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SEMI-BROWDER ESSENTIAL SPECTRA OF
QUASISIMILAR OPERATORS

Dragan S. Djordjević 1

Abstract. If T and S are quasisimilar bounded operators on Banach
spaces, we prove that each closed-and-open subset of the lower semi-
Browder essential spectrum of T intersects one special part of the upper
semi-Browder essential spectra of T and S.
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1. Introduction

Let X and Y be Banach spaces and L(X, Y ) be the Banach space of all
bounded operators from X into Y . For T ∈ L(X, Y ) we use the following
notations: N (T ) is the kernel and R(T ) is the range of T . Also, α(T ) =
dim N (T ) and β(T ) = dim N (T ∗) = dim X/R(T ). Here X∗ denotes the dual
space of X and T ∗ ∈ L(X∗) is the adjoint operator of T . We use σ(T ) to denote
the spectrum of T . Recall that the approximate point spectrum of T is defined
by

σa(T ) = {λ ∈ C : λ− T is not one-to-one with closed range}
and the defect spectrum of T is defined by

σd(T ) = {λ ∈ C : λ− T is not onto}.

The next sets of semi-Fredholm operators are well-known: Φ+(X) = {T ∈
L(X) : R(T ) is closed and α(T ) < ∞} and Φ−(X) = {T ∈ L(X) : R(T ) is
closed and β(T ) < ∞}. Φ+(X) and Φ−(X), respectively, form the multiplicative
semigroups of upper and lower semi-Fredholm operators on X. The set of
Fredholm operators is defined as Φ(X) = Φ+(X)∩Φ−(X). For a semi-Fredholm
operator T the index is defined as i(T ) = α(T )− β(T ). The sets of upper and
lower semi-Fredholm essential spectra of T , respectively, are defined as

σle(T ) = {λ ∈ C : λ− T /∈ Φ+(X)} and σre(T ) = {λ ∈ C : λ− T /∈ Φ−(X)}.
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The Fredholm essential spectrum of T is defined as

σe(T ) = {λ ∈ C : λ− T /∈ Φ(X)} = σle(T ) ∪ σre(T ).

We shall consider the set of Weyl operators, which is defined as Φ0(X) = {T ∈
Φ(X) : i(T ) = 0}. Also, the Weyl essential spectrum of T is defined by σw(T ) =
{λ ∈ C : λ− T /∈ Φ0(X)}.

Recall that asc(T ) (respectively des(T )), the ascent (respectively descent) of
T , is the smallest non-negative integer n, such that N (Tn) = N (Tn+1) (respec-
tively R(Tn) = R(Tn+1)). If no such n exists, then asc(T ) = ∞ (respectively
des(T ) = ∞) [1]. It is well-known that if the ascent and the descent of T are
finite, then they are equal.

The set of all upper (respectively lower) semi-Browder operators on X is
considered (under various names) in [3], [5], [7], [8], [9], [10], [11] and defined
as: B+(X) = {T ∈ Φ+(X) : asc(T ) < ∞} (B−(X) = {T ∈ Φ−(X) : des(T ) <
∞}). The notion ”semi-Browder operator” firstly appears in [5], and also in [11]
and [7]. The set of Browder (Riesz-Schauder [1]) operators on X is defined as
B(X) = B+(X) ∩ B−(X). The Browder essential approximate point spectrum
of T is defined as

σab(T ) =
⋂

AK = KA
K ∈ K(X)

σa(T + K) = {λ ∈ C : λ− T /∈ B+(X)},

the Browder essential defect spectrum of T is defined as

σdb(T ) =
⋂

AK = KA
K ∈ K(X)

σd(T + K) = {λ ∈ C : λ− T /∈ B−(X)}

and the Browder essential spectrum of T is defined as

σb(T ) =
⋂

AK = KA
K ∈ K(X)

σ(T + K) = {λ ∈ C : λ− T /∈ B(X)} = σab(T ) ∪ σdb(T ).

We are pointing to the paper [9], where Rakočević introduced the notion of
the Browder essential approximate point spectrum (and by duality the Browder
essential defect spectrum) of T . By the analogy of the upper and lower semi-
Fredholm essential spectra, we shall say that σab(T ) and σdb(T ), respectively,
are the upper and lower semi-Browder essential spectra of T . Semi-Browder
essential spectra are also considered in [7].

Recall the main statement concerning the semi-Browder operators and semi-
Browder essential spectra.

Lemma 1.1. (a) B+(X) and B−(X) are open subsets of L(X) [8, sect. 4].
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(b) ∂σb(T )ı∂σab(T ) [9, Corollary 2.5 (ii)], and by duality ∂σb(T )ı∂σdb(T ).
(c) σab(T ) and σdb(T ) are compact non-empty subsets of C (follows from (a)

and (b)).

We also mention the next important and useful result [1, p. 57], [13].

Lemma 1.2. (a) If at least one of the quantities α(T ), α(T ∗) is finite, then
asc(T ) < ∞ implies α(T ) ≤ α(T ∗), and des(T ) < ∞ implies α(T ∗) ≤ α(T ).

(b) If α(T ) = α(T ∗) < ∞, then asc(T ) is finite if and only if des(T ) is finite.

For T ∈ L(X) the Goldberg spectrum is defined as σg(T ) = {λ ∈ C :
R(λ − T ) is not closed} (see [4] and [12]). Note that this spectrum may be
empty, and also it is not necessarily closed or open subset of C.

Recall that operators T ∈ L(X) and S ∈ L(Y ) are quasisimilar, if there
exist quasiaffinities A ∈ L(X, Y ) and B ∈ L(Y, X), such that AT = SA and
TB = BS. Recall that A is a quasiaffinity if A is one-to-one and R(A) is dense.
We shall frequently use the following fact: if T and S are quasisimilar, then
α(λ− T ) = α(λ− S) and α(λ− T )∗ = α(λ− S)∗ for all λ ∈ C.

It is well-known that quasisimilar Banach space operators can have different
spectra and different essential spectra (see [6] and references cited there). It
seems interesting to consider the connections between various parts of the spec-
tra of quasisimilar operators. These problems for bounded operators on Banach
spaces and various essential spectra are considered (for example) in [2] and [6].
Upper and lower semi-Fredholm essential spectra of quasisimilar operators are
considered in [16]. Results concerning some special cases of operators on Hilbert
spaces, such as seminormal and quasinormal operators, may be found in [14] and
[15].

It is natural to investigate the connection between the semi-Browder essential
spectra of quasisimilar operators.

Finally, we recall one important Herrero’s result [6].

Lemma 1.3. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar, then every compo-
nent of σe(T ) intersects σe(S) and viceversa.

2. Results

We begin with results which involve the semi-Browder essential spectra and
the Goldberg spectrum.

Theorem 2.1. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar, then:

(a) σab(T )\σg(T )ıσab(S) and σab(S)\σg(S)ıσab(T );

(b) σdb(T )\σg(T )ıσdb(S) and σdb(S)\σg(S)ıσdb(T ).
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Proof. To prove (a), let λ ∈ σab(T )\σg(T ) and λ /∈ σab(S). Since there exist
quasiaffinities A ∈ L(X,Y ) and B ∈ L(Y, X), such that AT = SA and TB =
BS, it follows that A(λ − T )n = (λ − S)nA for all positive integers n. Since
asc(λ− S) = p < ∞, it follows that

AN∞(λ− T )ıN∞(λ− S) = N (λ− S)p,

where we take N∞(T ) =
⋃

nN (Tn). Since α(λ−S)p < ∞, and A is one-to-one,
it follows that dim N∞(λ − T ) < ∞, so α(λ − T ) < ∞ and asc(λ − T ) < ∞.
This contradicts the assumption λ ∈ σab(T ) \ σg(T ).

The rest of the proof follows in the same way. 2

Now, we get a simple corollary. In the proof of this corollary we use Lemma
1.3.

Corollary 2.2. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar, then

σb(T ) \ σg(T )ıσb(S),

so every component of σb(T ) intersects σb(S).

Also, we can prove the following result concerning the Weyl essential spec-
trum.

Corollary 2.3. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar, then

σw(T ) \ σg(T )ıσw(S),

so every component of σw(T ) intersects σw(S).

Proof. Suppose that λ ∈ σw(T ) \ σg(T ). It follows that R(λ− T ) is closed and
one of the following two cases may occur: α(λ−T ) 6= α(λ−T )∗, or α(λ−T ) = ∞
and α(λ− T )∗ = ∞. We conclude that λ ∈ σw(S). 2

We shall use the following notations:

H∞∞(T ) = {λ ∈ C : α(λ− T ) = ∞, α(λ− T )∗ = ∞},
Hα<β(T ) = {λ ∈ C : α(λ− T ) < α(λ− T )∗},
Hβ<α(T ) = {λ ∈ C : α(λ− T )∗ < α(λ− T )},
K∞∞(T ) = {λ ∈ C : asc(λ− T ) = ∞, asc(λ− T )∗ = ∞},

A∞(T ) = {λ ∈ C : asc(λ− T ) = ∞}
D∞(T ) = {λ ∈ C : asc(λ− T )∗ = ∞}.

Also, let σE(T ) = σab(T )\ [H∞∞(T )∪K∞∞(T )]◦. Here D◦ denotes the interior
of D.

We also need the following auxiliary result.
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Lemma 2.4. If T ∈ L(X) and α(T ) < ∞, then α(Tn) ≤ n · α(T ) < ∞ for all
positive integers n.

We shall give a more precise information about the semi-Browder essential
spectra of quasisimilar operators. The main result follows.

Theorem 2.5 If T ∈ L(X) and S ∈ L(Y ) are quasisimilar, then every closed-
and-open subset of σdb(T ) intersects the set σE(T ) ∩ σE(S).

Proof. Let τ be an arbitrary closed-and-open subset of σdb(T ). We distinguish
two cases.

Case I. Suppose that τ is not an open subset of σb(T ). It follows that there
exist: t ∈ τ and a sequence (tn)nıσb(T ) \ σdb(T ), such that lim tn = t. We
conclude that t ∈ ∂(σb(T ) \ σdb(T )).

For arbitrary λ ∈ σb(T )\σdb(T ) we know thatR(λ−T ) is closed, α(λ−T )∗ <
∞ and des(λ− T ) < ∞. Since R(λ− T )n is closed for all non-negative integers
n, it follows that asc(λ − T )∗ < ∞. We get λ /∈ H∞∞(T ) ∪ K∞∞(T ). Also,
α(λ− T ) = ∞, or asc(λ− T ) = ∞, so λ ∈ σab(T ) \ [H∞∞(T ) ∪K∞∞(T )]◦.

On the other hand, for the same λ ∈ σb(T ) \ σdb(T ) we have: α(λ − S)∗ =
α(λ − T )∗ < ∞, so λ /∈ H∞∞(S). There exist quasiaffinities A ∈ L(X,Y ) and
B ∈ L(Y, X) such that AT = SA, TB = BS, so A∗[(λ− S)∗]n = [(λ− T )∗]nA∗

for all non-negative integers n. Using the idea from Theorem 2.1, it follows that
A∗N [(λ− S)∗]nıN [(λ− T )∗]n for all n, so

A∗N∞(λ− S)∗ıN∞(λ− T )∗ = N [(λ− T )∗]p,

where p = asc(λ−T )∗ < ∞. Since (λ−T )∗ is semi-Fredholm and A∗ is one-to-
one, it follows that

α(λ− S)∗ ≤ dim N∞(λ− S)∗ ≤ α[(λ− T )∗]p < ∞.

It follows that asc(λ − S)∗ < ∞, so λ /∈ K∞∞(S). We need to prove that
λ ∈ σab(S). Suppose that λ /∈ σab(S), so R(λ − S) is closed, α(λ − S) =
α(λ − T ) < ∞ and asc(λ − S) < ∞. Using the previous method we know
that these assumptions lead to the fact asc(λ − T ) < ∞, which contradicts
λ ∈ σab(T ). We have just proved that λ ∈ σab(S) \ [H∞∞(S) ∪K∞∞(S)]◦.

It follows that σb(T )\σdb(T )ıσE(T )∩σE(S). Since σE(T )∩σE(S) is closed,
we get t ∈ σE(T ) ∩ σE(S).

Case II. Let τ be an open subset of σb(T ). Since σb(T ) and σdb(T ) are closed
subsets of C and τ is a closed-and-open subset of σdb(T ), it follows that τ is a
closed-and-open subset of σb(T ). By Corollary 2.2 it follows that τ ∩σb(S) 6= ∅.

Suppose that τ ∩ σE(T ) ∩ σE(S) = ∅. It is easy to prove the following:

τ ∩ σb(S) ı(σdb(T ) ∩ σb(S)) \ (σE(T ) ∩ σE(S))
ı(σdb(T ) \ σE(T )) ∪ (σb(S) \ σE(S)).
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Notice that

σdb(T ) \ σE(T ) = (σdb(T ) \ σab(T )) ∪ (σdb(T ) ∩ [H∞∞(T ) ∪K∞∞(T )]◦).

We shall prove that σdb(T ) \ σE(T )ıD(T ), where

D(T ) = [Hα<β(T ) ∩D∞(T )]◦ ∪ [H∞∞(T ) ∪K∞∞(T )]◦.

Let λ ∈ σdb(T ) \ σab(T ). It follows that R(λ− T ) is closed, α(λ− T ) < ∞ and
asc(λ−T ) < ∞. By Lemma 1.2 it follows that α(λ−T ) ≤ β(λ−T ). If we admit
α(λ−T ) = β(λ−T ) < ∞, then it follows des(λ−T ) = asc(λ−T ) < ∞ (Lemma
1.2), so λ− T is a Browder operator, which contradicts the fact λ ∈ σdb(T ). It
follows that λ ∈ Hα<β(T ). Since λ−T ∈ B+(X)ıΦ+(X) we get λ ∈ Hα<β(T )◦,
so

ε1 = dist{λ; C \Hα<β(T )} > 0.

Let ϕ0(T ) = {µ ∈ C : µ− T ∈ Φ0(X)}. It is well-known that ϕ0(T ) is an open
subset of C. Since λ ∈ Φ+(X) \ Φ0(X), it follows that

ε2 = dist{λ; ϕ0(T )} > 0.

Notice that
ε3 = dist{λ; σab(T )} > 0.

Let ε = min{ε1, ε2, ε3}(> 0). We claim that if |µ − λ| < ε, then des(µ − T ) =
asc(µ − T )∗ = ∞. On the contrary, suppose that des(µ − T ) < ∞. Since
µ−T ∈ B+(X), it follows that β(µ−T ) = α(µ−T ), which contradicts the fact
µ ∈ Hα<β(T ). We have just proved that

λ ∈ [Hα<β(T ) ∩D∞(T )]◦.

Now it is obvious that
σdb(T ) \ σE(T )ıD(T ).

By the same way we can prove that σb(S) \ σE(S)ıD(S), so

τ ∩ σb(S)ıD(T ) ∩D(S).

We prove that D(T ) = D(S). Firstly we prove

[Hα<β(T ) ∩D∞(T )]◦ = [Hα<β(S) ∩D∞(S)]◦.

Let λ ∈ [Hα<β(T ) ∩ D∞(T )]◦. There exists ε > 0, such that for all complex
numbers µ, if |µ− λ| < ε, then α(µ− T ) < α(µ− T )∗ and asc(µ− T )∗ = ∞. It
follows that α(µ− S) < α(µ− S)∗. Notice that asc(µ− S)∗ < ∞ would imply
α(µ − S)∗ ≤ β(µ − S)∗ = α(µ − S) (Lemma 1.2), so we get asc(µ − S)∗ = ∞
for all µ, |µ− λ| < ε, and λ ∈ [Hα<β(S) ∩D∞(S)]◦.
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Now we prove H∞∞(T )∪K∞∞(T ) = H∞∞(S)∪K∞∞(S). Since H∞∞(T ) =
H∞∞(S), it is enough to prove

K∞∞(T ) \H∞∞(T ) = K∞∞(S) \H∞∞(S).

In order to prove the last equality, let λ ∈ K∞∞(T ) \H∞∞(T ). Then asc(λ−
T ) = ∞ and asc(λ− T )∗ = ∞. Let us assume that ∞ > α(λ− T ) = α(λ− S).

Suppose that asc(λ− S) = p < ∞. Since AT = SA we conclude

AN∞(λ− T )ıN∞(λ− S) = N (λ− S)p.

Also, A is a quasiaffinity, so

α(λ− T ) ≤ dim N∞(λ− T ) ≤ α(λ− S)p ≤ p · α(λ− S) < ∞ (Lemma 2.4).

It follows that asc(λ−T ) < ∞, which contradicts λ ∈ K∞∞(T ) \H∞∞(T ). We
get that asc(λ− S) = ∞.

Suppose that asc(λ− S)∗ < ∞. By Lemma 1.2 it follows that α(λ− S)∗ ≤
β(λ−S)∗ = α(λ−S) < ∞ and by the known method we conclude asc(λ−T )∗ <
∞, which contradicts asc(λ− T )∗ = ∞. It follows that asc(λ− S)∗ = ∞, also.
We have just proved D(T ) = D(S) = D.

Notice that D is an open subset of C. Also, Dıσdb(T )◦ and Dıσb(S)◦. We
can prove that τ ∩D is a closed-and-open subset of C, which contradicts the fact
∅ 6= D 6= C. Since D is an open subset of C and τ is a closed-and-open subset
of σdb(T ), we can conclude that τ ∩D is open in C. Since σb(S) \DıσE(S), we
conclude ∂DıσE(S). In the same way we can prove ∂DıσE(T )∩σE(S). Finally,
suppose that (tn)nıτ ∩D and lim tn = t ∈ τ . We get

t ∈ τ ∩ (D ∩ ∂D)ı(τ ∩D) ∪ (τ ∩ σE(T ) ∩ σE(S)) = τ ∩D,

so τ ∩D is closed in C.
It follows that τ ∩ σE(T ) ∩ σE(S) 6= ∅. 2

Now, it is a routine to prove the following result.

Corollary 2.6. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar and Ω is a subset
of C such that

σdb(T ) ∩ Ω 6= ∅, but σdb(T ) ∩ ∂Ω = ∅,
then

Ω ∩ σE(T ) ∩ σE(S) 6= ∅.

In the next theorem we shall prove one result concerning the Browder essen-
tial spectrum. We use the notation σadb(T ) = σab(T ) ∩ σdb(T ).
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Theorem 2.7. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar and Ω is a subset
of C such that

σb(T ) ∩ Ω 6= ∅ and σb(T ) ∩ ∂Ω = ∅,
then Ω ∩ σG(T ) ∩ σG(S) 6= ∅. Here we use σG(T ) = σadb(T ) \G(T ) and

G(T ) = [Hα<β(T ) ∩D∞(T )]◦ ∪ [Hβ<α(T ) ∩A∞(T )]◦.

Proof. It is easy to conclude ∂σb(T ) ∩ Ω 6= ∅. By Lemma 1.1 it follows that
∂σb(T )ı∂σab(T ) and ∂σb(T )ı∂σdb(T ). So, if λ ∈ ∂σb(T ) ∩ Ω, we conclude λ ∈
σadb(T ). It is easy to notice G(T )ıσb(T )◦, so λ ∈ σadb(T )\G(T ) = σG(T ). Now,
λ may or may not belong to σb(S) and we distinguish two cases.

Case I. Let λ ∈ σb(S) and λ /∈ σG(T ) ∩ σG(S). Then

λ ∈ σb(S) \ σG(S) = [σb(S) \ σadb(S)] ∪ [σb(S) ∩G(S)].

Notice that σb(S) ∩ G(S) = G(S). If λ ∈ σb(S) \ σadb(S), we conclude that
λ − S ∈ B+(Y ) ∪ B−(Y ) and R(λ − S) is closed. If λ − S ∈ B+(Y ), then
α(λ−S) < ∞ and asc(λ−S) < ∞. It follows that α(λ−S) ≤ α(λ−S)∗. If we
assume α(λ−S) = α(λ−S)∗, then it follows asc(λ−S) = asc(λ−S)∗ < ∞ and
λ /∈ σb(S), which contradicts λ ∈ σb(S). We get that λ − S ∈ B+(Y ) implies
λ ∈ [Hα<β(S)∩D∞(S)]◦ (recall the corresponding part of the proof of Theorem
2.5). Also, λ−S ∈ B−(Y ) implies λ ∈ [Hβ<α(S)∩A∞(S)]◦. Anyway, it follows
that σb(S) \ σadb(S)ıG(S) and

σb(S) \ σG(S) = G(S).

Using the corresponding part of the proof of Theorem 2.4, we conclude that
G(S) = G(T ), so λ ∈ σb(T )◦. The obtained fact contradicts λ ∈ ∂σb(T ), so it
follows that λ ∈ Ω ∩ σG(T ) ∩ σG(S).

Case II. Suppose that λ /∈ σb(S). In this case let τ denote the component of
σb(T ) containing λ. By Corollary 2.2 it follows that there exists µ ∈ τ ∩ σb(S),
so it follows that τ ∩ ∂σb(S) 6= ∅. Let ν ∈ τ ∩ ∂σb(S). As in Case I we conclude
that ν ∈ σadb(S) \G(S) = σG(S). If ν /∈ σG(S) ∩ σG(T ), then

ν ∈ σb(T ) \ σG(T ) = G(T ) = G(S)ıσb(S)◦,

(use the corresponding part of Case I), which contradicts ν ∈ ∂σb(S). We get
ν ∈ σG(T ) ∩ σG(S). Finally, suppose that ν /∈ Ω. Since λ ∈ τ ∩ Ω, it follows
that τ ∩ ∂Ω 6= ∅, which contradicts σb(T ) ∩ ∂Ω = ∅. Again, it follows that
ν ∈ Ω ∩ σG(T ) ∩ σG(S). 2

Using Theorem 2.7 it is not difficult to prove the following result.

Corollary 2.8. If the conditions from Theorem 2.7 are satisfied, then Ω ∩
∂(σG(T ) ∩ σG(S)) 6= ∅.
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Finally, notice that using the same principles as in Theorem 2.7 and Corol-
lary 2.8, we can prove one more result concerning the Weyl essential spectrum.
We use the notation σlre(T ) = σle(T ) ∩ σre(T ).

Theorem 2.9. If T ∈ L(X) and S ∈ L(Y ) are quasisimilar operators and Ω is
a subset of C such that

σw(T ) ∩ Ω 6= ∅ and σw(T ) ∩ ∂Ω = ∅,
then Ω ∩ ∂(σF (T ) ∩ σF (S)) 6= ∅, where σF (T ) = σlre(T ) \ F (T ) and

F (T ) = [Hα<β(T ) ∪Hβ<α(T ) ∪H∞∞(T )]◦.

Remark 2.10 Z. Yan proved analogous results for the lower and upper semi-
Fredholm essential spectra and for the Fredholm essential spectrum in [16].
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