A set function m,m : R → [0,∞] with m(∅) = 0 is called null-
additive, if we have

m(A ∪B) = m(A)

whenever A,B ∈ R, A ∩B = ∅ and m(B) = 0.

For properties of null-additive set functions see E. Pap [20], [21], H. Suzuki
[24] and Z. Wang [26],[27].

Example 1. Let ⊥ be a t−conorm, i.e. a binary operation on [0, 1] such that
it is associative commutative and monotone with a neutral element 0. A set
function m : R→ [0, 1] is called ⊥−decomposable measure if m(∅) = 0 and

m(A ∪B) = m(A)⊥m(B)

whenever A, B ∈ R and A ∩B = ∅ ([15], [28]).
m is monotone null-additive set function.

Example 2 (⊕ - decomposable measure [9],[11],[19]). The operation ⊕ (pseudo-
addition) is a function ⊕ : [0,∞] × [0,∞] → [0,∞] which is commutative,
nondecreasing, associative, continuous and has a zero element 0. For example,
x⊕ y = (xp + yp)1/p for a fixed p > 0.

A set function m : R → [0,∞] is a ⊕ -decomposable measure if there hold
m(∅) = 0 and

m(A ∪B) = m(A)⊕m(B)
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whenever A,B ∈ R and A ∩ B = ∅. It is obvious that m is null-additive set
function. There are further generalizations for operations defined on [a, b] ⊂
[−∞, +∞].

Example 3. (k-triangular set functions, [7], [12], [13]). A set function m : R→
[0,∞) is said to be k−triangular for k ≥ 1 if m(∅) = 0 and

m(A)− km(B) ≤ m(A ∪B) ≤ m(A) + km(B)

whenever A,B ∈ R, A∩B = ∅. It is obvious that k− triangular set function is
always null - additive, although it may not be monotone. Special 1 - triangular
set functions are submeasures.

2. Extension

We shall need in the proof the following known result (see [22], 1.1.9 (4))

Theorem 1. Let R be a ring on X. Let

R1 = {A : A ⊂ X, A′ ∈ R}.
Then A = R∪R1 is the smallest algebra on X containing R.

Theorem 2. Let R be a ring of subsets of a set X such that X 6∈ R. Let m be a
null-additive monotone set function on R. Let A be the algebra on X generated
by R. Then there exists a null-additive set function on A possibly taking the
value infinity which is an extension of m from R to A.

Proof. We take
R1 = {A : A ⊂ X, A′ ∈ R}.

By Theorem 1 we have A = R∪R1. Let d = supR∈Rm(R).

First case: d = ∞. We define m on A by the following

m(A) = m(A) if A ∈ R and

m(A) = ∞ if A ∈ R1.

By the definition m is an extension of m from R to A. We shall prove that m
is null-additive. Let A,B ∈ A and A ∩B = ∅.

Case (1a): A,B ∈ R. If m(B) = 0, then also m(B) = 0 and we have

m(A ∪B) = m(A ∪B) = m(A) = m(A).

Case (1b): A ∈ R, B ∈ R1. We have always m = ∞, i.e., m(B) 6= 0. So case
(b) does not influences the null-additivity.
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Case (1c): A ∈ R1, B ∈ R. We shall prove that A ∪ B ∈ R1. Namely, we
have

(A ∪B)′ = A′ ∩B′ = A′ \B ∈ R,

since A′ ∈ R, B ∈ R and R is a ring. Now we have for m(B) = m(B) = 0

m(A ∪B) = m(A).

Case (1d): A, B ∈ R1. We have

X = A′ ∪B′ ∈ R,

what is impossible, since X 6∈ R. So this case does not arise.
Second case: d < ∞. We define m on A by the following equalities

m(A) = m(A) if A ∈ R and

m(A) = d−m(A′) if A ∈ R1.

Let A,B ∈ A and A ∩B = ∅.

Case (2a): A,B ∈ R. Then we have for m(B) = m(B) = 0

m(A ∪B) = m(A ∪B) = m(A) = m(A).

Case (2b): A ∈ R, B ∈ R1. Then in the same way as in the case (1b) we
obtain A ∪B ∈ R1. Now we have for m(B) = 0 that d = m(B′) and so

m(A ∪B) = d−m((A ∪B)′) = d−m(A′ ∩B′) = d−m(A′) = m(A).

Namely, since
m(B′) = sup

R∈R
m(R, )

we have A′ ⊂ B′.

Case (2c): A ∈ R1, B ∈ R. We have A∪B ∈ R1. So for m(B) = 0 it is also
m(B) = 0 and so

m(A∪B) = d−m((A∪B)′) = d−m(A′∩B′) = d−m(A′\B) = d−m(A′) = m(A),

since m(A′ \B) = m(A′) for m(B) = 0.

Case (2d): A, B ∈ R1. Then X = A′ ∪ B′ ∈ R, what is impossible by the
supposition X 6∈ R. So, this case does not arise.
This completes the proof of the theorem. 2
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